
Zerocash: Decentralized Anonymous Payments from Bitcoin

Eli Ben-Sasson∗, Alessandro Chiesa†, Christina Garman‡, Matthew Green‡, Ian Miers‡, Eran Tromer§, Madars Virza†
∗Technion, eli@cs.technion.ac.il
†MIT, {alexch, madars}@mit.edu

‡Johns Hopkins University, {cgarman, imiers, mgreen}@cs.jhu.edu
§Tel Aviv University, tromer@cs.tau.ac.il

Abstract—Bitcoin is the first digital currency to see widespread
adoption. While payments are conducted between pseudonyms,
Bitcoin cannot offer strong privacy guarantees: payment trans-
actions are recorded in a public decentralized ledger, from
which much information can be deduced. Zerocoin (Miers et
al., IEEE S&P 2013) tackles some of these privacy issues by
unlinking transactions from the payment’s origin. Yet, it still
reveals payments’ destinations and amounts, and is limited in
functionality.

In this paper, we construct a full-fledged ledger-based digital
currency with strong privacy guarantees. Our results leverage
recent advances in zero-knowledge Succinct Non-interactive AR-
guments of Knowledge (zk-SNARKs).

First, we formulate and construct decentralized anonymous
payment schemes (DAP schemes). A DAP scheme enables users to
directly pay each other privately: the corresponding transaction
hides the payment’s origin, destination, and transferred amount.
We provide formal definitions and proofs of the construction’s
security.

Second, we build Zerocash, a practical instantiation of our
DAP scheme construction. In Zerocash, transactions are less than
1 kB and take under 6 ms to verify — orders of magnitude more
efficient than the less-anonymous Zerocoin and competitive with
plain Bitcoin.

Keywords: Bitcoin, decentralized electronic cash, zero knowledge

I. INTRODUCTION

Bitcoin is the first digital currency to achieve widespread

adoption. The currency owes its rise in part to the fact that,

unlike traditional e-cash schemes [1, 2, 3], it requires no trusted

parties. Instead of appointing a central bank, Bitcoin leverages a

distributed ledger known as the block chain to store transactions

made between users. Because the block chain is massively

replicated by mutually-distrustful peers, the information it

contains is public.

While users may employ many identities (or pseudonyms)

to enhance their privacy, an increasing body of research shows

that anyone can de-anonymize Bitcoin by using information in

the block chain [4, 5, 6], such as the structure of the transaction

graph as well as the value and dates of transactions. As a result,

Bitcoin fails to offer even a modicum of the privacy provided

by traditional payment systems, let alone the robust privacy of

anonymous e-cash schemes.

While Bitcoin is not anonymous itself, those with sufficient

motivation can obfuscate their transaction history with the help

of mixes (also known as laundries or tumblers). A mix allows

users to entrust a set of coins to a pool operated by a central

party and then, after some interval, retrieve different coins

(with the same total value) from the pool. Yet, mixes suffer

from three limitations: (i) the delay to reclaim coins must be

large to allow enough coins to be mixed in; (ii) the mix can

trace coins; and (iii) the mix may steal coins.1 For users with

“something to hide,” these risks may be acceptable. But typical

legitimate users (1) wish to keep their spending habits private

from their peers, (2) are risk-averse and do not wish to expend

continual effort in protecting their privacy, and (3) are often

not sufficiently aware of their compromised privacy.

To protect their privacy, users thus need an instant, risk-free,

and, most importantly, automatic guarantee that data revealing

their spending habits and account balances is not publicly

accessible by their neighbors, co-workers, and merchants.

Anonymous transactions also guarantee that the market value

of a coin is independent of its history, thus ensuring legitimate

users’ coins remain fungible.2

Zerocoin: a decentralized mix. Miers et al. [8] proposed

Zerocoin, which extends Bitcoin to provide strong anonymity

guarantees. Like many e-cash protocols (e.g., [2]), Zerocoin

employs zero-knowledge proofs to prevent transaction graph

analyses. Unlike earlier practical e-cash protocols, however,

Zerocoin does not rely on digital signatures to validate coins,

nor does it require a central bank to prevent double spending.

Instead, Zerocoin authenticates coins by proving, in zero-

knowledge, that they belong to a public list of valid coins

(which can be maintained on the block chain). Yet, rather than

a full-fledged anonymous currency, Zerocoin is a decentralized
mix, where users may periodically “wash” their bitcoins via

the Zerocoin protocol. Routine day-to-day transactions must

be conducted via Bitcoin, due to reasons that we now review.

The first reason is performance. Redeeming zerocoins

requires double-discrete-logarithm proofs of knowledge, which

have size that exceeds 45 kB and require 450ms to verify (at

the 128-bit security level).3 These proofs must be broadcast

1CoinJoin [7], an alternative proposal, replaces the central party of a mix
with multi-signature transactions that involve many collaborating Bitcoin users.
CoinJoin can thus only mix small volumes of coins amongst users who are
currently online, is prone to denial-of-service attacks by third parties, and
requires effort to find mixing partners.

2While the methods we detail in this paper accomplish this, the same
techniques open the door for privacy preserving accountability and oversight
(see Section X).

3These published numbers [8] actually use a mix of parameters at both
128-bit and 80-bit security for different components of the construction. The
cost is higher if all parameters are instantiated at the 128-bit security level.

through the network, verified by every node, and permanently

stored in the ledger. The entailed costs are higher, by orders

of magnitude, than those in Bitcoin and can seriously tax a

Bitcoin network operating at normal scale.

The second reason is functionality. While Zerocoin consti-

tutes a basic e-cash scheme, it lacks critical features required

of full-fledged anonymous payments. First, Zerocoin uses

coins of fixed denomination: it does not support payments

of exact values, nor does it provide a means to make change

following a transaction (i.e., divide coins). Second, Zerocoin

has no mechanism for one user to pay another one directly

in “zerocoins.” And third, while Zerocoin provides anonymity

by unlinking a payment transaction from its origin address, it

does not hide the amount or other metadata about transactions

occurring on the network.

Our contribution. In this work we address the aforemen-

tioned issues via two main contributions.

(1) We introduce the notion of a decentralized anonymous
payment scheme, which formally captures the functionality and

security guarantees of a full-fledged decentralized electronic

currency with strong anonymity guarantees. We provide a con-

struction of this primitive and prove its security under specific

cryptographic assumptions. The construction leverages recent

advances in the area of zero-knowledge proofs. Specifically, it

uses zero-knowledge Succinct Non-interactive ARguments of
Knowledge (zk-SNARKs) [9, 10, 11, 12, 13, 14, 15, 16].

(2) We achieve an implementation of the above primitive, via

a system that we call Zerocash. Compared to Zerocoin, our

system (at 128 bits of security):

• Reduces the size of transactions spending a coin by 97.7%.

• Reduces the spend-transaction verification time by 98.6%.

• Allows for anonymous transactions of variable amounts.

• Hides transaction amounts and the values of coins held by

users.

• Allows for payments to be made directly to a user’s fixed

address (without user interaction).

To validate our system, we measured its performance and

established feasibility by conducting experiments in a test

network of 1000 nodes (approximately 1
16 of the unique IPs

in the Bitcoin network and 1
3 of the nodes reachable at any

given time [17]). This inspires confidence that Zerocash can

be deployed as a fork of Bitcoin and operate at the same

scale. Thus, due to its significantly improved functionality and

performance, Zerocash makes it possible to entirely replace

traditional Bitcoin payments with anonymous alternatives.

Concurrent work. The idea of using zk-SNARKs in the

setting of Bitcoin was first presented by one of the authors

at Bitcoin 2013 [18]. In concurrent work, Danezis et al. [19]

suggest using zk-SNARKs to reduce proof size and verification

time in Zerocoin; see Section IX for a comparison.

A. zk-SNARKs

We now sketch in more technical terms the definition of

a zk-SNARK; see Section II for more details. A zk-SNARK

is a non-interactive zero-knowledge proof of knowledge that

is succinct, i.e., for which proofs are very short and easy to

verify. More precisely, let L be an NP language, and let C be a

nondeterministic decision circuit for L on a given instance size

n. A zk-SNARK can be used to prove and verify membership

in L, for instances of size n, as follows. After taking C as

input, a trusted party conducts a one-time setup phase that

results in two public keys: a proving key pk and a verification

key vk. The proving key pk enables any (untrusted) prover

to produce a proof π attesting to the fact that x ∈ L, for an

instance x (of size n) of his choice. The non-interactive proof

π is zero knowledge and a proof of knowledge. Anyone can

use the verification key vk to verify the proof π; in particular

zk-SNARK proofs are publicly verifiable: anyone can verify π,

without ever having to interact with the prover that generated

π. Succinctness requires that (for a given security level) π has

constant size and can be verified in time that is linear in |x|
(rather than linear in |C|).
B. Decentralized anonymous payment schemes

We construct a decentralized anonymous payment (DAP)
scheme, which is a decentralized e-cash scheme that allows

direct anonymous payments of any amount. See Section III for

a formal definition. Here, we outline our construction in six

incremental steps; the construction details are in Section IV.

