
Poster: Cloud-Entry: Elusive Tor Entry Points in Cloud

Zhenlong Yuan∗, Xiaoxian Chen‡, Yibo Xue∗, Yingfei Dong†
∗ Tsinghua University, Beijing, China
† University of Hawaii, Honolulu, USA

‡ Harbin University of Science and Technology, Harbin, China
yuanzl11@mails.tsinghua.edu.cn, {chenxiaoxian, yiboxue}@tsinghua.edu.cn, yingfei@hawaii.edu

Abstract—As current Tor bridges and relays can be easily
identified and blocked, it is critical for Tor users to be able
to connect the Tor service. In this paper, we propose a novel
Cloud-Entry service for Tor to address this issue by utilizing the
unique characteristics of cloud services. As our first step, we have
built a prototype pluggable transport, called GTor on the Google
App Engine (GAE) platform, to help a Tor client to connect
a Tor relay/bridge via a Google web application. This service
is hard to identify and block, and thus also hides Tor users in
cloud traffic. Furthermore, it makes identifying bridges a difficult
task. Moreover, it naturally provides better performance with
cloud resources. More importantly, it is scalable with the cloud
service capacity. Our initial implementation and evaluations have
demonstrated its effectiveness, and we are improving the scheme
by developing cloud-based relays. We have made our GTor
implementation available online.

I. Introduction

As statistics-based methods can detect Tor encrypted ses-
sions, and then find corresponding Tor relays/bridges, re-
searchers have proposed to hide Tor traffic in other encrypted
traffic in order to avoid being identified based on traffic
characteristics. In particular, several protocol-level obfuscation
plugins (i.e., pluggable transport) have been developed, such
as SkypeMorph [1], StegoTorus [2] and CensorSpoofer [3]. Al-
though they all achieved certain levels of obfuscation, a recent
work [4] demonstrated that these pluggable transports failed to
achieve completely unobservability. Even a weak local censor
can easily distinguish their traffic from the imitated protocols.
Therefore, new methods to protect Tor relays/bridges and hide
Tor traffic are still open questions.

II. Proposed Cloud-Entry: GTor

A. Unique Opportunities on GAE

GAE is a platform as a service (PaaS) platform for hosting
web applications in Google data centers. For security and
stability, all applications are sandboxed and run across multiple
servers. Due to the scalability of the Google infrastructure,
GAE offers automatic scaling for growing requests, i.e., allo-
cating more resources for busy web applications to handle
additional demands. The easy-to-use management of GAE
eliminates the need for users to maintain their servers. They
can simply upload their applications and then access them
via their application IDs. GAE has a free service level with
considerable storage and network bandwidth. Currently, one
free Google account can support up to 10 applications, a
maximum of 1GB free storage , and 1GB free bandwidth per
day for each application.

GAE supports several significant services, such as URL
fetch and sockets. The URL fetch service allows GAE ap-
plications to exchange data with other hosts using HTTP
requests and thus can help customers retrieve other web
resources by using the high-speed Google infrastructure. The
sockets service enables outbound sockets, and is available
for billing-enabled applications for free. In summary, GAE
is a powerful platform for running web applications. As a
main product of Google cloud platform, GAE has a large
number of high-capacity, high-bandwidth servers distributed
all over the world. Note that the GeoIP databases show that
the Google infrastructure has at least 730,000 IP addresses.
GAE also supports automatic load balancing such that each of
the above IP addresses can serve the same types of Google’s
services via HTTPS, e.g., search, Gmail, Gmap, and user-
loaded applications.

Consequently, when we deploy web applications as the
cloud-entry points for Tor on the GAE platform, we will enjoy
the following benefits: (i) Traffic analysis resistance. Since
every Google server can provide a wide range of services
via encrypted SSL/TLS protocol concurrently, adversaries are
unable to distinguish the types of services based on port
numbers, IP addresses, or payloads. Statistic-based methods
based on packet patterns are too costly for this purpose. (ii)
Service Availability. In general, several Google services such
as Google search and Google mail are indispensable for a
region such that the adversary has to take a lot collateral
damages if it simply blocks all Google servers (which is not a
easy task anyway). Note that our GAE applications can work
properly as long as there is a Google server available. (iii)
Secure entry-points publishing. To resist the blocking of Tor
non-public entry-points (i.e., bridges, obfs2 bridges and obfs3
bridges), the Tor project builds a few bridge pools and forces
users to retrieve bridges’ IP addresses by accessing the bridge
management server via HTTPS or via a valid Google/Yahoo
email account. However, although a few methods have been
built for secure bridges publishing (e.g., Google reCAPTCHA
has been used to prevent censors enumerating bridges from
the HTTPS server), powerful censors still can collect bridge
information by employing cheap labors. However, on GAE,
the unique identification of a web application is its ID which
is encrypted in a SSL/TLS flow. Even though a censor may
gather such IDs, there is no practical way to match them in
encrypted traffic.

