
Poster: A Precise and General Inter-component Data
Flow Analysis Framework for Security Vetting of

Android Apps

Fengguo Wei (Student), Sankardas Roy (Research Associate), Xinming Ou (Professor), Robby (Professor)
Dept. of Computing and Information Sciences, Kansas State University, Manhattan, Kansas 66506

Email: fgwei, sroy, xou, robby@ksu.edu

I. INTRODUCTION

Most of the prior works [1], [2], [3], [4] on applying static
analysis to address security problems in Android applications
focused on specific problems and built specialized tools for
the problems. We observe that the analysis of a large variety
of security issues in Android apps (malicious or vulnerable)
share an underlying core problem, which is capturing semantic
behaviors of the apps such as determining object points-to
information precisely.

We have thus designed a new approach to conducting static
analysis for vetting Android apps, and built a general frame-
work called Amandroid. Amandroid can determine points-
to information for all objects in an Android app in a flow
and context-sensitive way across Android apps components.
We show that: (a) this type of comprehensive analysis is
completely feasible in terms of computing resources needed
with modern hardware, (b) one can easily leverage the results
from this general analysis to build various types of specialized
security analyses – in many cases the amount of additional
coding needed is less than 150 lines of code (LOC), and (c) the
result of those specialized analyses leveraging Amandroid is
at least on par and often exceeds prior works designed for the
specific problems. Detailed comparison of Amandroid’s results
with those of prior works (whenever we can obtain those tools)
will be made available in a technical report.

Since Amandroid’s analysis directly handles inter-
component communication (ICC), it can be used to address
security problems that result from interactions among multiple
components from either the same or different apps. Aman-
droid’s analysis is sound in that it can provide assurance of
the absence of the specified security problems in an app with
well-specified and reasonable assumptions on Android runtime
system and its library.

II. THE AMANDROID APPROACH

Figure 1 illustrates the pipeline of Amandroid’s main
steps: (1) Amandroid converts an app’s Dalvik bytecode to
an intermediate representation (IR) amiable to static analysis;
(2) it generates an environment model that emulates the
interactions of the Android System with the app. Because of
the event-based nature of Android system, we need such a
model to capture the control and data flows stemming from
these interactions; (3) Amandroid builds a flow- and context-
sensitive inter-component data flow graph (IDFG) of the
whole app; IDFG includes the control flow graph spanning

over all the reachable components of the app, and it also tracks
objects flowing to any particular program point; the points-
to information is extremely useful for analyzing a number of
security problems that have been discussed in prior works
using customized methods; (4) Amandroid builds the data
dependence graph (DDG) on top of the IDFG , which implies
explicit information flow; (5) Amandroid then can be applied
in various types of security analysis using the information
presented in IDFG and DDG . For example, one can use
DDG to find whether there is any information leakage from
a sensitive source to a critical sink by querying whether there
is a data dependence chain from source to sink.

III. EXPERIMENTATION AND EVALUATION

On top of the Amandroid framework, one can design and
implement plugins for the specific analysis. We extensively
experimented with Amandroid in multiple types of security
analyses. We used two sets of apps in the experiments: 350
popular apps (kindly shared by the Epicc group [4]) from
Google Play, and a sample malware set (containing 100 apps)
from a third-party security company. For brevity, we call
these data sets GPlay, and MAL, respectively. We perform
our experiments on a machine with 2× 2.26 GHz Quad-Core
Xeon and 32GB of RAM.

A. Performance and Scalability

The most computational intensive step in Amandroid is
building the IDFG . Once the IDFG is built, the running time
of the subsequent analyses is negligible. We measured the time
taken by Amandroid to construct IDFG for 450 apps. This
measurement is done on the datasets GPlay + MAL, which
are all real-world apps. The median is 22 seconds; min is 5
seconds; and max is 1629 seconds. We limited the processing
time of one component of an app to 10 minutes. Amandroid
raised this timeout on 27 of the 450 apps.

B. Application to Security Analysis

We can map multiple security problems to queries on
IDFG and DDG . Below we report particular experiments
addressing data leak, data injection, and misuse of APIs.
All the experiments were performed on the GPlay and MAL
datasets.