Our construction functions on top of any ledger-based base

currency, such as Bitcoin. At any given time, a unique valid

snapshot of the currency’s ledger is available to all users.

The ledger is a sequence of transactions and is append-

only. Transactions include both the underlying currency’s

transactions, as well as new transactions introduced by our

construction. For concreteness, we focus the discussion below

on Bitcoin (though later definitions and constructions are

stated abstractly). We assume familiarity with Bitcoin [20]

and Zerocoin [8].

Step 1: user anonymity with fixed-value coins. We first

describe a simplified construction, in which all coins have

the same value of, e.g., 1BTC. This construction, similar

to the Zerocoin protocol, shows how to hide a payment’s

origin. In terms of tools, we make use of zk-SNARKs (recalled

above) and a commitment scheme. Let COMM denote a

statistically-hiding non-interactive commitment scheme (i.e.,

given randomness r and message m, the commitment is

c := COMMr(m); subsequently, c is opened by revealing

r and m, and one can verify that COMMr(m) equals c).
In the simplified construction, a new coin c is minted as

follows: a user u samples a random serial number sn and a

trapdoor r, computes a coin commitment cm := COMMr(sn),
and sets c := (r, sn, cm). A corresponding mint transaction

txMint, containing cm (but not sn or r), is sent to the ledger;

txMint is appended to the ledger only if u has paid 1BTC

to a backing escrow pool (e.g., the 1BTC may be paid via

plaintext information encoded in txMint). Mint transactions

are thus certificates of deposit, deriving their value from the

backing pool.

Subsequently, letting CMList denote the list of all coin

commitments on the ledger, u may spend c by posting a spend

transaction txSpend that contains (i) the coin’s serial number

sn; and (ii) a zk-SNARK proof π of the NP statement “I know
r such that COMMr(sn) appears in the list CMList of coin
commitments”. Assuming that sn does not already appear on

the ledger (as part of a past spend transaction), u can redeem

the deposited amount of 1BTC, which u can either keep for

himself, transfer to someone else, or immediately deposit into

a new coin. (If sn does already appear on the ledger, this is

considered double spending, and the transaction is discarded.)

User anonymity is achieved because the proof π is zero-

knowledge: while sn is revealed, no information about r
is, and finding which of the numerous commitments in

CMList corresponds to a particular spend transaction txSpend is

equivalent to inverting f(x) := COMMx(sn), which is assumed

to be infeasible. Thus, the origin of the payment is anonymous.

Step 2: compressing the list of coin commitments. In the

above NP statement, CMList is specified explicitly as a list of

coin commitments. This naive representation severely limits

scalability because the time and space complexity of most

protocol algorithms (e.g., the proof verification algorithm)

grows linearly with CMList. Moreover, coin commitments

corresponding to already spent coins cannot be dropped from

CMList to reduce costs, since they cannot be identified (due to

the same zero-knowledge property that provides anonymity).

As in [3], we rely on a collision-resistant hash function CRH
to avoid an explicit representation of CMList. We maintain

an efficiently updatable append-only CRH-based Merkle tree

Tree(CMList) over the (growing) list CMList. Letting rt denote

the root of Tree(CMList), it is well-known that updating rt to

account for insertion of new leaves can be done with time and

space proportional to the tree depth. Hence, the time and space

complexity is reduced from linear in the size of CMList to

logarithmic. With this in mind, we modify the NP statement to

the following one: “I know r such that COMMr(sn) appears as
a leaf in a CRH-based Merkle tree whose root is rt”. Compared

with the naive data structure for CMList, this modification

increases exponentially the size of CMList which a given

zk-SNARK implementation can support (concretely, using trees

of depth 64, Zerocash supports 264 coins).

Step 3: extending coins for direct anonymous payments.
So far, the coin commitment cm of a coin c is a commitment

to the coin’s serial number sn. However, this creates a problem

when transferring c to another user. Indeed, suppose that a user

uA created c, and uA sends c to another user uB . First, since

uA knows sn, the spending of c by uB is both not anonymous

(since uA sees when c is spent, by recognizing sn) and risky

(since uA could still spend c first). Thus, uB must immediately

spend c and mint a new coin c′ to protect himself. Second, if

uA in fact wants to transfer to uB , e.g., 100BTC, then doing

so is both unwieldy (since it requires 100 transfers) and not

anonymous (since the amount of the transfer is leaked). And

third, transfers in amounts that are not multiples of 1BTC (the

fixed value of a coin) are not supported. Thus, the simplified

construction described is inadequate as a payment scheme.

We address this by modifying the derivation of a coin

commitment, and using pseudorandom functions to target

payments and to derive serial numbers, as follows. We use three

pseudorandom functions (derived from a single one). For a

seed x these are denoted PRFaddr
x (·), PRFsn

x (·), and PRFpk
x (·).

We assume that PRFsn is moreover collision-resistant.

To provide targets for payments, we use addresses: each

user u generates an address key pair (apk, ask). The coins of

u contain the value apk and can be spent only with knowledge

of ask. A key pair (apk, ask) is sampled by selecting a random

seed ask and setting apk := PRFaddr
ask

(0). A user can generate

and use any number of address key pairs.

Next, we re-design minting to allow for greater functionality.

To mint a coin c of a desired value v, the user u first samples ρ,

which is a secret value that determines the coin’s serial number

as sn := PRFsn
ask
(ρ). Then, u commits to the tuple (apk, v, ρ) in

two phases: (a) u computes k := COMMr(apk‖ρ) for a random

r; and then (b) u computes cm := COMMs(v‖k) for a random

s. The minting results in a coin c := (apk, v, ρ, r, s, cm) and a

mint transaction txMint := (v, k, s, cm). Crucially, due to the

nested commitment, anyone can verify that cm in txMint is

a coin commitment of a coin of value v (by checking that

COMMs(v‖k) equals cm) but cannot discern the owner (by

learning the address key apk) or serial number (derived from

ρ) because these are hidden in k. As before, txMint is accepted

by the ledger only if u deposits the correct amount, in this

case v BTC.

Coins are spent using the pour operation, which takes a set

of input coins, to be consumed, and “pours” their value into a

set of fresh output coins — such that the total value of output

coins equals the total value of the input coins. Suppose that

u, with address key pair (aoldpk , a
old
sk), wishes to consume his

coin cold = (aoldpk , v
old, ρold, rold, sold, cmold) and produce two

new coins cnew1 and cnew2 , with total value vnew1 + vnew2 = vold,

respectively targeted at address public keys anewpk,1 and anewpk,2.

(The addresses anewpk,1 and anewpk,2 may belong to u or to some

other user.) The user u, for each i ∈ {1, 2}, proceeds as follows:

(i) u samples serial number randomness ρnewi ; (ii) u computes

knewi := COMMrnewi
(anewpk,i‖ρnewi) for a random rnewi ; and (iii) u

computes cmnew
i := COMMsnewi

(vnewi ‖knewi) for a random snewi .

This yields the coins cnew1 := (anewpk,1, v
new
1 , ρnew1 , rnew1 , snew1 ,

cmnew
1) and cnew2 := (anewpk,2, v

new
2 , ρnew2 , rnew2 , snew2 , cmnew

2).
Next, u produces a zk-SNARK proof πPOUR for the following

NP statement, which we call POUR:

“Given the Merkle-tree root rt, serial number snold,
and coin commitments cmnew

1 , cmnew
2 , I know coins

cold, cnew1 , cnew2 , and address secret key aoldsk such that:
• The coins are well-formed: for cold it holds that kold =
COMMrold(a

old
pk ‖ρold) and cmold = COMMsold(v

old‖kold);
and similarly for cnew1 and cnew2 .

• The address secret key matches the public key: aoldpk =

PRFaddr
aold
sk

(0).
• The serial number is computed correctly: snold :=
PRFsn

aold
sk
(ρold).

• The coin commitment cmold appears as a leaf of a Merkle-

tree with root rt.
• The values add up: vnew1 + vnew2 = vold.”

A resulting pour transaction txPour := (rt, snold, cmnew
1 ,

cmnew
2 , πPOUR) is appended to the ledger. (As before, the

transaction is rejected if the serial number sn appears in a

previous transaction.)
Now suppose that u does not know, say, the address secret

key anewsk,1 that is associated with the public key anewpk,1. Then, u
cannot spend cnew1 because he cannot provide anewsk,1 as part of

the witness of a subsequent pour operation. Furthermore, when

a user that knows anewsk,1 does spend cnew1 , the user u cannot

track it, because he knows no information about its revealed

serial number, which is snnew1 := PRFsn
anew
sk,1

(ρnew1).

Also observe that txPour reveals no information about how

the value of the consumed coin was divided among the two

new fresh coins, nor which coin commitment corresponds to

the consumed coin, nor the address public keys to which the

two new fresh coins are targeted. The payment was conducted

in full anonymity.
More generally, a user may pour Nold ≥ 0 coins into Nnew ≥

0 coins. For simplicity we consider the case Nold = Nnew = 2,

without loss of generality. Indeed, for Nold < 2, the user can

mint a coin with value 0 and then provide it as a “null” input,

and for Nnew < 2, the user can create (and discard) a new

coin with value 0. For Nold > 2 or Nnew > 2, the user can

compose logNold + logNnew of the 2-input/2-output pours.

