
Poster: Specification and Verification of
Confidentiality in Component-Based Systems

Max E. Kramer, Anton Hergenröder, Martin Hecker, Simon Greiner, Kaibin Bao
Karlsruhe Institute of Technology, Germany

{firstname.lastname}@kit.edu

I . I N T R O D U C T I O N A N D M O T I VAT I O N

In distributed software systems, confidential data that passes
limits of logical components, physical machines, and commu-
nication stacks can be a major security problem. To avoid
unintended information leaks, the flow of confidential data has
to be considered during system design. Current approaches
either analyze inter-component or intra-component data-flows
and focus on specific concerns, such as protocols [1], policies,
or generated code. Whether a component-based distributed
system fulfills a confidentiality specification depends, however,
also on the combination of inter- and intra-component data
flow. Therefore, an integration of sound analysis methods has
to examine components, their interconnection, and commu-
nication. We propose an approach for the combined design
and analysis of component-based distributed systems, which
integrates architectural confidentiality specifications, adversary
modeling, static code analysis techniques, and formal code
verification. Our approach enables early confidentiality analyses
for complete system architectures with respect to adversaries
with concrete capabilities. It allows gradual abstraction from
particular functionality, hardware, and communication protocols.
The proposed analyses check a) whether the system architecture
yields access to confidential data for adversaries, b) whether
components refine the specification of composite components
and systems, and c) whether confidential information does not
interfere with public information in the final implementation.
These analyses reveal confidentiality violations in the design
and realization of component-based distributed systems.

In the following sections we first explain how confidentiality
can be specified for systems in terms of information flow
specifications for components and abstract properties for hard-
ware and connectivity. Then, we propose adversary modeling
aligned to these system properties. Afterwards, we explain
how confidentiality violations can be found with architectural
analyses and information flow code verifications.

I I . A R C H I T E C T U R A L C O N F I D E N T I A L I T Y
S P E C I F I C AT I O N

In order to enable confidentiality analyses of the complete
system, the confidentiality requirements are specified in archi-
tectural models. These models represent software components,
hardware devices, and communication infrastructure using
general concepts of the Palladio Component Model [2], such as
software components, hardware resource containers, and links.

This work was funded in the KASTEL project by the German Federal
Ministry of Education and Research under grant BMBF 01BY1172.

A. Software Systems and Components

Confidentiality requirements for a system are defined for
parameters and return values of services provided by the system.
For each in- and output of a service, it is defined which users
may directly or indirectly gain knowledge about the passed
value. Let, for example, a smart home system provide the service
switchOn(x) to allow a user to switch on an appliance x. By
adding x to the information set inhabitant, a user in the role
inhabitant may gain knowledge about the value of x, i.e. the
information which device was switched on, whereas other users
may not. To enforce confidentiality of information encoded in
inputs of services provided by components, non-interference
properties are specified for parameters and return values of
services. All parameters and return values of services can be
specified to be an element of an information set. The value of
an input that is element of a certain information set may at most
influence the outputs which are element of the same information
set, independent from how the services of the component are
used by its environment. Assume our smart home example
provides a further service getBill() to get information about
the last energy bill. The return value of getBill() shall not
interfere with input for switchOn(x). Therefore, the parameter
x is specified to be element of the information set inhabitant,
whereas the return value of the service getBill() is not.

B. Hardware Devices and Communication Links

The hardware architecture of a system is modeled on an
abstract level with resource containers, which can be connected
with links. A resource container may represent arbitrary
hardware, such as servers or embedded devices. Deployment
of component instances on resource containers is modeled
separately. For every resource container four confidentiality
properties can be set. The sharing property indicates whether
additional software components that were not modeled can be
deployed on the same machine (open-shared ) or not (controlled-
exclusive). The locality property represents the physical location
of a resource container using system-specific locality classes.
A third property states whether a resource container either has
further physical connections that were not modeled and that are
ready to use (existing), or if further connections are possible but
need to be physically established (possible), or if all connections
were modeled (complete). A last property indicates whether a
resource container is equipped with tamper protection. Similarly
to the locality property, system-specific classes may be used for
this property. These tamper protection classes may represent,
for example, deadbolt locks or tamper-evident seals.

Links between resource containers represent communica-
tion of information. Their influence on confidential data can
be specified with the same properties locality and tamper-
protection as for containers and with two additional properties:

http://www.kastel.kit.edu/


Accessibility classes represent in system-specific categories
whether access to a link is restricted, for example, in case of
password protected WiFi connections. Additionally, a boolean
property for encryption indicates whether a communication
service offers content confidentiality, i.e. end-to-end payload
encryption, which means that protocol control information may
still be accessible for adversaries. All these confidentiality
specifications for containers and links represent indispensable
requirements for every possible implementation.

