
Poster: Detection and Prevention of Web-based
Device Fingerprinting

Daehyeok Kim
Researcher

Cyber Security Research Center
KAIST

Email: dhkim7@kaist.ac.kr

I. MOTIVATION

Web tracking is a set of technologies that allows websites
to create profiles of their visitors. While a website owner might
utilize such profile to provide its users with personalized adver-
tisements or anti-fraud feature, tracking of users is generally
considered a problem that brings user privacy under attack.

According to a recent survey by Mayer et al. [1], web
tracking technologies can be roughly divided into two groups:
stateful and stateless. In stateful tracking, a tracking company
utilizes stateful information that can be gathered from browser
cookies, Flash cookies, ETag cookies, and HTML5 local
storage. Evercookie [2] provides a reference implementation
for many stateful tracking techniques. On the other hand,
stateless tracking, also called device fingerprinting, captures
the properties of browser elements through JavaScript, Flash,
or other plugins and forms a nearly unique identifier. In [3],
Eckersley shows that user’s device can be uniquely identi-
fied with stateless properties including user-agent, time zone,
screen resolution, fonts installed, plugins installed, and cookies
enabled. Also, recent studies [4], [5] show that stateless
tracking methods are used by various tracking companies in
the wild.

Several groups of researcher have considered countermea-
sures against stateful web tracking and policy makers in U.S.
and European Union have attempted to regulate it. Also, most
modern web browsers supports the opt-out feature for stateful
web tracking. For example, a web browser can disallow third-
party websites from utilizing cookie information and the Do
Not Track (DNT) HTTP header field allows users to signal
their tracking preferences to websites.

However, these countermeasures are not suitable for state-
less web tracking since they mostly focus on stateful infor-
mation such as browser cookies. Among the fingerprinting
information captured for uniquely identifying a device, it has
been shown that the list of installed fonts and plugins provide
relatively more unique values [3]. In order to fingerprint the
list of font from the web browser, tracking scripts have to
utilize a combination of properties of HTML elements such as
fontFamily, offsetHeight, and offsetWidth. Unfortunately, since
these properties are widely used for both tracking and non-
tracking scripts, it is difficult to distinguish a fingerprinting
JavaScript code from a normal script code.

Several countermeasures against device fingerprinting have
been proposed. Some web browser extensions and plugins
would randomize the value of user-agent, screen resolution, or
properties of HTML element when their values are retrieved.

However, these countermeasures may not be effective because
they often cause breakage of the rendered web page and the
existence of such extensions can be another kind of fingerprint.
In addition, although users can tell their tracking preferences
to websites through the DNT header, it has been shown that
DNT preferences are usually ignored by web trackers [5].

In this study, we present FPBlock, a system that detects
web-based device fingerprinting and prevents users from be-
ing fingerprinted. FPBlock takes a different approach from
those of existing countermeasures, which randomize the value
of properties or rely on a blacklist and the DNT header.
FPBlock detects fingerprinting scripts based on a dynamic
analysis of JavaScript codes embedded in the websites; it
then prevents those codes from leaking the user’s fingerprint
to the third-party server. Since FPBlock automatically detects
fingerprinting functionalities included in any JavaScript and
uses them as features, we believe that it provides a more
practical, effective and robust method than those of existing
approaches. In this poster, we focus on detecting JavaScript
based fingerprinters; we are currently exploring countermea-
sures against other types of fingerprinters.

II. DESIGN

Our goal is to prevent third-party fingerprinting scripts from
leaking the user’s fingerprint information. Our approach is to
analyze the JavaScript codes embedded in websites and deter-
mine whether those codes performs any device fingerprinting
behaviors such as enumerating the fonts or plugins installed.
We assume that the enumerating fonts or plugins installed in
the user’s system are unusual behaviors of websites. That is,
normal websites have no clear reason to retrieve such infor-
mation from users when rendering their web pages correctly.
If such fingerprinting behavior is detected, all attempts to
transmit data to the corresponding third-party tracking server
will be blocked.

We studied the characteristics of device fingerprinting
JavaScript codes including the following:

• Origin domain of the script: Fingerprinting scripts are
usually loaded from third-party tracking servers, which are
mostly located at domains different from those of the host
websites.

• Capability of font enumeration: Existence of font enu-
merating capability in a script indicates the high possibility
of that script being a fingerprinting script. Unfortunately, it
is not a trivial task to determine whether a script has font



enumeration functionality. Below, we describe more details
on how FPBlock detects font enumeration functionality.

• Capability of plugin enumeration: Existence of plugin
enumeration capability in the script is another strong indi-
cator of a fingerprinting script. Detection of the behavior of
plugin enumeration can be captured by tracking the access
to the window.navigator.plugins property.

• Interaction with a remote server: A fingerprinting script
usually interacts with a third-party remote server to send
the user’s fingerprinting data.