Step 4: sending coins. Suppose that anewpk,1 is the address public

key of u1. In order to allow u1 to actually spend the new coin

cnew1 produced above, u must somehow send the secret values

in cnew1 to u1. One way is for u to send u1 a private message,

but the requisite private communication channel necessitates

additional infrastructure or assumptions. We avoid this “out-

of-band” channel and instead build this capability directly into

our construction by leveraging the ledger as follows.
We modify the structure of an address key pair. Each

user now has a key pair (addrpk, addrsk), where addrpk =
(apk, pkenc) and addrsk = (ask, skenc). The values (apk, ask)
are generated as before. In addition, (pkenc, skenc) is a key pair

for a key-private encryption scheme [21].
Then, u computes the ciphertext C1 that is the encryption

of the plaintext (vnew1 , ρnew1 , rnew1 , snew1), under pknewenc,1 (which

is part of u1’s address public key addrnewsk,1), and includes C1

in the pour transaction txPour. The user u1 can then find and

decrypt this message (using his sknewenc,1) by scanning the pour

transactions on the public ledger. Again, note that adding C1

to txPour leaks neither paid amounts, nor target addresses due

to the key-private property of the encryption scheme. (The

user u does the same with cnew2 and includes a corresponding

ciphertext C2 in txPour.)

Step 5: public outputs. The construction so far allows users

to mint, merge, and split coins. But how can a user redeem

one of his coins, i.e., convert it back to the base currency

(Bitcoin)? For this, we modify the pour operation to include a

public output. When spending a coin, the user u also specifies

a nonnegative vpub and an arbitrary string info. The balance

equation in the NP statement POUR is changed accordingly:

“vnew1 + vnew2 + vpub = vold”. Thus, of the input value vold,

a part vpub is publicly declared, and its target is specified,

somehow, by the string info. The string info can be used to

specify the destination of these redeemed funds (e.g., a Bitcoin

wallet public key).4 Both vpub and info are now included in the

resulting pour transaction txPour. (The public output is optional,

as the user u can set vpub = 0.)

Step 6: non-malleability. To prevent malleability attacks on

a pour transaction txPour (e.g., embezzlement by re-targeting

the public output of the pour by modifying info), we further

modify the NP statement POUR and use digital signatures.

Specifically, during the pour operation, the user u (i) samples

a key pair (pksig, sksig) for a one-time signature scheme;

(ii) computes hSig := CRH(pksig); (iii) computes the two values

h1 := PRFpk

aold
sk,1

(hSig) and h2 := PRFpk

aold
sk,2

(hSig), which act as

MACs to “tie” hSig to both address secret keys; (iv) modifies

POUR to include the three values hSig, h1, h2 and prove that

the latter two are computed correctly; and (v) uses sksig to sign

every value associated with the pour operation, thus obtaining

a signature σ, which is included, along with pksig, in txPour.
Since the aoldsk,i are secret, and with high probability hSig changes

for each pour transaction, the values h1, h2 are unpredictable.

Moreover, the signature on the NP statement (and other values)

binds all of these together.

This ends the outline of the construction, which is summarized

in part in Figure 1. We conclude by noting that, due to

the zk-SNARK, our construction requires a one-time trusted

setup of public parameters. The trust affects soundness of the

proofs, though anonymity continues to hold even if the setup

is corrupted by a malicious party.

C. Zerocash

We outline Zerocash, a concrete implementation, at 128
bits of security, of our DAP scheme construction; see Sec-

tion V for details. Zerocash entails carefully instantiating

the cryptographic ingredients of the construction to ensure

that the zk-SNARK, the “heaviest” component, is efficient

enough in practice. In the construction, the zk-SNARK is

used to prove/verify a specific NP statement: POUR. While

zk-SNARKs are asymptotically efficient, their concrete effi-

ciency depends on the arithmetic circuit C that is used to

decide the NP statement. Thus, we seek instantiations for which

we can design a relatively-small arithmetic circuit CPOUR for

verifying the NP statement POUR.

Our approach is to instantiate all of the necessary cryp-

tographic ingredients (commitment schemes, pseudorandom

functions, and collision-resistant hashing) based on SHA256.

We first design a hand-optimized circuit for verifying SHA256
computations (or, more precisely, its compression function,

4These public outputs can be considered as an “input” to a Bitcoin-style
transaction, where the info string contains the Bitcoin output scripts. This
mechanism also allows us to support Bitcoin’s public transaction fees.

…

(c) coin commitment

rt

(a) Merke tree over (cm1,cm2,…)

cm

CRH CRH

CRH

CRH CRH

CRH

CRH

cm1 cm2cm3 cm4cm5cm6cm7 cm8

CRH CRH

CRH

COMM

v

ρ

PRFsn

PRFaddr

s

COMM
r

sn

(d) serial number

rt = Merkle-tree root
cm = coin commitment
sn = serial number
v = coin value
r, s = commitment rand.
ρ = serial number rand.
(apk,pkenc) = address public key

(ask,skenc) = address secret key

c = ((apk,pkenc), v, ρ, r, s, cm)

(b) coin

Fig. 1: (a) Illustration of the CRH-based Merkle tree over the list CMList of coin commitments. (b) A coin c. (c) Illustration of the structure
of a coin commitment cm. (d) Illustration of the structure of a coin serial number sn.

which suffices for our purposes).5 Then, we use this circuit in

constructing CPOUR, which verifies all the necessary checks for

satisfying the NP statement CPOUR.

This, along with judicious parameter choices, and a state-of-

the-art implementation of a zk-SNARK for arithmetic circuits

[16] (see Section II-C), results in a zk-SNARK prover running

time of few minutes and zk-SNARK verifier running time of

few milliseconds. This allows the DAP scheme implementation

to be practical for deployment, as our experiments show.

Zerocash can be integrated into Bitcoin or forks of it

(commonly referred to as “altcoins”); we later describe how

this is done.

D. Paper organization

The remainder of this paper is organized as follows.

Section II provides background on zk-SNARKs. We define

DAP schemes in Section III, and our construction thereof in

Section IV. Section V discusses the concrete instantiation in

Zerocash. Section VI describes the integration of Zerocash

into existing ledger-based currencies. Section VII provides

microbenchmarks for our prototype implementation, as well

as results based on full-network simulations. Section VIII

describes optimizations. We discuss concurrent work in Sec-

tion IX and summarize our contributions and future directions

in Section X.

II. BACKGROUND ON ZK-SNARKS

The main cryptographic primitive used in this paper is

a special kind of Succinct Non-interactive ARgument of
Knowledge (SNARK). Concretely, we use a publicly-verifiable
preprocessing zero-knowledge SNARK, or zk-SNARK for short.

In this section we provide basic background on zk-SNARKs,

provide an informal definition, and recall known constructions

and implementations.

5Alternatively, we could have opted to rely on the circuit generators [13, 14,
16], which support various classes of C programs, by writing C code expressing
the POUR checks. However, as discussed later, these generic approaches are
more expensive than our hand-optimized construction.

A. Informal definition

We informally define zk-SNARKs for arithmetic circuit

satisfiability. We refer the reader to, e.g., [11] for a formal

definition.

For a field F, an F-arithmetic circuit takes inputs that are

elements in F, and its gates output elements in F. We naturally

associate a circuit with the function it computes. To model

nondeterminism we consider circuits that have an input x ∈
F
n and an auxiliary input a ∈ F

h, called a witness. The

circuits we consider only have bilinear gates.6 Arithmetic

circuit satisfiability is defined analogously to the boolean case,

as follows.

Definition II.1. The arithmetic circuit satisfiability problem
of an F-arithmetic circuit C : Fn×F

h → F
l is captured by the

relation RC = {(x, a) ∈ F
n×F

h : C(x, a) = 0l}; its language

is LC = {x ∈ F
n : ∃ a ∈ F

h s.t. C(x, a) = 0l}.
Given a field F, a (publicly-verifiable preprocessing)

zk-SNARK for F-arithmetic circuit satisfiability is a triple

of polynomial-time algorithms (KeyGen,Prove,Verify):

• KeyGen(1λ, C) → (pk, vk). On input a security parameter

λ (presented in unary) and an F-arithmetic circuit C, the

key generator KeyGen probabilistically samples a proving
key pk and a verification key vk. Both keys are published as

public parameters and can be used, any number of times, to

prove/verify membership in LC .

• Prove(pk, x, a) → π. On input a proving key pk and any

(x, a) ∈ RC , the prover Prove outputs a non-interactive

proof π for the statement x ∈ LC .

• Verify(vk, x, π)→ b. On input a verification key vk, an input

x, and a proof π, the verifier Verify outputs b = 1 if he is

convinced that x ∈ LC .

A zk-SNARK satisfies the following properties.

