
Poster: HTTP Botnet Resilient to Takedown
Chia-Mu Yu (Faculty)

Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan

I. MOTIVATION

Botnets have been the most dangerous threat on the Internet.
Recently, advanced botnets Flashback, Makadocs, and Vernot
evade the detection by taking advantage of public web services
Twitter, Google Docs, and Evernote, respectively. However,
the collaboration between the government and industry part-
ners may still disrupt the botnet communications [2].

Here, to study the possible trends in evolution of botnets, we
play the devil’s advocate by using the vulnerabilities of cloud
storage services (CSSs) to design a stealthy and robust C&C
channel. This is a vital step in developing a truly effective
countermeasure to the potential exploitation of CSSs by the
botnet C&C.

II. COVERT CHANNEL VIA DATA DEDUPLICATION

Chunk-based cross-user client-side data deduplication
(C3D2) has been widely used in CSSs to achieve storage
savings and reduce the need for bandwidth between the client
devices and the storage servers. The file to be uploaded is first
partitioned into chunks. For a chunk x, the user first calculates
and transmits a hash value h̄(x) to the server. Upon receiving
the hash value, the server checks whether it has a copy of
h̄(x). If so, the user keeps x locally, saving the bandwidth
of sending x to the server, and the server maps h̄(x) to the
current user, saving the storage space for another copy of x.
If not, the user is asked to transmit x to the server.

If C3D2 is used in the CSS, the client may know the chunk
existence status (CES) in the CSS by looking at the hash
response. As a result, a covert channel is established because
when one uploads (deletes) a specific chunk x, another party
gets a positive (negative) hash response and can be thought of
as “receiving” a bit 1 (0) [1].

III. SECURITY ASSUMPTION

Though the design of our botnet uses cloud storage as a
communication medium, we assume that the CSS adminis-
trator will provide full support to the defender except for
ethical and economic conflicts. On the other hand, though code
obfuscation is usually adopted, by reverse-engineering the bot
binary from the malware sample, the defender is assumed to be
able to obtain the full malware code and access the credentials.
These two assumptions could be critical; in this sense, a fast-
flux botnet is no longer robust since the DNS administrator
can unregister the suspicious domain name extracted from the
bot binary. Hence, the botmaster needs to confront a situation
where the botnet can hardly survive.

IV. BOTNET RESILIENT TO TAKEDOWN

Basic Idea. To strengthen botnet robustness, we introduce
a notion of undeletability, which means that, although the
commands are placed on the CSS, no one, including the
defender and CSS administrator, can erase the commands.
This can be the strongest notion of botnet robustness, to the
best of our knowledge. The rationale behind the undeletability
is that C3D2 enables different users to share the same data
chunks. Because the botnet commands are possibly comprised
of benign users’ data, the defender and the CSS administrator
cannot simply erase the commands. In this sense, the botmaster
sees the benign users’ data as hostages.

In addition, we introduce a notion of automatic recovery
as a complement to the undeletability. More precisely, the
defender can still add noises to disrupt the botnet command
albeit the command cannot be erased. The automatic recovery
ensures that the command can only be disturbed partly within
a time period and C&C will be recovered automatically unless
the CSS administrator keeps paying economic penalties.

In the following, we consider that the malware is hardcoded
with a random seed s and pseudorandom function h(·). The
bot spontaneously registers a CSS account and performs the
hash query/uploading, as described in Sec. II. Define h1i (x) =
h(i||x) and hji (x) = hi(h

j−1
i (x)), for i, j ≥ 1.

Bot Registration. A bot registration sequence (BRS) is
defined as a hash chain of infinite length: s, h11(s), h21(s),
. . . . The characteristic of a BRS is that, for each consecutive
pair of hash values, the lower-order hash value can be thought
of as the data chunk to be queried, while the higher-order
hash value serves as the hash value of the data chunk to be
queried. For example, one may send h21(s) to query the CES
of the chunk h11(s).

When joining a botnet, a new bot finds out an index w
such that the chunks h01(s) = s, h11(s), . . . , and hw−2

1 (s) have
already been in the CSS but hw−1

1 (s) is not. More specifically,
a new bot initially queries h11(s) to see whether there has
already been a copy of s. If so, then the bot keeps querying
the CES of subsequent chunks in BRS until there is a negative
response from the CSS. Given such a w, the bot sees w as
its bot ID and uploads hw−1

1 (s) to the CSS to finish the bot
registration.

To detect the bot registration, the botmaster does not need
to monitor all of the hash values in the BRS. Instead, the
botmaster constantly queries only hw1 (s) to sense the new bot
registration because of its knowledge of all the registered bots.
Once the botmaster senses an update of hw−1

1 (s), it knows that
a new bot has been recruited.