Fig. 1: The Amandroid Analysis Pipeline

TABLE I: Password Leakage Case Study
App name (app source) App behavior
Case 1: com.datpiff.mobile.xxx (GPlay) Get user password, encode it,

then write it into log.
Case 2: com.toystorymusic- Send password to server via http.
.musicapp.xxx (MAL)
Case 3: com.snappii.angel investing- Write user password into

news v10.xxx (GPlay) SharedPreference.

TABLE II: Intent Injection Case Study

App name (app source) App behavior
Case 1: com.app.amberalertgp- Retrieve string from an incoming intent
stracker.xxx (GPlay) and display it on an Activity screen
Case 2: com.kamagames.note- Start an activity by using the mData of
pad.xxx (GPlay) the incoming intent

1) Data Leak: Examples of sensitive data include user-
login credentials (e.g., password), location information, and so
on. The leak detection can be performed through standard data
dependence analysis using the DDG .

Password Leak: Amandroid can be used to check whether the
input app obeys a password protection policy. In particular,
Amandroid can track the path of the password object, e.g.,
from the UI screen to the network or a storage such as Internal
Storage, External Storage, or SharedPreference. The only “to-
do” task for this analysis is to identify which variables in
the app’s code corresponds to a password object, which we
achieve by examining the layout mapping. We prepare the list
of sink APIs by considering the relevant I/O operations (e.g.,
URL.openconnection). The rest of the analysis is the straight-
forward application of DDG . We found several examples of
password leakage some of which are shown in Table I.

2) Data Injection: An app can have a vulnerability which
allows an attacker to inject data into some internal data
structures, leading to security problems.

Intent Injection: This is an example [3] of the data injection
attack. For instance, the attacker can control the destination
of an intent, which can lead to serious security problems.
The intent injection problem can be handled via a special
analysis on the DDG . We found a variety of intent injection
problem in our experiment. Table II shows part of the results.
We observe a couple of interesting patterns: (a) The attacker
controls the content of a message (e.g., Case 1 in Table II).
(b) The destination of an ICC depends on an incoming intent
controlled by the attacker. Furthermore, Amandroid was able
to rediscover the Next Intent [5] problem in the Dropbox app.

3) API Misuse: Another critical part of security vetting is
to find if the developer has used a library API in an improper

TABLE III: Crypto API Usage Case Study

App name (app source) App behavior
Case 1: hu.sanomabp.citromail- Encrypt oath token using AES default
.xxx (GPlay) mode, then store it in SharedPreference.
Case 2: diesel.peko.ninkyodobro- Encrypt the password using AES default
wser.xxx (GPlay) mode.

TABLE IV: Plugin Summary

Plugin Name Plugin Size Total Analysis Time (Avg.)
Tracking password flow plugin 120 LOC 23s
Intent Injection plugin 70 LOC 71s
Crypto API check plugin 140 LOC 18s

way. We can detect these problems by querying the IDFG for
the possible values of each parameter object. Prior work [2]
has applied static analysis techniques to identify misuse of
cryptographic APIs. The main idea is to detect if the app
contains improper usage of the APIs. Table III shows part
of the results. These example apps encrypt the user credential
using the AES cipher in the default (i.e., ECB) mode. It is not
clear though whether this will be a security problem, since
authentication credentials (e.g., passwords) may not contain
more data than one block of the cipher.

4) What it Takes to Build a New Analysis: The advantage
of Amandroid’s approach is that the general framework (which
is built with about 30000 LOC) provides a means for building
a variety of further security analyses in a very straightforward
and easy way. Each special analysis built on top of Amandroid
involves developing a “plugin” that leverages the IDFG and
DDG from Amandroid’s analysis. We present the summary
of the plugins used in the above applications in Table IV,
which shows the sizes of the plugin in LOC, as well as the
average total running times (involving both the framework and
the plugin) for each analysis.

REFERENCES

[1] ARZT, S., AND OTHERS. FlowDroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for Android apps. In PLDI
(2014).

[2] EGELE, M., AND OTHERS. An empirical study of cryptographic misuse
in Android applications. In CCS (2013).

[3] LU, L., AND OTHERS. CHEX: Statically vetting Android apps for
component hijacking vulnerabilities. In CCS (2012).

[4] OCTEAU, D., AND OTHERS. Effective inter-component communication
mapping in Android with Epicc: An essential step towards holistic
security analysis. In USENIX Security Symposium (2013).

[5] WANG, R., AND OTHERS. Unauthorized origin crossing on mobile
platforms: Threats and mitigation. In CCS (2013).