Completeness. For every security parameter λ, any F-

arithmetic circuit C, and any (x, a) ∈ RC , the honest prover

6A gate with inputs y1, . . . , ym ∈ F is bilinear if the output is

〈�a, (1, y1, . . . , ym)〉 · 〈�b, (1, y1, . . . , ym)〉 for some �a,�b ∈ F
m+1. These

include addition, multiplication, negation, and constant gates.

can convince the verifier. Namely, b = 1 with probabil-

ity 1 − negl(λ) in the following experiment: (pk, vk) ←
KeyGen(1λ, C); π ← Prove(pk, x, a); b← Verify(vk, x, π).

Succinctness. An honestly-generated proof π has Oλ(1) bits

and Verify(vk, x, π) runs in time Oλ(|x|). (Here, Oλ hides a

fixed polynomial factor in λ.)

Proof of knowledge (and soundness). If the verifier accepts

a proof output by a bounded prover, then the prover “knows”

a witness for the given instance. (In particular, soundness

holds against bounded provers.) Namely, for every poly(λ)-
size adversary A, there is a poly(λ)-size extractor E such that

Verify(vk, x, π) = 1 and (x, a) �∈ RC with probability negl(λ)
in the following experiment: (pk, vk) ← KeyGen(1λ, C);
(x, π)← A(pk, vk); a← E(pk, vk).
Perfect zero knowledge. An honestly-generated proof is per-

fect zero knowledge.7 Namely, there is a poly(λ)-size simulator

Sim such that for all stateful poly(λ)-size distinguishers D the

following two probabilities are equal:

• The probability that D(π) = 1 on an honest proof.

Pr

⎡
⎣ (x, a) ∈ RC

D(π) = 1

∣∣∣∣∣∣
(pk, vk)← KeyGen(C)

(x, a)← D(pk, vk)
π ← Prove(pk, x, a)

⎤
⎦

• The probability that D(π) = 1 on a simulated proof.

Pr

⎡
⎣ (x, a) ∈ RC

D(π) = 1

∣∣∣∣∣∣
(pk, vk, trap)← Sim(C)

(x, a)← D(pk, vk)
π ← Sim(pk, x, trap)

⎤
⎦

B. Known constructions and security

There are many zk-SNARK constructions in the literature

[9, 10, 11, 12, 13, 14, 15, 16]. We are interested in zk-SNARKs

for arithmetic circuit satisfiability, and the most efficient ones

for this language are based on quadratic arithmetic programs
[12, 11, 13, 14, 16]; such constructions provide a linear-time

KeyGen, quasilinear-time Prove, and linear-time Verify.

Security of zk-SNARKs is based on knowledge-of-exponent

assumptions and variants of Diffie–Hellman assumptions in

bilinear groups [9, 22, 23]. While knowledge-of-exponent

assumptions are fairly strong, there is evidence that such

assumptions may be inherent for constructing zk-SNARKs

[24, 25].

C. zk-SNARK implementations

There are three published implementations of zk-SNARKs:

(i) Parno et al. [13] present an implementation of zk-SNARKs

for programs having no data dependencies;8 (ii) Ben-Sasson

et al. [14] present an implementation of zk-SNARKs for

arbitrary programs (with data dependencies); and (iii) Ben-

Sasson et al. [16] present an implementation of zk-SNARKs

7While most zk-SNARK descriptions in the literature only mention statistical
zero knowledge, all zk-SNARK constructions can be made perfect zero
knowledge by allowing for a negligible error probability in completeness.

8They only support programs where array indices are restricted to be known
compile-time constants; similarly, loop iteration counts (or at least upper
bounds to these) must be known at compile time.

that supports programs that modify their own code (e.g., for

runtime code generation); their implementation also reduces

costs for programs of larger size and allows for universal key

pairs.

Each of the works above also achieves zk-SNARKs for

arithmetic circuit satisfiability as a stepping stone towards

their respective higher-level efforts. In this paper we are only

interested in a zk-SNARK for arithmetic circuit satisfiability,

and we rely on the implementation of [16] for such a

zk-SNARK.9 The implementation in [16] is itself based on the

protocol of Parno et al. [13]. We thus refer the interested reader

to [13] for details of the protocol, its intuition, and its proof of

security; and to [16] for the implementation and its performance.

In terms of concrete parameters, the implementation of [16]

provides 128 bits of security, and the field F is of a 256-bit

prime order p.

III. DEFINITION OF A DECENTRALIZED ANONYMOUS

PAYMENT SCHEME

We introduce the notion of a decentralized anonymous
payment scheme (DAP scheme), extending the notion of

decentralized e-cash [8]. Later, in Section IV, we provide

a construction.

A. Data structures

We begin by describing, and giving intuition about, the data

structures used by a DAP scheme. The algorithms that use and

produce these data structures are introduced in Section III-B.

Basecoin ledger. Our protocol is applied on top of a ledger-

based base currency such as Bitcoin; for generality we refer

to this base currency as Basecoin. At any given time T , all

users have access to LT , the ledger at time T , which is a

sequence of transactions. The ledger is append-only (i.e., T <
T ′ implies that LT is a prefix of LT ′).10 The transactions in

the ledger include both Basecoin transactions as well as two

new transaction types described below.

Public parameters. A list of public parameters pp is available

to all users in the system. These are generated by a trusted party

at the “start of time” and are used by the system’s algorithms.

Addresses. Each user generates at least one address key
pair (addrpk, addrsk). The public key addrpk is published and

enables others to direct payments to the user. The secret key

addrsk is used to receive payments sent to addrpk. A user may

generate any number of address key pairs.

Coins. A coin is a data object c, to which we associate the

following:

• A coin commitment, denoted cm(c): a string that appears

on the ledger once c is minted.

9In [16], one optimization to the verifier’s runtime requires preprocessing
the verification key vk; for simplicity, we do not use this optimization.

10In reality, the Basecoin ledger (such as the one of Bitcoin) is not perfect
and may incur temporary inconsistencies. In this respect our construction is
as good as the underlying ledger. We discuss the effects of this on anonymity
and mitigations in Section VI-C.

• A coin value, denoted v(c): the denomination of c, as

measured in basecoins, as an integer between 0 and a

maximum value vmax (which is a system parameter).

• A coin serial number, denoted sn(c): a unique string

associated with the c, used to prevent double spending.

• A coin address, denoted addrpk(c): an address public key,

representing who owns c.

Any other quantities associated with a coin c (e.g., various

trapdoors) are implementation details.

New transactions. Besides Basecoin transactions, there are

two new types of transactions.

• Mint transactions. A mint transaction txMint is a tuple

(cm, v, ∗), where cm is a coin commitment, v is a coin value,

and ∗ denotes other (implementation-dependent) information.

The transaction txMint records that a coin c with coin

commitment cm and value v has been minted.

• Pour transactions. A pour transaction txPour is a tuple

(rt, snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, info, ∗), where rt is a root

of a Merkle tree, snold1 , snold2 are two coin serial numbers,

cmnew
1 , cmnew

2 are two coin commitments, vpub is a coin

value, info is an arbitrary string, and ∗ denotes other

(implementation-dependent) information. The transaction

txPour records the pouring of two input (and now consumed)

coins cold1 , cold2 , with respective serial numbers snold1 , snold2 ,

into two new output coins cnew1 , cnew2 , with respective coin

commitments cmnew
1 , cmnew

2 , as well as a public output vpub
(which may be zero). Furthermore, txPour also records an

information string info (perhaps containing information on

who is the recipient of vpub basecoins) and that, when this

transaction was made, the root of the Merkle tree over coin

commitments was rt (see below).

Commitments of minted coins and serial numbers of spent
coins. For any given time T ,

• CMListT denotes the list of all coin commitments appearing

in mint and pour transactions in LT ;

• SNListT denotes the list of all serial numbers appearing in

pour transactions in LT .

While both of these lists can be deduced from LT , it will be

convenient to think about them as separate (as, in practice,

these may be separately maintained due to efficiency reasons).

Merkle tree over commitments. For any given time T ,

TreeT denotes a Merkle tree over CMListT and rtT its root.

Moreover, the function PathT (cm) gives the authentication

path from a coin commitment cm appearing in CMListT to

the root of TreeT .11 For convenience, we assume that LT also

stores rtT ′ for all T ′ ≤ T (i.e., it stores all past Merkle tree

roots).

B. Algorithms

A DAP scheme Π is a tuple of polynomial-time algorithms

(Setup,CreateAddress,Mint,Pour,VerifyTransaction,
Receive)

11While we refer to Mekle trees for simplicity, it is straightforward to extend
the definition to allow other data structures representing sets with fast insertion
and short proofs of membership.

with the following syntax and semantics.

System setup. The algorithm Setup generates a list of public

parameters:

Setup
• INPUTS: security parameter λ
• OUTPUTS: public parameters pp

The algorithm Setup is executed by a trusted party. The

resulting public parameters pp are published and made available

to all parties (e.g., by embedding them into the protocol’s

implementation). The setup is done only once; afterwards, no

trusted party is needed, and no global secrets or trapdoors are

kept.

