
Poster: Oblivious Data Structures
Xiao Wang∗, Kartik Nayak∗, Chang Liu∗, Elaine Shi∗, Emil Stefanov†, Yan Huang∗

∗ {wangxiao, kartik, liuchang, elaine, yhuang}@cs.umd.edu
University of Maryland, College Park

† emil@cs.berkeley.edu
University of California, Berkeley

Abstract—We are among the first to systematically investigate
(memory-trace) oblivious data structures. We propose a frame-
work for constructing a variety of oblivious data structures,
achieving asymptotic performance gains in comparison with
generic Oblivious RAM (ORAM). We evaluate the performance
of our oblivious data structures in terms of their bandwidth
overheads, and also when applied to a secure computation setting.
Finally, we leverage our new framework to design an efficient
oblivious memory allocator which is particularly useful due to
the community’s recent efforts in compiling programs targeting
ORAM-capable secure processors.

I. INTRODUCTION AND MOTIVATION

It is well-known that access patterns, to even encrypted data,
can leak sensitive information such as encryption keys [1], [2].
This problem of access pattern leakage is prevalent in numer-
ous application scenarios, including cloud data outsourcing,
[3], design of tamper-resistant secure processors, [4], [5], as
well as secure multi-party computation [6], [7].

General approaches for hiding access patterns is referred as
Oblivious RAM (ORAM). While it is powerful and allows the
oblivious simulation of any program, state-of-the-art ORAM
constructions incur moderate bandwidth overhead despite the
latest progress in this area. Therefore, it will be beneficial
to have customized, more efficient constructions for a set of
common algorithms that are widely used in practice. This
will have numerous applications. Below we present some
background as well as motivating application settings.

a) Cloud data outsourcing: Oblivious data structures
will be particularly useful for outsourcing a database (e.g.,
SQL database) to a cloud server, and subsequently making
database queries. Since modern database implementations rely
heavily on data structures, it will be interesting to consider
using our oblivious data structures to build oblivious databases.

b) Secure processor: Tamper-resilient secure processors
have been designed to resist physical attacks where an ad-
versary may have physical access to the victim’s computing
platform (e.g., captured devices, malicious insiders or intruders
for cloud data centers). The idea is to reduce the hardware
trusted computing base (TCB) to the processor itself. The trust
boundary is drawn around the chip, and anything off-chip is
considered insecure, such as memory and peripheral devices.
In particular, it is well-known that memory probes or cold-boot
style attacks can be feasible with relatively low cost.

Existing secure processors designed in academia and indus-
try alike, including AEGIS [8] and Intel SGX encrypt and
authenticate memory; however, memory addresses are still

transferred in the clear on the memory bus. Unsurprisingly,
researchers have shown that such memory buses can leak
sensitive information such as secret encryption keys [1].

Recently, with the advances in making ORAM practical,
researchers have designed the first secure processor prototypes
that obfuscate memory access patterns in a provably secure
manner [4], [5]. Since generic ORAM incurs moderate over-
head, it would be interesting to consider providing hardware
support for our oblivious data structure. Since our framework
for constructing oblivious data structures rely on a position-
based ORAM such as Path ORAM (without recursion), it
is conceptually not hard to modify existing ORAM-capable
secure processor prototypes [4], [5] to support ODS as well.

c) Secure computation: Traditionally, secure computa-
tion begins by converting a function of interest into a circuit.
Recently, researchers have observed the inadequacy of circuit-
model secure computation when applied to a scenario with big
data [6]. In particular, a compiler that translates programs into
circuits would have to copy the entire data for every dynamic
memory access whose address depends on sensitive data.

RAM-model secure computation [6] was recently proposed
as an attractive alternative to the traditional circuit model. In
theory, RAM-model secure computation asymptotically scales
better for programs that access a big dataset. In standard
RAM-model secure computation, ORAM is used to prevent
information leakage through access patterns to data. Our
oblivious data structures can be used as a more efficient
alternative to generic ORAM.

II. CONTRIBUTION

We are among the first to systematically formulate and
investigate oblivious data structures (ODS). Data structures
are a particularly important class of algorithms due to its
prevalent usage in many practical settings, such as graph
algorithms, genomic algorithms, and database applications.
Our contributions include the following.

A framework for constructing oblivious data structures.
We propose a new framework for constructing oblivious data
structures, and under this framework we derive a suite of
efficient data structure implementations, including the com-
monly used map/set, priority_queue, stack, queue,
doubly-linked list, and deque.