Command Dissemination. A broadcast command dissemi-

2

BRS

BCDS

1st UCDS

2nd UCDS

(a) BRS, BCDS, and UCDSs

A

B

botmaster

account 1
account 2
account 3
account 4

account 5

account
on bot B

account
on bot A

(b) Multi-account approach

Fig. 1: BRS, BCDS, UCDSs, and multi-account approach

nation sequence (BCDS) is defined as a hash chain of infinite
length: s, h12(s), h22(s), Consider that the botmaster wants
to disseminate a command b to the entire botnet. The chunk set
Czs,h(b) of a bit string b = b1b2 . . . bρ, where ρ is the number
of bits required to represent a command, is defined as a set of
chunks {hi−1(s)|bi = z, 1 ≤ i ≤ ρ}. We claim that a bit string
b can be encoded and represented by the CES of C0s,h2

(b) and
C1s,h2

(b) because one who queries the CES of C0s,h2
(b) and

C1s,h2
(b) may receive the corresponding negative and positive

responses, which can be interpreted as 0 and 1, respectively.
Note that in the case where each command has the same
length ρ, and the bot reads different subsequences of BCDS
depending on different time periods. In other words, if the next
command is to be issued, different chunk set needs to be used
but we omit the notational details to ease the presentation.

For example, a copy of the chunk h32(s) in the server
implies the positive reponse of the hash query h42(s) and can
be interpreted as b4 = 1, while b6 = 0 corresponds to the
inexistence of the chunk h52(s) in the server. The botmaster can
disseminate a command b to the entire botnet through BCDS
by uploading the chunks in C1s,h2

(b) to the server via multiple
CSS accounts spontaneously registered by the botmaster and
doing nothing for the chunks in C0s,h2

(b). An illustration of
BRS and BCDS is shown in Fig. 1a, where both BRS and
BCDS starts with s.

V. DISCUSSION

Undeletability. During the command dissemination, the
goal of the botmaster uploading the chunks in C1s,h2

(b) via
multiple accounts is to create an illusion that the chunks
are owned by multiple users. In particular, the simplest form
of such a multi-account approach is that for each chunk in
C1s,h2

(b), the botmaster spontaneously registers a number of
CSS accounts and then uploads the chunk to the CSS via
these accounts. An example can be found in Fig. 1b, where
the botmaster creates an illusion that three users own h52(s)
and four accounts share h62(s).

In a C3D2-based CSS, there is always a possibility that
the chunks in C1s,h2

(b) are also uploaded by legitimate users.
Furthermore, the above approach always results in the situation
where each chunk in C1s,h2

(b) is owned by different users.
One can observe that even when the defender knows that the
commands have been placed on BCDS, the chunks in C1s,h2

(b)

still cannot be removed. Otherwise, it might jeopardize the
data integrity of the benign users.

A more aggressive way of C&C disruption is to simply
delete the chunks in C1s,h2

(b) because one may argue that
the chances of them colliding with a real user’s chunk could
be rather small. In other words, if a chunk is the output
of a bot’s pseudorandom function, then it may safely be
regarded as malicious content and deleted. However, despite
the small chance, the CSS administrator should not take a risk
of deleting the benign user’s data. Otherwise, the accounts
created by the botmaster and used to upload chunks only once
may claim that it is in a legitimate use, its chunks are no longer
available, and demands an indemnity. Such a dispute would
be difficult to resolve.

Automatic Recovery. Instead of removing the chunks in
C1s,h2

(b), an alternative attempt to disrupt the command dis-
semination is for the CSS administrator to fill all the positions
of BCDS. This is in some sense similar to adding a huge
amount of noises to BCDS, and can temporarily disrupt the
C&C, at the expense of the increased use of the storage
space. Notice that this only achieves temprary C&C disruption
because as time goes by, different parts of BCDS will be used.
Thus, the CSS administrator needs to keep filling the chunks
in C1s,h2

(b), during the whole botnet’s lifetime. Otherwise, the
BCDS-based C&C channel will be recovered automatically
because no noise is added to it and the command can be
extracted easily.

Noises on BRS. The benign user’s data chunks might
happen to be equivalent to the hash values in the BRS before
they are used for the bot registration. Although having the
impact on counting the bots, this in fact does not compromise
the bot registration.

Noises on BCDS. The benign user’s data chunks might
happen to be equivalent to the hash values in the BCDS
before they are used for the command dissemination. This may
destroy the command integrity. A simple solution is to apply
an error correction code to the command first and then upload
the chunks in C1s,h2

(E(b)), where E(b) denotes the encoded
command.

Unicast Command Dissemination. Since the bot ID w
can represent a specific bot, by defining unicast command
dissemination sequence (UCDS) as a hash chain: w, h12(w),
h22(w), . . . , the botmaster can send the command to the
individual bot in a way similar to broadcasting the command.
In essence, we also claim that a bit string b can be encoded and
represented by the CES of C0w,h2

(b) and C1w,h2
(b) because one

who queries the CES of C0w,h2
(b) and C1w,h2

(b) may receive the
corresponding negative and positive responses, which can be
interpreted as 0 and 1, respectively. An illustration of UCDSs
is shown in Fig. 1a

REFERENCES

[1] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in cloud
services, the case of deduplication in cloud storage. IEEE Security &
Privacy Magazine, 2010.

[2] Microsoft, the FBI, Europol and industry partners disrupt
the notorious ZeroAccess botnet. http://www.microsoft.com/en-
us/news/press/2013/dec13/12-05zeroaccessbotnetpr.aspx