Creating payment addresses. The algorithm CreateAddress
generates a new address key pair:

CreateAddress
• INPUTS: public parameters pp
• OUTPUTS: address key pair (addrpk, addrsk)

Each user generates at least one address key pair

(addrpk, addrsk) in order to receive coins. The public key addrpk
is published, while the secret key addrsk is used to redeem

coins sent to addrpk. A user may generate any number of

address key pairs; doing so does not require any interaction.

Minting coins. The algorithm Mint generates a coin (of a

given value) and a mint transaction:

Mint
• INPUTS:

– public parameters pp
– coin value v ∈ {0, 1, . . . , vmax}
– destination address public key addrpk

• OUTPUTS: coin c and mint transaction txMint

A system parameter, vmax, caps the value of any single coin.

The output coin c has value v and coin address addrpk; the

output mint transaction txMint equals (cm, v, ∗), where cm is

the coin commitment of c.

Pouring coins. The Pour algorithm transfers value from

input coins into new output coins, marking the input coins

as consumed. Moreover, a fraction of the input value may be

publicly revealed. Pouring allows users to subdivide coins into

smaller denominations, merge coins, and transfer ownership

of anonymous coins, or make public payments.12

Pour
• INPUTS:

– public parameters pp
– the Merkle root rt
– old coins cold1 , cold2

– old addresses secret keys addroldsk,1, addr
old
sk,2

– authentication path path1 from commitment cm(cold1) to

root rt,

12We consider pours with 2 inputs and 2 outputs, for simplicity and (as
discussed in Section I-B) without loss of generality.

authentication path path2 from commitment cm(cold2) to

root rt
– new values vnew1 , vnew2

– new addresses public keys addrnewpk,1, addr
new
pk,2

– public value vpub
– transaction string info

• OUTPUTS: new coins cnew1 , cnew2 and pour transaction txPour

Thus, the Pour algorithm takes as input two distinct input

coins cold1 , cold2 , along with corresponding address secret keys

addroldsk,1, addr
old
sk,2 (required to redeem the two input coins). To

ensure that cold1 , cold2 have been previously minted, the Pour
algorithm also takes as input the Merkle root rt (allegedly,

equal to the root of Merkle tree over all coin commitments so

far), along with two authentication paths path1, path2 for the

two coin commitments cm(cold1), cm(cold2). Two input values

vnew1 , vnew2 specify the values of two new anonymous coins

cnew1 , cnew2 to be generated, and two input address public keys

addrnewpk,1, addr
new
pk,2 specify the recipients of cnew1 , cnew2 . A third

value, vpub, specifies the amount to be publicly spent (e.g.,

to redeem coins or pay transaction fees). The sum of output

values v1 + v2 + vpub must be equal to the sum of the values

of the input coins (and cannot exceed vmax). Finally, the Pour
algorithm also receives an arbitrary string info, which is bound

into the output pour transaction txPour.

The Pour algorithm outputs two new coins cnew1 , cnew2

and a pour transaction txPour. The transaction txPour equals

(rt, snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, info, ∗), where cmnew
1 ,

cmnew
2 are the two coin commitments of the two output coins,

and ∗ denotes other (implementation-dependent) information.

Crucially, txPour reveals only one currency value, the public

value vpub (which may be zero); it does not reveal the payment

addresses or values of the old or new coins.

Verifying transactions. The algorithm VerifyTransaction
checks the validity of a transaction:

VerifyTransaction
• INPUTS:

– public parameters pp
– a (mint or pour) transaction tx
– the current ledger L

• OUTPUTS: bit b, equals 1 iff the transaction is valid

Both mint and pour transactions must be verified before being

considered well-formed. In practice, transactions can be verified

by the nodes in the distributed system maintaining the ledger,

as well as by users who rely on these transactions.

Receiving coins. The algorithm Receive scans the ledger and

retrieves unspent coins paid to a particular user address:

Receive
• INPUTS:

– recipient address key pair (addrpk, addrsk)
– the current ledger L

• OUTPUTS: set of (unspent) received coins

When a user with address key pair (addrpk, addrsk) wishes to

receive payments sent to addrpk, he uses the Receive algorithm

to scan the ledger. For each payment to addrpk appearing in the

ledger, Receive outputs the corresponding coins whose serial

numbers do not appear on the ledger L. Coins received in

this way may be spent, just like minted coins, using the Pour
algorithm. (We only require Receive to detect coins paid to

addrpk via the Pour algorithm and not also detect coins minted

by the user himself.)

Next, we describe completeness (Section III-C) and security

(Section III-D).

C. Completeness

Completeness of a DAP scheme requires that unspent coins

can be spent. More precisely, consider a ledger sampler S
outputting a ledger L. If c1 and c2 are two coins whose coin

commitments appear in (valid) transactions on L, but their

serial numbers do not appear in L, then c1 and c2 can be

spent using Pour. Namely, running Pour results in a pour

transaction txPour that VerifyTransaction accepts, and the new

coins can be received by the intended recipients (by using

Receive); moreover, txPour correctly records the intended vpub
and transaction string info. This property is formalized via an

incompleteness experiment INCOMP.

Definition III.1. A DAP scheme Π = (Setup,CreateAddress,
Mint,Pour,VerifyTransaction,Receive) is complete if no

polynomial-size ledger sampler S wins INCOMP with more

than negligible probability.

D. Security

Security of a DAP scheme is characterized by three prop-

erties, which we call ledger indistinguishability, transaction
non-malleability, and balance.

Definition III.2. A DAP scheme Π = (Setup,CreateAddress,
Mint,Pour,VerifyTransaction,Receive) is secure if it satisfies

ledger indistinguishability, transaction non-malleability, and

balance.

Below, we provide an informal overview of each property,

and defer formal definitions to the extended version of this

paper [26].

Each property is formalized as a game between an adversary

A and a challenger C. In each game, the behavior of honest

parties is realized via a DAP scheme oracle ODAP, which

maintains a ledger L and provides an interface for executing

CreateAddress, Mint, Pour and Receive algorithms for honest

parties. To elicit behavior from honest parties, A passes a query

to C, which (after sanity checks) proxies the query to ODAP.

For each query that requests an honest party to perform an

action, A specifies identities of previous transactions and the

input values, and learns the resulting transaction, but not any of

the secrets or trapdoors involved in producing that transaction.

The oracle ODAP also provides an Insert query that allows A
to directly add aribtrary transactions to the ledger L.

Ledger indistinguishability. This property captures the

requirement that the ledger reveals no new information to

the adversary beyond the publicly-revealed information (values

of minted coins, public values, information strings, total number

of transactions, etc.), even when the adversary can adaptively

induce honest parties to perform DAP operations of his choice.

That is, no bounded adversary A can distinguish between two

ledgers L0 and L1, constructed by A using queries to two

DAP scheme oracles, when the queries to the two oracles are

publicly consistent: they have matching type and are identical

in terms of publicly-revealed information and the information

related to addresses controlled by A.
Ledger indistinguishability is formalized by an experiment

L-IND that proceeds as follows. First, a challenger samples a

random bit b and initializes two DAP scheme oracles ODAP
0

and ODAP
1 , maintaining ledgers L0 and L1. Throughout, the

challenger allows A to issue queries to ODAP
0 and ODAP

1 , thus

controlling the behavior of honest parties on L0 and L1. The

challenger provides the adversary with the view of both ledgers,

but in randomized order: LLeft := Lb and LRight := L1−b. The

adversary’s goal is to distinguish whether the view he sees

corresponds to (LLeft, LRight) = (L0, L1), i.e. b = 0, or to

(LLeft, LRight) = (L1, L0), i.e. b = 1.
At each round of the experiment, the adversary issues queries

in pairs Q,Q′ of matching query type. If the query type is

CreateAddress, then the same address is generated at both

oracles. If it is to Mint, Pour or Receive, then Q is forwarded

to L0 and Q′ to L1; for Insert queries, query Q is forwarded

to LLeft and Q′ is forwarded to LRight. The adversary’s queries

are restricted in the sense that they must maintain the public
consistency of the two ledgers. For example, the public values

for Pour queries must be the same, as well as minted amounts

for Mint queries.
At the conclusion of the experiment, A outputs a guess b′,

and wins when b = b′. Ledger indistinguishability requires that

A wins L-IND with probability at most negligibly greater than

1/2.

Transaction non-malleability. This property requires that

no bounded adversary A can alter any of the data stored

within a (valid) pour transaction txPour. This transaction non-
malleability prevents malicious attackers from modifying others’

transactions before they are added to the ledger (e.g., by re-

targeting the Basecoin public output of a pour transaction).
Transaction non-malleability is formalized by an experiment

TR-NM, in which A adaptively interacts with a DAP scheme

oracle ODAP and then outputs a pour transaction tx∗. Letting

T denote the set of pour transactions returned by ODAP, and

L denote the final ledger, A wins the game if there exists

tx ∈ T , such that (i) tx∗ �= tx; (ii) tx∗ reveals a serial number

contained in tx; and (iii) both tx and tx∗ are valid with respect

to the ledger L′ containing all transactions preceding tx on L.

In other words, A wins the game if tx∗ manages to modify

some previous pour transaction to spend the same coin in a

different way.
Transaction non-malleability requires that A wins TR-NM

with only negligible probability. (Note that A can of course

produce valid pour transactions that are unrelated to those in T ;

the condition that tx∗ reveals a serial number of a previously-

spent coin captures non-malleability.)