Note that the above list describes only a part of all
characteristics we found. We plan to include more details and
other interesting features.

Since there is no explicit JavaScript API to retrieve a list of
installed fonts, a script developer has to find alternative ways.
We found that any JavaScript that enumerates installed fonts
has certain characteristics. It changes the fontFamily property
to render a string with different fonts and retrieves offsetWidth
and offsetHeight to measure the size of rendered character
string. With this observation, FPBlock checks whether these
properties of identical HTML elements(e.g., SPAN or DIV)
are regularly altered and uses such alteration as a key indicator
of existence of font enumeration functionality.

When a user visits a website, FPBlock tracks all JavaScript
and DOM activities during the execution of JavaScript codes;
it also tracks their origin domains. The core of FPBlock is that
it can analyze JavaScript codes and decide whether those codes
contain routines that enumerate installed fonts or plugins when
a webpage is being loaded. For example, to detect font enumer-
ation, each time the JavaScript code accesses properties such
as fontFamily, offsetWidth, and offsetHeight, FPBlock tracks
the corresponding HTML elements and properties being ac-
cessed and maintains the information in a sequential manner.
When the JavaScript code makes an attempt to send the such
data using XMLHttpRequest or other possible methods, the
analyzer, based on recorded behavior, makes a decision as
to whether the code contains any fingerprinting functionality.
When FPBlock detects such functionality, it blocks the data
transmission to the remote server.

We believe that FPBlock is more effective than any of
the blacklist based approaches because it detects the behavior
of fingerprinting in runtime rather than relying on a list of
third-party domains, which could be static. Also, compared
to randomization approaches, FPBlock is more efficient and
reliable because it affects the behavior of JavaScript(e.g.,
blocking the data transmission) only if it detects fingerprinting
functionality.

III. OPEN QUESTIONS

In this section, we describe open challenges that will need
to be studied in detail to improve the performance of FPBlock.

Handling other types of fingerprinting techniques: Al-
though we focused on the case of JavaScript, Flash with
ActionScript can also be used for fingerprinting. In contrast to
JavaScript, Flash uses its own proprietary interpreter(i.e., Flash
player), which is not easy to handle it at the web browser level.

Exploring additional features of device fingerprinters: So
far, we have utilized the basic characteristics of JavaScript

that attempts to enumerate installed fonts and plugins. There
might exist uncovered features which can further improve the
effectiveness of the system.

Defending against passive fingerprinting: Unlike active fin-
gerprinting through scripts or plugins, there are other methods
of implicit device fingerprinting. Such techniques are called
passive fingerprinting; the information they collect includes
the user’s IP address, Operating system, and HTTP accept
headers. Although these fingerprints may contain less unique
information compared to that of active fingerprints, they can
be complementary to active ones. More studies are needed to
defend against these types of passive fingerprinting.

IV. IMPLEMENTATION AND PRELIMINARY RESULT

We implemented the prototype of FPBlock on a web
browser emulator that was built based on SpiderMonkey [6]
and env.js [7]. We evaluated the prototype with the device
fingerprinting JavaScript samples collected by [5].

Our preliminary results show that FPBlock successfully
detects all 8 fingerprinting JavaScripts in runtime and is able
to block data transmission to third-party tracking servers. We
are currently performing extensive studies on various websites
and will provide the detailed experiment result.

V. CONCLUSION

In this study, we propose FPBlock to detect web-based
device fingerprinting JavaScript components and prevent them
from leaking user fingerprints to third-party servers. We stud-
ied the characteristics of JavaScript codes that fingerprints a
device; we also show that JavaScript dynamic analysis can be
an effective way to detect and control such fingerprinters. As
an ongoing work, we are currently implementing FPBlock on
open source web browser and plan to perform an extensive
evaluation.

REFERENCES
[1] J. Mayer and J. Mitchell, “Third-party web tracking: Policy and tech-

nology,” in Security and Privacy (SP), 2012 IEEE Symposium on, May
2012, pp. 413–427.

[2] evercookie - virtually irrevocable persistent cookies. [Online]. Available:
http://samy.pl/evercookie/

[3] P. Eckersley, “How unique is your web browser?” in Proceedings of the
10th International Conference on Privacy Enhancing Technologies, ser.
PETS’10, 2010, pp. 1–18.

[4] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens,
and G. Vigna, “Cookieless monster: Exploring the ecosystem of web-
based device fingerprinting,” in Security and Privacy (SP), 2013 IEEE
Symposium on, May 2013, pp. 541–555.

[5] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens,
and B. Preneel, “Fpdetective: Dusting the web for fingerprinters,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &#38;
Communications Security, ser. CCS ’13, 2013, pp. 1129–1140.

[6] Spidermonkey - mozilla. [Online]. Available: https://developer.mozilla.
org/en-US/docs/Mozilla/Projects/SpiderMonkey

[7] Env.js - bringing the browser. [Online]. Available: http://www.envjs.com/