I I I . C O N F I D E N T I A L I T Y A N A LY S E S

The architectural model and confidentiality specification
is used for three analyses. In preparation of the analyses the
adversaries’ capabilities are modeled. The first analysis checks
whether the system architecture allows direct access to confi-
dential data for these adversaries. The second analysis checks
whether the composition of components leads to information
leaks. The third analysis verifies that the implementation of
the components respects its non-interference requirements.

A. Adversary Modeling

For adversaries the mayknow, location, tamper, and acces-
sibility properties have to be defined. They specify of which
information sets an adversary is allowed to gain knowledge,
which locations he can access, which tamper protections he can
overcome, and which communication link categories he can
access. These properties limit the capabilities of the considered
adversaries for later analyses and the maximum knowledge
adversaries may gain about information in the system.

B. Model Transformation and Accessibility Analysis

For the architectural analysis, the confidentiality specifica-
tion is transformed into additional mock-up components and
interfaces in order to explicitly represent access possibilities
for adversaries. These interfaces express that an adversary may
have access to all data of all components that are deployed on
a resource container if a) the container is open-shared and the
adversary has access to its locality, or b) if further connections
exist, or c) if further connections are possible and the adversary
has access to the containers locality and can overcome at least
one of the specified tamper protections. An adversary may
have access to the protocol control information and all data
passing a communication link, if the accessibility classes of the
link and the adversary overlap. An adversary may access the
payload, if additionally the encryption property is set to false.
The analysis accumulates which information sets an adversary
can access by collecting all information sets of all data passing
these mock-up interfaces. It finally reports every information
set that is accessible by an adversary but is not in the set of
information sets he may know. The analysis requires, however,
that the components are implemented correctly according to
the confidentiality specification. This can be ensured using
refinement analysis and code verification.

C. Architectural Refinement Analysis and Code Verification

The refinement analysis ensures that the composition of
a component satisfies its non-interference properties. We use
models and compositionality results for non-interference from
literature (e.g. [3]) and extend them with specific properties
for our understanding of components, which have shared
states. The analysis reports a specification violation, if at

least one composition does not adhere to the non-interference
specification of the refined component, i.e. there might be an
execution of the services that is not non-interferent, even if the
components are implemented according to their specification.

While it is convenient to refine components into composi-
tions up to a certain granularity, at some point the components
have to be implemented in actual code. We generate Java code
stubs for the services provided by a component including a
non-interference specification on code level, which is consistent
with the specification on component level in the model. The
implementation for the services has to be provided manually.

Our approach allows us to apply different verification
methods and tools for information flow requirements, such as
JOANA [4] or KeY [5], to verify that an actual implementation
of a component satisfies these requirements. We translate
the confidentiality requirements of the components into the
specification language appropriate to the chosen verification
technique: When using the KeY tool, for example, each method
will be annotated using KeY’s information flow extensions to
the Java Modeling Language. Once the implementations of all
modeled components are verified, the results of the refinement
analysis also apply to the implementation. Code verification
reports a data leak, if at least one component is not implemented
according to its specification.

I V. C O N C L U S I O N S A N D F U T U R E W O R K

We presented an integrated method for the specification
and analysis of confidentiality in component-based systems.
It requires abstract information set specifications for the in-
and outputs of a system and its components together with
accessibility specifications for hardware and communication
links. Based on this confidentiality specification, we pro-
posed continuous analyses, which can be used to improve
the architecture and code of a system in order to eliminate
data leaks and specification violations. We are currently
working on a prototypical implementation of the presented
architectural analyses and we are integrating verification and
modelling tools [6]. Future research will focus on more precise
compositionality properties for non-interference in components
and on case studies for the evaluation of scalability and usability.
We also strive for soundness proofs for the refinement analysis,
the verification techniques for component implementations and
the confidentiality of information in the transformed model.

R E F E R E N C E S

[1] J. Jürjens, Secure systems development with UML.
Springer-Verlag, Berlin, Germany, 2005.

[2] R. Reussner et al., “The Palladio Component Model,” KIT,
Fakultät für Informatik, Tech. Rep., 2011.

[3] D. Clark and S. Hunt, “Non-interference for deterministic
interactive programs,” in Formal Aspects in Security and
Trust, 2008.

[4] C. Hammer and G. Snelting, “Flow-sensitive, context-
sensitive, and object-sensitive information flow control
based on program dependence graphs,” International
Journal of Information Security, vol. 8, no. 6, 2009.

[5] C. Scheben and P. H. Schmitt, “Verification of information
flow properties of java programs without approximations,”
in FoVeOOS, 2011.

[6] M. E. Kramer et al., “View-centric engineering with
synchronized heterogeneous models,” in Proceedings of
the 1st VAO Workshop, ACM, 2013.


	Introduction and Motivation
	Architectural Confidentiality Specification
	Software Systems and Components
	Hardware Devices and Communication Links

	Confidentiality Analyses
	Adversary Modeling
	Model Transformation and Accessibility Analysis
	Architectural Refinement Analysis and Code Verification

	Conclusions and Future Work