Balance. This property requires that no bounded adversary

A can own more money than what he minted or received via

payments from others.

Balance is formalized by an experiment BAL, in which A
adaptively interacts with a DAP scheme oracle ODAP and then

outputs a set of coins Scoin. Letting Saddr be set of addresses

returned by CreateAddress queries (i.e., addresses of “honest”

users), A wins the game if the total value he can spend or

has spent (either as coins or Basecoin public outputs) is

greater than the value he has received or mined. That is, A
wins if vUnspent + vBasecoin + vA→ADDR > vMint + vADDR→A
where: (i) vUnspent is the total value of unspent coins in Scoin;

(ii) vBasecoin is the total value of public outputs placed by A on

the ledger; (iii) vMint is the total value of A’s mint transactions;

(iv) vADDR→A is the total value of payments received by A
from addresses in Saddr; (v) vA→ADDR is the total value of

payments sent by A to addresses in Saddr.

Balance requires that A wins BAL with only negligible

probability.

IV. CONSTRUCTION OF A DECENTRALIZED ANONYMOUS

PAYMENT SCHEME

We show how to construct a DAP scheme (introduced

in Section III) using zk-SNARKs and other building blocks.

Later, in Section V, we give a concrete instantiation of this

construction.

A. Cryptographic building blocks

We first introduce notation for the standard cryptographic

building blocks that we use. We assume familiarity with the

definitions of these building blocks; for more details, see, e.g.,

[27]. Throughout, λ denotes the security parameter.

Collision-resistant hashing. We use a collision-resistant hash

function CRH : {0, 1}∗ → {0, 1}O(λ).

Pseudorandom functions. We use a pseudorandom function

family PRF = {PRFx : {0, 1}∗ → {0, 1}O(λ)}x where x de-

notes the seed. From PRFx, we derive three “non-overlapping”

pseudorandom functions, chosen arbitrarily as PRFaddr
x (z) :=

PRFx(00‖z) , PRFsn
x (z) := PRFx(01‖z) , PRFpk

x (z) :=
PRFx(10‖z). Furthermore, we assume that PRFsn is also

collision resistant, in the sense that it is infeasible to find

(x, z) �= (x′, z′) such that PRFsn
x (z) = PRFsn

x′ (z′).
Statistically-hiding commitments. We use a commitment

scheme COMM where the binding property holds computa-

tionally, while the hiding property holds statistically. It is

denoted {COMMx : {0, 1}∗ → {0, 1}O(λ)}x where x denotes

the commitment trapdoor. Namely, to reveal a commitment cm
to a value z, it suffices to provide z and the trapdoor x; then

one can check that cm = COMMx(z).

One-time strongly-unforgeable digital signatures. We use a

digital signature scheme Sig = (Gsig,Ksig,Ssig,Vsig) that works

as follows.

• Gsig(1λ) → ppsig. Given a security parameter λ (presented

in unary), Gsig samples public parameters ppenc for the

encryption scheme.

• Ksig(ppsig) → (pksig, sksig). Given public parameters ppsig,

Ksig samples a public key and a secret key for a single user.

• Ssig(sksig,m)→ σ. Given a secret key sksig and a message

m, Ssig signs m to obtain a signature σ.

• Vsig(pksig,m, σ)→ b. Given a public key pksig, message m,

and signature σ, Vsig outputs b = 1 if the signature σ is valid

for message m; else it outputs b = 0.

The signature scheme Sig satisfies the security property of

one-time strong unforgeability against chosen-message attacks
(SUF-1CMA security).

Key-private public-key encryption. We use a public-key

encryption scheme Enc = (Genc,Kenc, Eenc,Denc) that works

as follows.

• Genc(1λ)→ ppenc. Given a security parameter λ (presented

in unary), Genc samples public parameters ppenc for the

encryption scheme.

• Kenc(ppenc)→ (pkenc, skenc). Given public parameters ppenc,
Kenc samples a public key and a secret key for a single user.

• Eenc(pkenc,m)→ c. Given a public key pkenc and a message

m, Eenc encrypts m to obtain a ciphertext c.
• Denc(skenc, c)→ m. Given a secret key skenc and a ciphertext

c, Denc decrypts c to produce a message m (or ⊥ if

decryption fails).

The encryption scheme Enc satisfies two security properties:

(i) ciphertext indistinguishability under chosen-ciphertext attack
(IND-CCA security); and (ii) key indistinguishability under
chosen-ciphertext attack (IK-CCA security). While the first

property is standard, the second is less known; informally,

IK-CCA requires that ciphertexts cannot be linked to the public

key used to encrypt them, or to other ciphertexts encrypted

with the same public key. For definitions, we refer the reader

to [21].

B. zk-SNARKs for pouring coins

As outlined in Section I-B, our construction invokes a

zk-SNARK for a specific NP statement, POUR, which we now

define. We first recall the context motivating POUR. When a

user u pours “old” coins cold1 , cold2 into new coins cnew1 , cnew2 ,

a corresponding pour transaction

txPour = (rt, snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, info, ∗)
is generated. In our construction, we need to provide evidence in

“∗” that various conditions were respected by the pour operation.

Concretely, txPour should demonstrate that (i) u owns cold1 , cold2 ;

(ii) coin commitments for cold1 , cold2 appear somewhere on the

ledger; (iii) the revealed serial numbers snold1 , snold2 are of

cold1 , cold2 ; (iv) the revealed coin commitments cmnew
1 , cmnew

2

are of cnew1 , cnew2 ; (v) balance is preserved. Our construction

achieves this by including a zk-SNARK proof πPOUR for the

statement POUR which checks the above invariants (as well as

others needed for non-malleability).

The statement POUR. Concretely, the NP statement POUR
is defined as follows.

• Instances are of the form �x = (rt, snold1 , snold2 , cmnew
1 , cmnew

2 ,
vpub, hSig, h1, h2). Thus, an instance �x specifies a root rt for

a CRH-based Merkle tree (over the list of commitments so

far), the two serial numbers of the consumed coins, two coin

commitments for the two new coins, a public value, and

fields hSig, h1, h2 used for non-malleability.

• Witnesses are of the form �a = (path1, path2, c
old
1 , cold2 ,

addroldsk,1, addr
old
sk,2, c

new
1 , cnew2) where, for each i ∈ {1, 2}:

coldi = (addroldpk,i, v
old
i , ρoldi , roldi , soldi , cmold

i) ,

cnewi = (addrnewpk,i, v
new
i , ρnewi , rnewi , snewi , cmnew

i)

for the same cmnew
i as in �x,

addroldpk,i = (aoldpk,i, pk
old
enc,i) ,

addrnewpk,i = (anewpk,i, pk
new
enc,i) ,

addroldsk,i = (aoldsk,i, sk
old
enc,i) .

Thus, a witness �a specifies authentication paths for the two

new coin commitments, the entirety of coin information

about both the old and new coins, and address secret keys

for the old coins.

Given a POUR instance �x, a witness �a is valid for �x if the

following holds:

1) For each i ∈ {1, 2}:
a) The coin commitment cmold

i of coldi appears on the

ledger, i.e., pathi is a valid authentication path for

leaf cmold
i with respect to root rt, in a CRH-based

Merkle tree.

b) The address secret key aoldsk,i matches the address public

key of coldi , i.e., aoldpk,i = PRFaddr
aold
sk,i

(0).

c) The serial number snoldi of coldi is computed correctly,

i.e., snoldi = PRFsn
aold
sk,i

(ρoldi).

d) The coin coldi is well-formed, i.e., cmold
i =

COMMsoldi
(COMMroldi

(aoldpk,i‖ρoldi)‖voldi).
e) The coin cnewi is well-formed, i.e., cmnew

i =
COMMsnewi

(COMMrnewi
(anewpk,i‖ρnewi)‖vnewi).

f) The address secret key aoldsk,i ties hSig to hi, i.e., hi =

PRFpk

aold
sk,i

(hSig).

2) Balance is preserved: vnew1 +vnew2 +vpub = vold1 +vold2 (with

vold1 , vold2 ≥ 0 and vold1 + vold2 ≤ vmax).

Recall that in this paper zk-SNARKs are relative to the

language of arithmetic circuit satisfiability (see Section II);

thus, we express the checks in POUR via an arithmetic circuit,

denoted CPOUR. In particular, the depth dtree of the Merkle

tree needs to be hardcoded in CPOUR, and we thus make it

a parameter of our construction (see below); the maximum

number of supported coins is then 2dtree .

C. Algorithm constructions

We proceed to describe the construction of the DAP scheme

Π = (Setup,CreateAddress,Mint,Pour,VerifyTransaction,
Receive) whose intuition was given in Section I-B. Figure 2

gives the pseudocode for each one of the six algorithms in Π,

in terms of the building blocks introduced in Section IV-A and

Section IV-B. In the construction, we hardcode two quantities:

Setup
• INPUTS: security parameter λ
• OUTPUTS: public parameters pp
1) Construct CPOUR for POUR at security λ.
2) Compute (pkPOUR, vkPOUR) := KeyGen(1λ, CPOUR).
3) Compute ppenc := Genc(1λ).
4) Compute ppsig := Gsig(1

λ).
5) Set pp := (pkPOUR, vkPOUR, ppenc, ppsig).
6) Output pp.

