
POSTER: Succinct Non-Interactive Zero Knowledge
for a von Neumann Architecture

Eli Ben-Sasson∗, Alessandro Chiesa†, Eran Tromer‡, Madars Virza†
∗Technion, eli@cs.technion.ac.il
†MIT, {alexch, madars}@mit.edu

‡Tel Aviv University, tromer@cs.tau.ac.il

Abstract—We build a system that can prove, in zero knowledge,
the correct executions of programs on a 32-bit RISC machine.
The proofs are succinct: short and easy to verify.

All previous implementations of zero-knowledge proof systems
with succinct proofs (also known as zk-SNARKs) require the proof
system’s keys to be regenerated for each distinct program; this
is costly and requires the intervention of a trusted party. Our
system is universal: no program-specific setup is required.

I. INTRODUCTION

Consider the setting where a client owns a public input x, a
server owns a private input w, and the client wishes to learn
z := F (x,w) for a program F known to both parties. For
instance, x may be a query, w a confidential database, and F
the program that executes the query on the database.

Security. The client is concerned about integrity of com-
putation: how can he ascertain that the server reports the
correct output z? In contrast, the server is concerned about
confidentiality of his own input: how can he prevent the client
from learning information about w?

Cryptography offers a powerful tool to address these security
concerns: zero-knowledge proofs. The server, acting as the
prover, attempts to convince the client, acting as the verifier,
that the following NP statement is true: “there exists w such
that z = F (x,w)”. Indeed:
• The proof system’s soundness guarantees that, if the NP

statement is false, the prover cannot convince the verifier.
Thus, soundness addresses the client’s integrity concern.

• Zero-knowledge guarantees that, if the NP statement is true,
the prover can convince the verifier without leaking infor-
mation about w; this addresses the server’s confidentiality.

Moreover, the client sometimes not only seeks soundness but
also proof of knowledge, which guarantees that, whenever he is
convinced, not only can he deduce that a witness w exists, but
also that the server knows one such witness. This property is
often required if F encodes cryptographic computations, and
is satisfied by most zero-knowledge proof systems.

Efficiency. Besides the aforementioned security desiderata,
many settings also call for efficiency desiderata. The client may
be either unable or unwilling to engage in lengthy interactions
with the server, or to perform large computations beyond the
“bare minimum” of sending the input x and receiving the
output z. For instance, the client may be a computationally-
weak device with intermittent connectivity (e.g., a smartphone).

Thus, it is desirable for the proof to be non-interactive:
the server just send the claimed output z̃, along with a non-
interactive proof string π that attests that z̃ is the correct output.
Moreover, it is also desirable for the proof to be succinct: π
has size Oλ(1) and can be verified in time Oλ(|F |+ |x|+ |z|),
where Oλ(·) is some polynomial in a security parameter λ; in
other words, π is very short and easy to verify (i.e., verification
time does not depend on |w|, nor F ’s running time).

zk-SNARKs. A proof system achieving the above security
and efficiency desiderata is called a (publicly-verifiable) zero-
knowledge Succinct Non-interactive ARgument of Knowledge
(zk-SNARK). zk-SNARK constructions can be applied to a
wide range of security applications, provided these construc-
tions deliver good enough efficiency, and support rich enough
functionality (i.e., the class of programs F that is supported).

Many works have obtained zk-SNARK constructions. Three
of these [1, 2, 3] provide implementations, but none of them
work for a universal machine. Instead, the proof system needs
to be setup anew for each separate program F ; each such setup
is both expensive and requires a trusted party.

Outsourcing computation to powerful servers. Numerous
works seek to verifiably outsource computation to untrusted
powerful servers. Verifiable outsourcing of computations is
not our goal. Rather, we study non-interactive zero-knowledge
proofs, which are useful even when applied to relatively-small
computations, and even with high overheads.

II. CONTRIBUTIONS

We obtain a zk-SNARK that supports executions on a univer-
sal von Neumann RISC machine. Our zk-SNARK consists of
two components: a new circuit generator and a new zk-SNARK
for circuits. These can be used independently, or combined to
obtain an overall system.

A. A new circuit generator

We design and build a new circuit generator that incorporates
the following two main improvements.

(1) Our circuit generator is universal: when given input bounds
`, n, T , it produces a circuit that can verify the execution of
any program with ≤ ` instructions, on any input of size ≤ n,
for ≤ T steps. Instead, all prior circuit generators [4, 5, 1,
2, 3] hardcoded the program in the circuit. Combined with a
zk-SNARK for circuits (or any NP proof system for circuits),

we achieve a notable conceptual advance: once-and-for-all key
generation that allows verifying all programs up to a given
size. This removes major issues in all prior systems: expensive
per-program key generation, and the thorny issue of conducting
it anew in a trusted way for every program.

Our circuit generator supports a universal machine that,
like modern computers, follows the von Neumann paradigm
(program and data lie in the same read/write address space).
Concretely, it supports a von Neumann RISC architecture called
vnTinyRAM, a modification of TinyRAM [2]. Thus, we also
support programs leveraging techniques such as just-in-time
compilation. (To compile C programs to vnTinyRAM, we
ported the GCC compiler, building on the work of [2].)

