
1

Poster: Analyzing the Data Semantics of Security Patches

Robin Gonzalez, Michael E. Locasto
University of Calgary

Patching software remains a key defensive technique for
mitigating flaws and vulnerabilities. We posit that studying the
mechanics of fixes for vulnerabilities (i.e., security patches)
can lead to insight about common principles and patterns for
fixing software flaws. Such insights are of particular value to
efforts to automatically deploy patches — especially at runtime
to live software (e.g., for the purposes of hot patching or self–
healing). Our study of these patch semantics provides some
insight into the limitations of hot patching (in other words,
what kinds of code and data constructs are too complicated
to safely hot patch). Knowing the limitations of hot patching
can help avoid blind or uncertain deployment of such fixes
and potentially aid a system administrator in triaging which
patches to deploy (either in a traditional restart–oriented fix or
in a hot patch).

One of the biggest challenges of applying patches on the
run is the introduction of statements modifying data structures.
The challenge arises when trying to dynamically patch these
statements in the source code layer of the application – since
already existing data structures reside in the object code layer
of the application. In this abstract we refer to the object code
layer as the process address space of an application and one
of our goals is to make it an easy environment for updating
data structures.

The process address space consists of a collection of bytes
that represents a running process, with little organization
or means to distinguish its different elements. The largely
unstructured nature of the process address space frustrates the
analysis of its content for frameworks (e.g., debugging, vulner-
ability analysis, dynamic analysis) aiming to dynamically mod-
ify elements of a running process. As illustrated in Figure 1, we
can use already existing mechanisms (e.g., pmap(1), proc/map)
to view the structure of the process address space, this view
is primarily of ABI systems and of limited use for other
analysis. Our intent is to introduce a different organization
that facilitates the task of hot–patching existing structures in
the process address space. We cannot do this, however, without
an exhaustive analysis of the statements, patches introduce,
that create conflicts between the process address space and
the source code layer hot–patching frameworks update. More
precisely, the statements that update data structures. We call
these statements data operations.

There are two main goals in our investigation, both related to
the data operations (or data semantics) of security patches. Our
first goal is to create an automated procedure for classifying
patches as feasible to hot–patch (i.e., hot–patchable) or not.
Our second goal is to develop a system for organizing and
hot–patching the process address space of running applications
using the patches our procedure classifies as hot–patchable. We
present the DPL system, a system that can dynamically update
data structures in a running process after organizing its data

Fig. 1. One of the current structures of a process address space. As the figure
illustrates, this current structure makes recognizing data structures in the PAS
harder to achieve.

structures at runtime. The novelty of the DPL system resides
in using a database for organizing the data structures inside a
process address space and database queries (i.e., a data patch
object) for updating them.

Core Utility Dynamic Tables Rows Columns DB Size Time
su 3 5 93 14.95 0.04

sleep 2 3 27 12.88 0.03
shuf 2 3 96 13.98 0.05
uniq 2 4 32 13.53 0.04
nl 3 9 103 26.83 0.05

unexpand 1 2 16 11.7 0.02
base64 2 3 27 12.8 0.04

fold 1 2 16 11.7 0.02
md5sum 2 4 52 18.68 0.04

pr 3 4 108 20.41 0.05
TABLE I. RESULTS OF APPLYING DPL TO ORGANIZE THE DATA

STRUCTURES IN THE PROCESS ADDRESS SPACE OF 10 CORE UTILITIES OF
AN UBUNTU LINUX DISTRIBUTION. THE NUMBER OF DYNAMIC TABLES IS
EQUAL TO THE NUMBER OF DATA STRUCTURES RECOVERED AT RUNTIME.
THE NUMBER OF COLUMNS IN EACH TABLE IS EQUAL TO THE NUMBER OF
MEMBERS OF THE DATA STRUCTURE * 5 (AN ENTRY FOR THE MEMBER’S

NAME, SIZE, ADDRESS, TYPE, AND VALUE) AND THE NUMBER OF ROWS IS
EQUAL TO THE NUMBER OF INSTANCES OF THE DATA STRUCTURE. WE
ALSO PROVIDE THE SIZE (IN KILOBYTES) OF THE DATABASE AND THE

TIME (IN SECONDS) IT TAKES TO GENERATE IT.

The DPL system instruments the process address space of
an application by following a procedure to recognize, organize,
update, and export (ROUE) the application’s data structures.
The novelty of the DPL system resides in transforming dif-
ferent types of data structures into data that we are able to
store inside a database, and thus we are able to update by
using common database queries (i.e., a data patch object). In
other words, DPL organizes live in–memory data structures in
different tables inside a database and uses the metadata (e.g.,
size, type, name, value, address) of these data structures to
populate the tables. We are then able to use data operations in
the form of database queries to update the data structures and
eventually export them back to the application. The system
does all of this dynamically (i.e., at runtime) without stopping
or interrupting the running process. Our research consists



of a manual process for creating a database query from a
security patch and an automated process for applying the
database query to the database that represents the running
application. We then export all the updated data structures from
the database to the running application without interrupting it.

Before developing the DPL system, however, we create
an automated procedure using machine learning techniques
that analyzes the common elements and implications of our
dataset of patches (we explicitly exclude from our study the
consideration of “general” patches e.g., feature addition). The
main purpose of the modeling and analysis is to help determine
whether a patch contains elements that are likely to cause
instability or incorrect operation if the patch is applied to the
running system. We use this analysis as the ground truth for
building the system to organize and update the data structures
inside the process address space of running applications.

In order to automate this procedure, we manually study
over 140 patches to get a data corpus that works as an input
to four machine learning algorithms: neural networks, naive
Bayes classifiers, support vector machines, and decision trees.
We then use subsets of the data corpus as training and testing
datasets and we automate a procedure for classifying patches
as hot–patchable or not hot–patchable. If a patch is classified
as hot–patchable then it means that we can hot–patch its
data structures using the ROUE process of our system. We
plan to deploy the system in the future as a test framework
where patch–developers can test if their security patches can
be hot–patched or not. In Figure 2, we present the a heat map
representation for a subset of our dataset that includes a label
that tells if the patch (i.e., each row in the matrix) is hot–
patchable or not. At the end, we analyze this dataset with our
machine learning algorithms and decide the best technique to
automate our classification.

We then evaluate the ROUE process by organizing and
updating the data structures in the process address spaces of six
test cases in a test suite we define. We use a set of common data
operation patterns, in their database query form, we gathered
from the analysis of our dataset. DPL is capable of updating
programs fast with little CPU overhead and it is also capable
of updating several types of data structures including primitive
and user–defined types (e.g. a linked list).

For future work, we want to dynamically apply (i.e., hot–
patch) the security patches we find data–patchable to their
counter piece software. As of now, we are able to organize
the data structures in the process address space of ten core
utilities found in Linux distributions and update them using
database queries. We present how the results of the organiza-
tion of these utilities in a database in Table I. However, we
are not yet able to dynamically apply security patches, that
our automated procedure classifies as hot–patchable, to more
complex applications (e.g., Firefox, Samba, Apache HTTPD).

Fig. 2. A heat map representation of our data corpus. Each cell represents the
value of a feature, the darker the cell is the bigger the value of the feature is.
The last feature represents our manual classification as a feasible (i.e., data–
patchable) or not patch. If the cell for this feature is black then the patch is
data–patchable, if not then it is not.

2