CreateAddress
• INPUTS: public parameters pp
• OUTPUTS: address key pair (addrpk, addrsk)
1) Compute (pkenc, skenc) := Kenc(ppenc).
2) Randomly sample a PRFaddr seed ask.
3) Compute apk = PRFaddr

ask
(0).

4) Set addrpk := (apk, pkenc).
5) Set addrsk := (ask, skenc).
6) Output (addrpk, addrsk).

Mint
• INPUTS:

– public parameters pp
– coin value v ∈ {0, 1, . . . , vmax}
– destination address public key addrpk

• OUTPUTS: coin c and mint transaction txMint
1) Parse addrpk as (apk, pkenc).
2) Randomly sample a PRFsn seed ρ.
3) Randomly sample two COMM trapdoors r, s.
4) Compute k := COMMr(apk‖ρ).
5) Compute cm := COMMs(v‖k).
6) Set c := (addrpk, v, ρ, r, s, cm).
7) Set txMint := (cm, v, ∗), where ∗ := (k, s).
8) Output c and txMint.

VerifyTransaction
• INPUTS:

– public parameters pp
– a (mint or pour) transaction tx
– the current ledger L

• OUTPUTS: bit b, equals 1 iff the transaction is valid
1) If given a mint transaction tx = txMint:

a) Parse txMint as (cm, v, ∗), and ∗ as (k, s).
b) Set cm′ := COMMs(v‖k).
c) Output b := 1 if cm = cm′, else output b := 0.

2) If given a pour transaction tx = txPour:
a) Parse txPour as (rt, snold1 , snold2 , cmnew

1 , cmnew
2 , vpub, info, ∗), and ∗ as

(pksig, h1, h2, πPOUR,C1,C2, σ).

b) If snold1 or snold2 appears on L (or snold1 = snold2), output b := 0.
c) If the Merkle root rt does not appear on L, output b := 0.
d) Compute hSig := CRH(pksig).

e) Set �x := (rt, snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, hSig, h1, h2).
f) Set m := (�x, πPOUR, info,C1,C2)
g) Compute b := Vsig(pksig,m, σ).
h) Compute b′ := Verify(vkPOUR, �x, πPOUR), and output b ∧ b′.

Pour
• INPUTS:

– public parameters pp
– the Merkle root rt
– old coins cold1 , cold2
– old addresses secret keys addroldsk,1, addr

old
sk,2

– path path1 from commitment cm(cold1) to root rt,
path path2 from commitment cm(cold2) to root rt

– new values vnew1 , vnew2
– new addresses public keys addrnewpk,1, addr

new
pk,2

– public value vpub
– transaction string info

• OUTPUTS: new coins cnew1 , cnew2 and pour transaction txPour
1) For each i ∈ {1, 2}:

a) Parse coldi as (addroldpk,i, v
old
i , ρoldi , roldi , soldi , cmold

i).

b) Parse addroldsk,i as (aoldsk,i, sk
old
enc,i).

c) Compute snoldi := PRFsn
aold
sk,i

(ρoldi).

d) Parse addrnewpk,i as (anewpk,i, pk
new
enc,i).

e) Randomly sample a PRFsn seed ρnewi .
f) Randomly sample two COMM trapdoors rnewi , snewi .
g) Compute knewi := COMMrnewi

(anewpk,i‖ρnewi).
h) Compute cmnew

i := COMMsnewi
(vnewi ‖knewi).

i) Set cnewi := (addrnewpk,i, v
new
i , ρnewi , rnewi , snewi , cmnew

i).
j) Set Ci := Eenc(pknewenc,i, (v

new
i , ρnewi , rnewi , snewi)).

2) Generate (pksig, sksig) := Ksig(ppsig).
3) Compute hSig := CRH(pksig).

4) Compute h1 := PRFpk

aold
sk,1

(hSig) and h2 := PRFpk

aold
sk,2

(hSig).

5) Set �x := (rt, snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, hSig, h1, h2).
6) Set �a := (path1, path2, c

old
1 , cold2 , addroldsk,1, addr

old
sk,2, c

new
1 , cnew2).

7) Compute πPOUR := Prove(pkPOUR, �x,�a).
8) Set m := (�x, πPOUR, info,C1,C2).
9) Compute σ := Ssig(sksig,m).

10) Set txPour := (rt, snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, info, ∗), where
∗ := (pksig, h1, h2, πPOUR,C1,C2, σ).

11) Output cnew1 , cnew2 and txPour.

Receive
• INPUTS:

– public parameters pp
– recipient address key pair (addrpk, addrsk)
– the current ledger L

• OUTPUTS: set of received coins
1) Parse addrpk as (apk, pkenc).
2) Parse addrsk as (ask, skenc).
3) For each Pour transaction txPour on the ledger:

a) Parse txPour as (rt, snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, info, ∗),
and ∗ as (pksig, h1, h2, πPOUR,C1,C2, σ).

b) For each i ∈ {1, 2}:

i) Compute (vi, ρi, ri, si) := Denc(skenc,Ci).
ii) If Denc’s output is not ⊥, verify that:

• cmnew
i equals COMMsi (vi‖COMMri (apk‖ρi));

• sni := PRFsn
ask

(ρi) does not appear on L.

iii) If both checks succeed, output
ci := (addrpk, vi, ρi, ri, si, cm

new
i).

Fig. 2: Construction of a DAP scheme using zk-SNARKs and other ingredients.

the maximum value of a coin, vmax, and the depth of the

Merkle tree, dtree.

D. Completeness and security

Our main theorem states that the above construction is indeed

a DAP scheme.

Theorem IV.1. The tuple Π = (Setup,CreateAddress,Mint,
Pour,VerifyTransaction,Receive), as defined in Section IV-C,

is a complete (cf. Definition III.1) and secure (cf. Defini-

tion III.2) DAP scheme.

We provide a proof of Theorem IV.1 in the extended version of

this paper [26]. We note that our construction can be modified to

yield statistical (i.e., everlasting) anonymity; see the discussion

in the extension section of the full version of this paper.

Remark (trusted setup). Security of Π relies on a trusted party

running Setup to generate the public parameters (once and for

all). This trust is needed for the transaction non-malleability

and balance properties but not for ledger indistinguishability.

Thus, even if a powerful espionage agency were to corrupt

the setup, anonymity will still be maintained. Moreover, if

one wishes to mitigate the trust requirements of this step, one

can conduct the computation of Setup using secure multiparty

computation techniques; we leave this to future work.

V. ZEROCASH

We describe a concrete instantiation of a DAP scheme; this

instantiation forms the basis of Zerocash. Later, in Section VI,

we discuss how Zerocash can be integrated with existing ledger-

based currencies.

A. Instantiation of building blocks

We instantiate the DAP scheme construction from Section IV

(see Figure 2), aiming at a level of security of 128 bits. Doing

so requires concrete choices, described next.

CRH,PRF,COMM from SHA256. LetH be the SHA256
compression function, which maps a 512-bit input to a 256-

bit output. We mostly rely on H, rather than the “full”

hash, since this suffices for our fixed-size single-block inputs,

and it simplifies the construction of CPOUR. We instantiate

CRH,PRF,COMM via H (under suitable assumptions on H).

First, we instantiate the collision-resistant hash function CRH
as H(z) for z ∈ {0, 1}512; this function compresses “two-to-

one”, so it can be used to construct binary Merkle trees.13

Next, we instantiate the pseudorandom function PRFx(z) as

H(x‖z), with x ∈ {0, 1}256 as the seed, and z ∈ {0, 1}256 as

the input.14 Thus, the derived functions are PRFaddr
x (z) :=

H(x‖00‖z), PRFsn
x (z) := H(x‖01‖z) and PRFpk

x (z) :=
H(x‖10‖z), with x ∈ {0, 1}256 and z ∈ {0, 1}254.

As for the commitment scheme COMM, we only use it in

the following pattern:

k := COMMr(apk‖ρ)
cm := COMMs(v‖k)

Due to our instantiation of PRF, apk is 256 bits. So we can

set ρ also to 256 bits and r to 256 + 128 = 384 bits; then we

can compute k := COMMr(apk‖ρ) as H(r‖[H(apk‖ρ)]128).
Above, [·]128 denotes that we are truncating the 256-bit string

to 128 bits (say, by dropping least-significant bits, as in our

implementation). Heuristically, for any string x ∈ {0, 1}128,

the distribution induced by H(r‖x) is 2−128-close to uniform,

and this forms the basis of the statistically-hiding property. For

computing cm, we set coin values to be 64-bit integers (so that,

in particular, vmax = 264 − 1 in our implementation), and then

compute cm := COMMs(v‖k) as H(k‖0192‖v). Noticeably,

13A single exception: we still compute hSig according to the full hash
SHA256, rather than its compression function, because there is no need for
this computation to be verified by CPOUR.

