
Poster: iSecureRing: Forensic ready Secure iOS apps

for jailbroken iPhones

Jayaprakash Govindaraj

IIIT Delhi, New Delhi, India

jayaprakashg@iiitd.ac.in

Robin Verma

IIIT Delhi, New Delhi, India

robinv@iiitd.ac.in

Rashmi Ainahalli Mata

Infosys Labs, Bangalore, India

Rashmi_A02@infosys.com

Gaurav Gupta

IIIT Delhi, New Delhi, Indian

gauravg@iiitd.ac.in

Abstract—Apple’s iOS is one of the major players in the

smartphone market and it restricts installation of apps which are

not from Apple app store. Users often resort to jailbreak their

iPhones to break free from these restrictions. Considering

jailbreaking iPhones is legal in the US; more devices are expected

to be jailbroken in future. Jailbroken iPhones are making their

way into enterprises, which allow Bring Your Own Device

(BYOD), but these devices are either barred or restricted by

Mobile Device Management (MDM) softwares which consider

them as a security risk. In this work, we have designed a solution

(iSecureRing) to secure mobile apps and to preserve date and

time stamps of events to handle any security incidents in the

jailbroken iPhones. To the best of our knowledge, iSecureRing is

the first forensic ready mobile app security solution to secure an

application running in an unsecure environment within the

enterprise environment.

I. INTRODUCTION

According to a report by Pew Research [1] 44.64% of the
adult American population owning smartphone use the Apple's
iPhone. Apple's iOS does not allow installation of additional
applications, extensions and themes that are not available
through Apple’s App store. Users jailbreak (process to get root
level access) their devices to break away from these restrictions
[2]. Once jailbroken, iPhone allows retrieval of applications
and corresponding data stored on it, hence compromising the
security of the applications and confidentiality of data [3]. As
per US copyright office, jailbreaking of iPhone continues to be
legal [2] [5]. Considering jailbreaking to be a reality, there is a
need to design ways to secure mobile applications running
even in the jailbroken iPhones. This requirement of making an
application secure in an unsecure environment is critical to the
enterprise environment where proprietary application(s) should
work without impacting the enterprise security. Currently,
enterprises allowing BYOD generally detects and restrict
jailbroken iPhones with MDM softwares, like Citrix's
XenMobile, IBM's Endpoint manager etc. Employees have to
either un-jailbreak their iPhones or use another device to install
the enterprise application(s). With our solution the enterprises
can install their application securely on employee's jailbroken
iPhone. Any new or existing apps can be secured and made
forensics friendly, even if the iPhone is jailbroken.

II. IMPLEMENTATION METHODOLOGY

Our solution consists of two modules; the first module consists

of a static library that can wrap apps in an additional layer of

protection making them difficult to crack on jailbroken

devices and thus preventing access to application data. Second

module preserves authentic date and times stamps of the

events related to the secured app, so that in case of any

security incident digital forensic analysis can be performed

[6]. The captured timestamps are stored outside the device on

a secure server or the cloud. The modules are discussed in

detail in following subsections.

A. Securing the Apps

This static library consists of various APIs that can be used
to identify security vulnerabilities in jailbroken iPhones. This
library can be used to detect and mitigate security issues. The
library mainly contains functions namely, isCheck1()–

iPhone is jailbroken or not; isCheck2() – application is

running in debug mode or not; enableDB() – For disabling
the gdb (debugger) for a particular application (process);
isAppC() – If application's binary is still encrypted and also
check for application bundle files (Info.Plist) integrity;
initialize() – If any of the static library function

themselves are hooked or not; CheckA() – critical methods

(functions) passed as an argument is hooked or not; CheckS()
– any methods/functions related to SSL Certificate Validation
are hooked or not; CRCCheck() – To find if the application is
tampered or not.

B. Preserving the date and time stamps

We have created a Dynamic library using MobileSubstrate

framework, this framework provides APIs to add runtime

patches or hook to the system functions on jailbroken iOS [7].

The solution architecture (refer Fig. 1) consists of four

components:

Dynamic library – hooks on to the system open calls and

captures kernel level date and timestamps corresponding to

selected file(s) and then writes them to the log file.

