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Abstract—The smart grid will utilize appliance-level control to
provide sustainable power usage and flexible energy utilization.
Given the privacy and efficiency concerns of the smart grid
system, we propose a cost-efficient platform called Di-PriDA
for support of appliance-level peak-time load balance control in
the smart grid, in which data analysis operations are achieved
in a privacy-preserving manner utilizing distributed differential
privacy. Additionally, Di-PriDa ensures rigorous provable privacy
and guarantees the result accuracy. We validate the efficiency and
accuracy of the proposed scheme under a real-world power usage
dataset.

I. INTRODUCTION

The future electrical grid, i.e., smart grid as shown in
Figure 1, utilizes appliance-level load control policy to provide
sustainable power usage and flexible energy utilization. For
example, to respond to a rapid power consumption increase in
peak times among neighborhoods, the peak-time load balanc-
ing control for smart grid can temporarily (to allow time to start
up a larger generator) or continuously (in the case of limited
resources) shut down the appliances which are not in use but
connected to the circuit. Due to privacy concerns [1], most
non-invasive techniques proposed in the literature use battery-
based load hiding (BLH) to hide the appliance readings, which,
however, does not support the data analysis at the controller. In
other systems, cryptographic methods such as homomorphic
encryption (HE) are used to enable privacy-preserving data
analysis. However, as an invasive cryptographic method, its
development requires infeasible change to the existing smart
grid. Also, the homomorphic encryption process is not regard-
ed as efficient for resource-constrained devices in the smart
grid system. A comparison of our technique with others is
illustrated in Table I.

In this ongoing work, we propose a novel privacy-
preserving load data analysis platform, Di-PriDA, based on
distributed differential privacy (DP) [2], which is non-invasive
and efficient. The contributions of our proposed work are as
follows: First, we explore the distributed top-k differential
privacy problem to propose a privacy-preserving load analysis
mechanism for appliance-level peak-time load balance control.
Second, we show the provable privacy and the upper bound of
the error rate for our scheme theoretically. Our experiments,
based on a real-world dataset, indicate the efficiency and
validity of our scheme.

II. DI-PRIDA: SYSTEM FOR PEAK-TIME LOAD BALANCE

Our proposed scheme has three steps. First, when the
concentrator obtains the query request Qt from the control
center, the concentrator fuzzes the parameters of the query
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Fig. 1. Overview of the NAN based smart grid system.

TABLE I. A COMPARISON OF RELATED WORKS WITH OUR SCHEME.

Cryptographic Approach Non-cryptographic Approach
Our work LLL10 RV13 RSM11 MMA11 YLQ12

Category DP HE HE BLH BLH BLH
High-Efficiency ! % % ! ! !

Provable Security ! % ! % % %

Fine-grained control ! ! ! % % %

Non-invasive ! % % ! ! !

request, and then distributes the new query request Q′t to the
smart meters of each house. Second, the smart meter of each
house i answers the query Q′t, and then encrypts the query
answer QA = {< ai, ti, pai >} with the controller’s public
key Kp, where ai, pai , ti are the UID of the appliance, the
power consumption and the timestamp respectively. With the
encrypted query answers from each smart meter through the
secure channel, provided by TLS, the concentrator adds noise
into the set of the encrypted query answers, and then returns k
answers among them by uniformly sampling the set. Finally,
the controller decrypts the query answers with its private key
Ks. The details of the scheme are shown in Algorithm 1.

In Query Initialization, the fuzzy parameter m for query
distribution is computed as m = rs ln(e+ε2kOPT )

ε , where rs is
the sample rate of the data collector, k is the number of the
returned query answers, ε is the privacy budget and OPT is
the sum of real top-k appliances power usage. In Query Re-
sponse, ni is the power consumption noise, ni = LAP (∆fs

ε ),
∆fs < 1. In Response Process, the noise the concentrator
added is computed as ci = neεfi − fi, c =

∑
ci, where n

is the size of query answers set, ε is the privacy budget for
differential privacy and fi is the frequency of the appliance
appears, i.e., fi =

# of the pattern ‘HKp (i||ai)′

n . Di-PriDA is
implemented as privacy modules to be plugged in the smart
meter and the concentrator.

III. SECURITY AND PERFORMANCE ANALYSIS

Considering the protection from the untrusted controller,
during the query, only the encrypted query results will be



Algorithm 1 The sequential scheme of algorithms.
Input: Query request q, Privacy budget ε, Meter reading R.
1: Query Initialization: The concentrator relaxes the original query
Qt’s time range from [tpl, tph] to [tpl −m, tph], then forwards
the new query Q′t to each of the smart meters.

2: Query Response: After receiving the query request, each smart
meter of a house searches the metering reading log R to obtain
the answers QA, then adds the noise ni in the power consump-
tion to generate a fuzzy query answer QA′, i.e., pai+ni. Finally,
the data is encrypted then sent back to to the concentrator.