Asymptotic performance savings. We achieve asymp-
totic performance gains for our oblivious data structure con-
structions. Using state-of-the-art generic ORAMs to con-
struct oblivious data structures would result in O(log2N) or



Data structure Client side storage Overhead
stack O(logN)ω(1) O(logN)
queue O(logN)ω(1) O(logN)

priority_queue O(logN)ω(1) O(logN)
map/set O(logN)ω(1) O(logN)

(doubly-linked)list O(logN)ω(1) O(logN)

deque O(log2 N) O(logN)

Naive ORAM O(log2 N) or O(log2 N) or

baseline O(1) O( log2 N
log logN

)

TABLE I: Asymptotic performance of our oblivious data
structures in comparison with naive ORAM baseline.
A note on the notation g(N) = O(f(N))ω(1):this notation
means that for any α(N) = ω(1), it holds that g(N) =
O(f(N)α(N)).

O(log2N/ log logN) bandwidth overhead [9], [10] (where N
is the total data size), while consuming constant to polyloga-
rithmic client-side storage. In comparison, our oblivious data
structure schemes achieve O(logN) overhead while consum-
ing (poly-)logarithmic client-side storage. Table I summarizes
the asymptotic performance of our oblivious data structures.

Practical performance savings. We evaluated our oblivious
data structures with various application scenarios in mind. For
the outsourced cloud storage and secure processor settings,
bandwidth overhead is the key metric; whereas for a secure
computation setting, we consider the number of AES encryp-
tions necessary to perform each data structure operation. Our
simulation shows a 10×–15× speedup under moderate data
sizes, in comparison with using generic ORAM, shown in
Figure 1. Since the gain is shown to be asymptotic, we expect
the speedup to be even greater when the data size is bigger.

Oblivious Memory Allocator We applied our ODS to
an important operating system task: memory management.
We shall show that naive extensions to existing memory
management algorithms using ORAM are not secure, since the
total number of memory accesses may still leak information.
We also show that padding in this case results in a secure but
inefficient solution. Due to these reasons, we develop a new
memory management algorithm which stores meta data in a
tree-like structure, which can be implemented as an ODS, so
that each memory allocation operation can be executed in the
same time as one ORAM operation.

III. TECHNICAL HIGHLIGHT.

Our key insight is that common data structures have much
more restricted access pattern graphs than generic RAM
programs that make arbitrary random accesses to data. For
example, for a binary search tree or heap, memory accesses
can only go from one tree node to an adjacent one. Therefore,
we should be able to gain some efficiency (compared to
ORAM) by not hiding some publicly known aspects of the
access patterns.

Our techniques are inspired by Gentry et al. [11] who
describe a technique for performing a binary search in a single
ORAM lookup, using any position-based recursive ORAM.
We generalize their technique to common data structures. In
the most rudimentary form, the key idea is to store children’s

Fig. 1: Bandwidth overhead of oblivious Map/Set in com-
parison with naive ORAM. Payload = 64Bytes. The speedup
curve has the y-axis label on the right-hand side.

position tags in the parent node (of the access pattern graph),
such that when one fetches the parent node, one immediately
obtains the position tags of its children, thereby eliminating
the need to perform position map lookups (hence a logarithmic
factor improvement). Making this basic idea work for dynamic
data structures such as balanced search trees is more intricate,
since the access pattern structure may change during the life-
time of the data structure. Our idea (among others) is to use a
cache to store nodes fetched during a data structure operation,
and guarantee that for any node we need to fetch from the
server, its position tag already resides in the client’s cache.

REFERENCES

[1] X. Zhuang, T. Zhang, and S. Pande, “Hide: an infrastructure for
efficiently protecting information leakage on the address bus,” SIGARCH
Comput. Archit. News, vol. 32, no. 5, pp. 72–84, Oct. 2004.

[2] M. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation,” in Network
and Distributed System Security Symposium (NDSS), 2012.

[3] E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious RAM,”
in NDSS, 2012.

[4] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic,
J. Kubiatowicz, and D. Song, “Phantom: Practical oblivious compu-
tation in a secure processor,” in ACM Conference on Computer and
Communications Security (CCS), 2013.

[5] C. W. Fletcher, M. v. Dijk, and S. Devadas, “A secure processor
architecture for encrypted computation on untrusted programs,” in STC,
2012.

[6] S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova,
and Y. Vahlis, “Secure two-party computation in sublinear (amortized)
time,” in CCS, 2012.

[7] S. Lu and R. Ostrovsky, “Distributed oblivious RAM for secure two-
party computation,” in Theory of Cryptography Conference (TCC), 2013.

[8] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“Aegis: architecture for tamper-evident and tamper-resistant processing,”
in Proceedings of the 17th annual international conference on Super-
computing, ser. ICS ’03. New York, NY, USA: ACM, 2003, pp. 160–
171.

[9] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. De-
vadas, “Path ORAM – an extremely simple oblivious ram protocol,” in
ACM Conference on Computer and Communications Security (CCS),
2013.

[10] E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the (in)security of hash-
based oblivious RAM and a new balancing scheme,” in SODA, 2012.

[11] C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla, M. Raykova, and
D. Wichs, “Optimizing ORAM and using it efficiently for secure
computation,” in Privacy Enhancing Technologies Symposium (PETS),
2013.