Timestamp log file – the log file is stored in the internal

memory of the iPhone which is not directly accessible to

applications making it safe against deletion attempts.

Uploading the log file – the log file generated by the DLL, is

later uploaded at regular intervals to an external server or

cloud based on the network connectivity.
External server/cloud – external server within the enterprise
environment or on a secure location on the cloud

Fig. 1. Solution architecture preserving date and timestamps

This Dynamic library (dylib) will be loaded into all the running
applications. Filters can be applied to this dylib so that it gets
loaded only for specified applications. These filters are
implemented as Property-List file that is added along with
dylib into jailbroken iPhone. The filter should be a dictionary
with main key filter and other keys bundles, classes,
executables. Ex: - Filter = { Executables = {“mediaserverd”};
Bundles = {com.apple.mobileslideshow”}; };

III. EXPERIMENTS AND RESULTS

We created two apps one without any protection and
another using iSecureRing and deployed them on a jailbroken
iPhone 4 (iOS 7.0.6). We simulated a series of attacks on the
Apps and the data to validate our solution. At the application
level, the Apps were subjected to various attacks to exploit lack
of binary protection vulnerability [8] as illustrated in the Table
1.

TABLE I. ATTACKS AND RESULTS

iPhone 4 (iOS 7.0.6)
Jail

breaking

Debug

mode

Encryption

check
Hooking

Code

Tampering

Non Jailbroken (App

with no protection)
    

Jail broken (App with

no protection)
NA 

To be

Done
 

Jail broken (App with

iSecureRing)
NA    

The results demonstrate that the App with iSecureRing on a jail
broken iPhone (Row 3, Table 1) is as secure as an normal App
running in a non-jail broken iPhone (Row 1, Table 1).

The iSecureRing also helps in detecting any attempts made to

exploit known or unknown vulnerabilities by capturing the

timestamps of activities associated with the secured app. We

simulated a timestamp tampering attempt on one of the images

from Apple's Photo app. iSecureRing successfully captures all

the events in the log. Using the log we were able to identify

the tampering attempts. Fig. 2 illustrates the MAC DTS

(Modified Accessed Created Date and Time stamps) [6]

captured for one of the images.

Fig. 2. MAC DTS logs

We conducted performance benchmarking for the 3 cases
considered in our experiment, Fig. 3 summarizes the results
from our initial tests (5 runs). The results show that no
significant difference in the performance of the device.

IV. CONCLUSION AND FUTURE WORK

We demonstrated that iSecureRing can be deployed to
make a secure and forensic ready App in unsecure jailbroken
iPhone in a enterprise BYOD environment. This solution can
be further extended to other mobile devices OS like android,
windows phone etc.

REFERENCES

[1] Aaron Smith, Smartphone ownership–2013 update. Pew Research
Center: Washington DC, 2013.

[2] Andrew Hoog and Katie Strzempka. iPhone and iOS Forensics:
Investigation, Analysis and Mobile Security for Apple iPhone, iPad and
iOS Devices. Elsevier, pp. 14-15, 2011.

[3] Charlie Miller, Mobile attacks and defense. Security & Privacy, IEEE
9.4 (2011): 68-70.

[4] Andy Greenberg, Evasi0n Is The Most Popular Jailbreak Ever: Nearly
Seven Million iOS Devices Hacked In Four Days, online article at
forbes.com, last accessed on 31st March, 2014 at http://goo.gl/PDGJL

[5] Sean Morrissey and Tony Campbell. iOS forensic analysis for iPhone,
iPad, and iPod touch. Vol. 23. Apress, pp. 271-272, 2010.

[6] Robin Verma, Jayaprakash Govindaraj, and Gaurav Gupta. Preserving
date and timestamps for incident handling in android operating system.
Proceedings of Tenth Annual IFIP WG 11.9 International Conference on
Digital Forensics, 2014, in press.

[7] Mathieu RENARD. Practical iOS Apps hacking. G 2 reHack 012: 14.

[8] Mariantonietta La Polla, Fabio Martinelli, and Daniele Sgandurra. A
survey on security for mobile devices. Communications Surveys &
Tutorials, IEEE 15, no. 1 (2013): 446-471.

Fig. 3. Performance benchmark results

http://www.forbes.com/sites/andygreenberg/