3: Response Process: The concentrator processes the query re-
sponses from the smart meters of each house under the following
two policies: (1) add c noise query answers based on the
frequency fi of the appliance appears (i.e., HKp(i||ai)). (2)
uniformly sample k distinct items from the set of the query
responses including the noise query answers.

4: Answer Response: The concentrator returns the k distinct en-
crypted items to the controller through the data collector. Then,
the controller decrypts the message using its private key Ks,
and obtains the appliances under idle mode which have the top-
k largest power consumptions in peak time.

submitted to the server. In other words, the server obtains
nothing but the query result. With the configurable privacy
budget ε, the scheme is 3ε-differential privacy. Namely, the
removal or addition of a single user’s data does not sub-
stantially affect the result, thus there is no risk for users to
join and answer the query. Also, an honest-but-curious user is
not able to obtain the power load of others because they do
not communicate with each other directly. Additionally, the
communication messages between the user and the controller
are protected from eavesdropping and modification by other
users, because of the secure communication channel. The
untrusted concentrator is not able to obtain the power load
of the users because all the power loads along with the user’s
information were encrypted and blinded to the concentrator.

Theorem 1: The scheme gives 3ε-differential privacy.
Proof: In Query Response, as the power consumption

noise ni is added as the Laplace noise, i.e., ni = LAP (∆fs
ε ),

the algorithm achieves ε-differential privacy. In Response
Process (a.k.a., IA()), considering fc(ai) < 1, where fc(ai)
is the chosen frequency of the appliance ai, the sensitivity
of the chosen frequency ∆fc(ai) < 1. With the noises
c(ai) = neεfc(ai) − fc(ai) added for the appliance ai and
uniformly sampled, the sampled probability of the appliance
ai is eεfc(ai). For two data sets D1 and D2 differing on at
most one row, Pr(IA(D1)) ≤ e2εPr(IA(D2)). Hence, the
algorithm InitAnswer() is 2ε-differential privacy. By the use
of Composisity Theorem [2], the scheme we proposed gives
3ε-differential privacy.

Considering the accuracy of the scheme, the error rate is
defined as d =

OPT−
∑k
i=1 p(ai)

OPT , where OPT is the real sum
of the top-k appliances’ power usage, and k is the number of
the query results.

Theorem 2: The scheme we proposed has the upper bound
of the error rate as 3 ln(e+ε2kOPT )

εOPT , where OPT is the real sum
of top-k appliances’ power usage.

Proof: Assume S2t : {ai : A(ai) > OPT − 2t}, where
A() is the sequential scheme we proposed. Hence,

A(S2t) ≤
A(S2t)

A(St)
≤ e−εt

µ(St)
(1)

Considering the expected results E[A(ai)] = (OPT −2t)(1−
A(S2t)). As m = rs ln(e+ε2kOPT )

ε >
rs ln OPT

tµ(St)

ε ,

1−A(S2t) > 1− m

rsOPT
(2)

E[A(ai)] ≥ OPT −
3 ln(e+ ε2kOPT )

ε
(3)

Therefore, the upper bound of the error rate is 3 ln(e+ε2kOPT )
εOPT .

IV. INITIAL EVALUATION

We evaluated the accuracy and the response time of our
schemes on a real-world dataset: UMASS SMART* dataset
[3]. The simulation is implemented in Python on a PC which
had two 3.10 GHz Intel Core i5-2400 processors running the
Linux 3.5 kernel. We used pycrypto (a.k.a., Python Cryp-
tography Toolkit) to implement the RSA-OAEP and SHA-2
as instances of the public-key encryption and hash function,
respectively. Figure 2(a) shows the error rate of the scheme
with different privacy budgets ε. Both the theoretical upper
bound of the error rate and the error rate in the experiment
are presented. Overall, the error rate of the scheme decreases
as the number of query results k increases. With the larger
privacy budget ε, i.e., ε = 0.1, both the upper bound of the
error rate and the experimental error rate are smaller than those
with smaller privacy budget, i.e., ε = 0.01. Compared to the
upper bound of the error rate under the same privacy budget,
the experimental error rate is much lower than the theoretical
one. Moreover, when the privacy budget is small, the difference
between the upper bound of the error rate and the experimental
error rate becomes larger. Overall, the observed error rates
based on the experiments are less than 14% when ε = 0.01 and
less than 7% when ε = 0.1. Figure 2(b) presents the response
time of our scheme with different privacy budgets. To indicate
the performance degradation, the response time of our scheme
is compared with that without any security mechanism. As the
number of query results k increases, the response time of the
scheme increases. Also, the smaller privacy budget introduces a
larger performance degradation, i.e., when the privacy budget
ε = 0.01, the response time becomes larger than that with
smaller privacy budget. In our privacy-preserving scheme with
privacy budget ε = 0.1, the increase in the response time is
below 0.4s, which is about 105% of that without any security
mechanism.
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