
Poster: Detecting Unexpected Behaviors in HTML5 Mobile Apps using Difference in
Execution Context

Jian Mao∗, Yaoqi Jia†, Xinshu Dong‡, Yue Chen∗, Ruilong Wang∗, and Zhenkai Liang†

∗School of Electronic and Information Engineering, Beihang University, China
†School of Computing, National University of Singapore

‡Advanced Digital Sciences Center, Singapore
Email: maojian@buaa.edu.cn

I. INTRODUCTION

HTML5, JavaScript, and CSS are the standard devel-
opment technology used in web applications. In a recent
development, they are extended as a popular way to develop
cross-platform local applications, especially mobile applica-
tions. For example, Apache Cordova provides a middle layer
that enables developer to use web development technology
to develop mobile applications that run across all mobile
platforms, such as Apple’s iOS, Android, and Windows
Phone.

This new development paradigm (we refer to it as HTML5
mobile app) quickly gains popularity because they provide
an efficient way for developing cross-platform applications,
which significantly saves engineering efforts of mobile de-
velopment that target a large range of devices with different
mobile operating systems. Moreover, since web technology
is used in mobile application development, it allows an
enterprise to keep a common code base between its website
and its mobile app. This design greatly reduces the efforts
of software maintenance.

Though there are significant software engineering ben-
efits, HTML5 mobile apps have their new concerns on in-
tegrity and data privacy. Prevalent attack vectors on the web,
such as cross-site scripting (XSS), can now be leveraged to
compromise HTML5 applications. Once a piece of malicious
script enters into a victim HTML5 mobile application, it
assumes all the privileges of the victim application. To
make things worse, the privilege of an HTML5-based mobile
app is more powerful than traditional web applications:
the browser engines is extended with more capability for
accessing local resources (such as file system, camera, and
microphone).
Our Observations. By design, a program behavior, such
as accessing device information, can only appear in certain
contexts of an HTML5 mobile app. In particular, it should
be generated by specific browser behavior sequences and
triggered by specific browser UI components. Such behavior
sequence and UI components form the execution context,
which helps to distinguish malicious behavior from benign

ones. For example, an app may only access device UUID
during the initialization after installation; Device UUID
access made by injected code may happen any time.

II. APPROACH

We propose a dynamic behavior diagnosis solution for
HTML5 mobile apps on Android. We aim to provide an
infrastructure that monitors run time behaviors of such
applications, encompassing their internal states, their in-
teractions with users and network, as well as their access
to user data on the devices. Such an infrastructure will
establish a chain of events and form the contexts needed
for detecting malicious behaviors. In particular, we refer to
the dependency on DOM nodes and triggering events as the
static context, and the sequence of with app behaviors as the
dynamic context. To better explain our solution, we elaborate
how we maintain the information for static and dynamic
contexts below.

• Static Context. The static context provides the
fundamental correlation for an event or action. For
example, suppose a user clicks on a button, and
an device UUID access is generated in the web
application. In this scenario, the immediately involved
DOM node for the button, the click event, and the
event handler constitute the static context for the
access. It informs of how the access is generated,
and which parties are involved. In terms of malicious
behavior detection, the static context enables us to
distinguish two seemingly equivalent device UUID
requests that are generated differently, one by normal
user interactions and another, for instance, by injected
scripts.

To monitor the static context for asynchronous events
in HTML5 mobile applications, we maintain a virtual
stack structure in WebView. A virtual stack works in
a similar way as a call stack; it pushes a new entry
onto the stack when an event starts being processed,
and pops it out when the processing completes.
However, it augments the call stack by storing



Figure 1: Injected malicious scripts exfiltrate device infor-
mation from TripCase.

more details of the events, DOM nodes and code
involved. In the previous example, when the access
request is generated, the virtual stack includes entries
corresponding to a user click event, the DOM node for
the button, and the JavaScript function serving as the
event handler. Such information allows our solution to
query the details on the context where an action occurs.

However, this is not sufficient in capturing more
stealthy malicious behaviors. As we can see, an impor-
tant piece of information here is the JavaScript event
handler function. This function in fact determines the
final access request generated. A malicious script may
modify the function to generate a complete different
request, such as exfiltrate user data to attackers’ servers.
Even if this event handler function has been tampered,
the static context will still appear normal. Thus, we
introduce the dynamic context to resolve such insuffi-
ciency.

• Dynamic Context. We specifically develop the dynamic
context to associate asynchronous events that do not
exhibit a direct causal relationship. For example, a
JavaScript function may have been tampered with by
another piece of script X first, and then only at a
later point it is invoked. The dynamic context thus
correlates the static context at the time of the former
event, script modification, and the static context at the
latter event, function invocation. Thus, the dynamic
context re-connects the parts missing in the static
context, and exposes other parties involved (script X)
that contribute to the generation of the HTTP request.

We establish the correlation between different static
contexts with the shared object references. For example,
in the aforementioned example, the shared object refer-
ence is the JavaScript event handler function. Consider
another example where an XMLHttpRequest is sent to
a web server asynchronously. When the correspond-
ing response arrives, the dynamic context connects
the present one to the original static context where
the XMLHttpRequest was generated. Here the shared
object reference is the XMLHttpRequest itself. With the
dynamic context, we enable a much more comprehen-
sive grasp of correlation between asynchronous events
and actions, which enables precise behavior diagnosis
as demonstrated in our results.

III. RESULTS

We have made a preliminary implementation based on the
CyanogenMod project, as well as a preliminary evaluation
of our approach.

We modified the Android platforms browser compo-
nent, WebView, for monitoring mobile applications’ internal
events, such as DOM access and JavaScript execution,
and its access to user data and device resources, such as
geolocation and camera. We correlates the events to form
the static and dynamic contexts.

In our evaluation, we use real-world app samples such as
HealthTap and TripCase, as well as synthesized examples
that are vulnerable to script injection. For example, TripCase
is a popular mobile App built with HTML5, which helps
users to record their trip details (e.g, flight, hotel, etc.). Its
Android version has over 100,000 downloads. The app is
migrated from its web application. An XSS vulnerability
in the app allows injected JavaScript code to gain access
to local resources, such as obtaining device information,
reading contact list, or accessing files. Figure 1 shows the
screen shot where an injected malicious script obtains device
information. In our experiment, our approach successfully
detects the unexpected behaviors based on contextual differ-
ences.

In summary, we present an approach to detect unexpected
behaviors in HTML5 mobile apps on the Android platform.
The key contribution is the identification of important
contextual information in execution of HTML5 mobile
apps, the techniques to extract the contexts, and the
application to detect unexpected behaviors. Our preliminary
results show the potential of the techniques on real-world
problems.

Acknowledgment. This work was supported in part by
the Beijing Natural Science Foundation (No. 4132056),
the National Key Basic Research Program (NKBRP) (973
Program) (No. 2012CB315905), Natural Science Foundation
of China (No. 61272501, 61173154, 61003214).