See Figure 1 for a functionality comparison with prior circuit
generators (for details, see [3, §2]).

Supported functionality [4, 5, 1] [2] [3] this work
side-effect free comp. X X X X
data-dep. mem. accesses × X X X
data-dep. contr. flow × X × X
self-modifying code × × × X
universality × × × X

Fig. 1: Functionality comparison among circuit generators.

(2) Our circuit generator handles larger arbitrary programs: the
size of the circuit C`,n,T is O

(
(`+n+T)·log(`+n+T)

)
gates.

Thus, the dependence on program size is additive, instead of
multiplicative as in [2], where the generated (non-universal)
circuit has size Θ

(
(n + T) · (log(n + T) + `)

)
. As Figure 2

shows, our efficiency improvement compared to [2] is not
merely asymptotic but yields sizable concrete savings.

n = 102 |C`,n,T |/T improvement
T = 220 [2] this work
` = 103 1,872 1,368 1.4×
` = 104 10,872 1,371 7.9×
` = 105 100,872 1,400 72.1×
` = 106 1,000,872 1,694 590.8×

Fig. 2: Per-cycle gate count improvements over [2].

An efficiency comparison with other non-universal circuit
generators [4, 5, 1, 3] varies from program to program. We find
via experiment that such circuit generators perform better than
ours for programs that are “close to a circuit”, and worse for
those rich in data-dependent memory accesses and control flow.

B. A new zk-SNARK for circuits

Our third contribution is a high-performance implementation
of a zk-SNARK for arithmetic circuits.
(3) We improve upon and implement the protocol of Parno et
al. [1]. Unlike previous zk-SNARK implementations [1, 2, 3],
we do not use off-the-shelf cryptographic libraries. Rather, we
create a tailored implementation of the requisite components.

To facilitate comparison with prior work, we instantiate our
techniques for two specific algebraic setups, one based on
Edwards curves at 80 bits of security (as in [2]), and one on
Barreto–Naehrig curves at 128 bits of security (as in [1, 3]).

On a typical desktop, proof verification is fast: at 80-bit
security, for an n-byte input to the circuit, verification takes
4.7 + 0.0004 · n milliseconds, regardless of circuit size; at
128-bit security, it takes 4.8 + 0.0005 · n. Key generation and
proof generation entail a per-gate cost. E.g., for a circuit with
16 million gates: at 80 bits of security, key generation takes
81 µs per gate and proving takes 109 µs per gate; at 128 bits
of security, these per-gate costs increase to 100 µs and 144 µs.

As in prior zk-SNARKs, proofs have constant size (indepen-
dent of the circuit or input size); for us, they are 230 bytes at
80 bits of security, and 288 bytes at 128 bits of security.

Compared to previous implementations of zk-SNARKs for
circuits [1, 2, 3], our implementation improves both proving
and verification times, e.g., see Figure 3.

80 bits of security 128 bits of security
[2] this improv. [1] this improv.

Key gen. 306 s 97 s 3.2× 123 s 117 s 1.1×
Prover 351 s 115 s 3.1× 784 s 147 s 5.3×
Verifier 66.1ms 4.9ms 13.5× 9.2ms 5.1ms 1.8×
Proof size 322B 230B 1.4× 288B 288B (same)

Fig. 3: Comparison with prior zk-SNARKs for a 1-million-gate arithmetic
circuit and a 1000-bit input, running on our benchmarking machine.

C. Two components: independent or combined

Our circuit generator and zk-SNARK for circuits can be
used independently, or combined. When combined, we obtain
a zk-SNARK for proving/verifying correctness of vnTinyRAM
computations; see Figure 4 and Figure 5 for diagrams of this
system. We evaluated this overall system for programs with
up to 10,000 instructions, running for up to 32,000 steps.

circuit
generator

zk-SNARK
key generator

proving key

verification key

program size bound

time bound
input size bound

universal
circuit

OFFLINE PHASE (ONCE)
Key Generator

Fig. 4: Offline phase (once). The key generator outputs proving and verification
keys, for proving/verifying correctness of suitably-bounded program executions.

witness
map

zk-SNARK
prover

zk-SNARK
verifier

proving key program input

proof auxiliary
input

(nondeterminism)

accept/
reject

verif. key

circuit
assignment

ONLINE PHASE (ANY NUMBER OF TIMES)
Prover Verifier

program input

Fig. 5: Online phase (any number of times). The prover sends a short and
easy-to-verify proof to a verifier. This can be repeated any number of times.

[1] B. Parno, C. Gentry, J. Howell, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in Oakland ’13.

[2] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, “SNARKs
for C: Verifying program executions succinctly and in zero knowledge,”
in CRYPTO ’13.

[3] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M. Walfish,
“Verifying computations with state,” in SOSP ’13.

[4] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish,
“Taking proof-based verified computation a few steps closer to practicality,”
in Security ’12.

[5] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish,
“Resolving the conflict between generality and plausibility in verified
computation,” in EuroSys ’13.

2

	Abstract
	I Introduction
	II Contributions
	II-A A new circuit generator
	II-B A new zk-SNARK for circuits
	II-C Two components: independent or combined

	References