Most importantly, web applications on GAE are relatively
easy to build, maintain, and scale without significant cost/effort



(a) Overview of the GTor Workflow. (b) Strategy for Evading DNS Injection. (c) Download Time Using “DownThemAll!” (d) Response Time for Web Browsing.

Fig. 1. The Design and Evaluation of GTor

on the user side, as long as we control the total amount
traffic at each application. So, we can set up a large number
of Tor entry-points easily with almost no cost, which will
certainly further improve the availability of Tor service in
heavily censored regions.

B. GTor Design

As a pluggable transport of Tor, GTor sets up the first-hop
connection of a Tor client to a Google web application, instead
of Tor bridge/relay. Fig. 1(a) shows how GTor facilitates
data exchange between a user browser and censored websites.
GTor consists of a client-side plugin and a server-side cloud
application. The client-side plugin is mainly responsible for
wrapping a Tor flow into another further encrypted flow, and
then sending it to the server-side application on GAE. The
server-side application is mainly responsible for unwrapping
the received encrypted flow and then sending it to a Tor
bridge/relay as regular Tor traffic.

However, we have to overcome a few limitations of current
GAE for web applications, especially when running in heavily
censored countries. Some censors (such as the Great Firewall)
use DNS injections to block users’ access to censored web-
sites [5], [6]. For example, the DNS responses in China for
appspot.com are forged, which is the free domain for GAE
users to run or connect to web applications. So, we have to
solve this first.

Assuming that the application ID of a GTor serv-
er is anonymous, then the domain name would be
anonymous.appspot.com. Users can contact this domain
for the GTor service. However, the DNS response for
anonymous.appspot.com in China will point to something
else. To get around this DNS issue, we utilize the com-
mon Google search servers to deliver a HTTP request to
a GTor server, as shown in Fig. 1(b). In particular, a G-
Tor client first changes the “Host” field of a HTTP re-
quest to a Google search server from “www.google.com” to
“anonymous.appspot.com”, and then wraps another HTTP
request (which originally should be directly sent to a GTor
server) into the payload of the modified HTTP request. In
this way, while receiving a special HTTP request whose
“Host” field is “*.appspot.com”, a Google search server
will immediately forward the payload of the request to the
corresponding web application. Note that the modified HTTP
request is encrypted in a SSL/TLS flow when transferred
from a GTor client to a Google server. So, censors can not

detect this change easily. For the purpose of facilitating the
further development and optimization on GTor architecture,
we have made our GTor implementation (written in Python)
open-source, available at: https://github.com/zlyuan/GTor

III. Performance Evaluation
In this section, we perform a preliminary evaluation by

directly comparing the performance of GTor with Tor from
Nov. 2013 to Jan. 2014. In our current implementation, we
have implemented a GTor server (in a GAE web application)
as an entry point to a real Tor relay or bridge, which actually
adds one extra hop in a circuit in the cloud.

On a Windows PC, we use the reliable Firefox add-on
“DownThemAll!” that supports downloading with resuming
capability to evaluate the performance of GTor for down-
loading files, instead of using the TorPerf measurement tool
supplied by Tor project. We downloaded 4 files with size
1MB, 2MB, 5MB, and 10MB, respectively, and repeated each
download 100 times from the Wikipedia database. Fig. 1(c)
shows the median download time for each file size. We can
see that the average performance on GTor is much better than
that on Tor, about 3.45 times faster on average, although the
GTor added one extra hop in GAE in a circuit. To calculate the
response times of the top 10 web sites from Alexa.com, we
use the automated Firefox add-on “iMacros” that supports
capturing precise web page response times with its built-
in STOPWATCH command. Each web page was automated
downloading 100 times and the median response times are
shown in Fig. 1(d). We can see that the average response delay
of web browsing with GTor is outperformed that with Tor,
about 1.77 times faster on average.

References
[1] H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and I. Goldberg,

“Skypemorph: Protocol obfuscation for tor bridges,” in Proceedings of
the 2012 ACM CCS.

[2] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister, S. Cheung,
F. Wang, and D. Boneh, “Stegotorus: a camouflage proxy for the tor
anonymity system,” in Proceedings of the 2012 ACM CCS.

[3] Q. Wang, X. Gong, G. T. Nguyen, A. Houmansadr, and N. Borisov, “Cen-
sorspoofer: asymmetric communication using ip spoofing for censorship-
resistant web browsing,” in Proceedings of the 2012 ACM CCS.

[4] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The parrot is dead:
Observing unobservable network communications,” in Proceedings of the
2013 IEEE Symposium on S&P.

[5] D. Anderson, “Splinternet behind the great firewall of china,” Queue,
vol. 10, no. 11, p. 40, 2012.

[6] P. Levis, “The collateral damage of internet censorship by dns injection,”
ACM SIGCOMM CCR, vol. 42, no. 3, 2012.