14This assumption is reminiscent of previous works analyzing the security
of hash-based constructions (e.g., [28]). However in this work we assume
that a portion of the compression function is the seed for the pseudorandom
function, rather than using the chaining variable as in [28].

above we are ignoring the commitment randomness s. The

reason is that we already know that k, being the output of a

statistically-hiding commitment, can serve as randomness for

the next commitment scheme.

Instantiating the NP statement POUR. The above choices

imply a concrete instantiation of the NP statement POUR
(see Section IV-B). Specifically, in our implementation, POUR
checks that the following holds, for each i ∈ {1, 2}:
• pathi is an authentication path for leaf cmold

i with respect

to root rt, in a CRH-based Merkle tree;

• aoldpk,i = H(aoldsk,i‖0256);
• snoldi = H(aoldsk,i‖01‖[ρoldi]254);

• cmold
i = H(H(roldi ‖[H(aoldpk,i‖ρoldi)]128)‖0192‖voldi);

• cmnew
i = H(H(rnewi ‖[H(anewpk,i‖ρnewi)]128)‖0192‖vnewi); and

• hi = H(aoldsk,i‖10‖[hSig]254).

Moreover, POUR checks that vnew1 + vnew2 + vpub = vold1 + vold2 ,

with vold1 , vold2 ≥ 0 and vold1 + vold2 < 264.

Finally, as mentioned, in order for CPOUR to be well-defined,

we need to fix a Merkle tree depth dtree. In our implementation,

we fix dtree = 64, and thus support up to 264 coins.

Instantiating Sig. For the signature scheme Sig, we use

ECDSA to retain consistency and compatibility with the

existing bitcoind source code. However, standard ECDSA is

malleable: both (r, s) and (r,−s) verify as valid signatures. We

use a non-malleable variant, where s is restricted to the “lower

half” of field elements. While we are not aware of a formal

SUF-CMA proof for this variant, its use is consistent with

proposals to resolve Bitcoin transaction malleability [29].15

Instantiating Enc. For the encryption scheme Enc, we use

the key-private Elliptic-Curve Integrated Encryption Scheme

(ECIES) [30, 31]; it is one of the few standardized key-private

encryption schemes with available implementations.

For further details about efficiently realizing these in the

arithmetic circuit for POUR, see the full version of this paper.

VI. INTEGRATION WITH EXISTING LEDGER-BASED

CURRENCIES

Zerocash can be deployed atop any ledger (even one main-

tained by a central bank.) Here, we briefly detail integration

with the Bitcoin protocol. Unless explicitly stated otherwise,

in the following section when referring to Bitcoin, and its unit

of account bitcoin (plural bitcoins), we mean the underlying

protocol and software, not the currency system. (The discussion

holds, with little or no modification, for many forks of Bitcoin,

a.k.a. “altcoins”, such as Litecoin.)

By introducing new transaction types and payment semantics,

Zerocash breaks compatibility with the Bitcoin network. While

Zerocash could be integrated into Bitcoin (the actual currency

and its supporting software) via a “flag day” where a super-

majority of Bitcoin miners simultaneously adopt the new

software, we neither expect nor advise such integration in the

near future and suggest using Zerocash in a separate altcoin.

15In practice, one might replace this ECDSA variant with an EC-Schnorr
signature satisfying SUF-CMA security with proper encoding of EC group
elements; the performance would be similar.

Integrating Zerocash into Bitcoin consists of adding a new

transaction type, Zerocash transactions, and modifying the

protocol and software to invoke Zerocash’s DAP interface to

create and verify these transactions. Two approaches to doing

so are described next, followed by a discussion of anonymizing

the network layer.

A. Integration by replacing the base currency

One approach is to alter the underlying system so that

all monetary transactions are done using Zerocash, i.e., by

invoking the DAP interface and writing/reading the associated

transactions in the distributed ledger.

As seen in Section III, this suffices to offer the core

functionality of payments, minting, merging, splitting, etc.,

while assuring users that all transactions using this currency

are anonymous. However, this has several drawbacks: all

transactions incur the cost of generating a zk-SNARK proof;

the scripting feature of Bitcoin is lost; and Bitcoin’s ability to

spend unconfirmed transactions is lost.

B. Integration by hybrid currency

A different approach is to extend Bitcoin with a parallel,

anonymized currency of “zerocoins,” existing alongside bit-

coins, using the same ledger, and with the ability to convert

freely between the two. The behavior and functionality of

regular bitcoins is unaltered; in particular, they may support

functionality such as scripting.

In this approach, the Bitcoin ledger consists of Bitcoin-style

transactions, containing inputs and outputs [20]. Each input is

either a pointer to an output of a previous transaction (as in plain

Bitcoin), or a Zerocash pour transaction (which contributes its

public value, vpub, of bitcoins to this transaction). Outputs

are either an amount and destination public address/script

(as in plain Bitcoin), or a Zerocash mint transaction (which

consumes the input bitcoins to produce zerocoins). The usual

invariant over bitcoins is maintained and checked in plain

view: the sum of bitcoin inputs (including pours’ vpub) must

be at least the sum of bitcoin outputs (including mints’ v),

and any difference is offered as a transaction fee. However,

the accounting for zerocoins consumed and produced is done

separately and implicitly by the DAP scheme.

C. Additional anonymity considerations

Zerocash only anonymizes the transaction ledger. Network

traffic used to announce transactions, retrieve blocks, and

contact merchants will still leak identifying information (e.g.,

IP addresses). Thus users need some anonymity network to

safely use Zerocash. The most obvious way to do this is via

Tor [32]. Given that Zerocash transactions are not low latency

themselves, Mixnets (e.g., Mixminion [33]) are also a viable

way to add anonymity (and one that is not as vulnerable to

traffic analysis as Tor). Using mixnets that provide email-like

functionality has the added benefit of providing an out-of-band

notification mechanism as a replacement to Receive.

Additionally, although in theory all users have a single

view of the block chain, a powerful attacker could potentially

fabricate an additional block solely for a targeted user. Spending

any coins with respect to the updated Merkle tree in this

“poison-pill” block will uniquely identify the targeted user. To

mitigate such attacks, users should check with trusted peers

their view of the block chain and, for sensitive transactions,

only spend coins relative to blocks further back in the ledger

(since creating the illusion for multiple blocks is far harder).

VII. EXPERIMENTS

To measure the performance of Zerocash, we ran several

experiments. First, we benchmarked the performance of the

zk-SNARK for the NP statement POUR (Section VII-A) and

of the six DAP scheme algorithms (Section VII-B). Second,

we studied the impact of a higher block verification time via a

simulation of a Bitcoin network (Section VII-C).

A. Performance of zk-SNARKs for pouring coins

Our zk-SNARK for the NP statement POUR is obtained by

constructing an arithmetic circuit CPOUR for verifying POUR,

and then invoking the generic implementation of zk-SNARK

for arithmetic circuit satisfiability of [16] (see Section II-C).

The arithmetic circuit CPOUR is built from scratch and hand-

optimized to exploit nondeterministic verification and the large

field characteristic.

Figure 3 reports performance characteristics of the resulting

zk-SNARK for POUR. This includes three settings: single-

thread performance on a laptop machine; and single-thread

and multi-thread performance on a desktop machine. (The

time measurements are the average of 10 runs, with standard

deviation under 2.5%.)

B. Performance of Zerocash algorithms

In Figure 4 we report performance characteristics for each

of the six DAP scheme algorithms in our implementation. Note

that these numbers do not include the costs of maintaining the

Merkle tree because doing so is not the responsibility of these

algorithms. Moreover, for VerifyTransaction, we separately

report the cost of verifying mint and pour transactions and, in

the latter case, we exclude the cost of scanning L (as this cost

depends on L). Finally, for the case of Receive, we report the

cost to process a given pour transaction in L.

C. Large-scale network simulation

Because Bitcoin mining typically takes place on dedicated

GPUs or ASICs, the CPU resources to execute the DAP scheme

algorithms are often of minimal consequence to network

performance. There is one potential exception to this rule: the

VerifyTransaction algorithm must be run by all of the network

nodes in the course of routine transaction validation. The time

it takes to perform this verification can have significant impact

on network performance.

In the Zerocash implementation (as in Bitcoin), every Zero-

cash transaction is verified at each hop as it is forwarded though

the network and, potentially, again when blocks containing the

transaction are verified. Verifying a block consists of checking

the proof of work and validating the contained transactions.

Intel Intel
Core i7-2620M Core i7-4770

@ 2.70GHz @ 3.40GHz
12GB of RAM 16GB of RAM

1 thread 1 thread 8 threads

KeyGen Time 7min 48 s 5min 17 s 4min 11 s
Proving key 896MiB
Verification key 749B

Prove Time 2min 55 s 2min 2 s 1min 3 s
Proof 288B

Verify Time 8.5ms 5.4ms

Fig. 3: Performance of our zk-SNARK for the NP statement POUR.
(N = 10, σ ≤ 2.5%)

Intel Core i7-4770 @ 3.40GHz with 16GB of RAM (1 thread)
Setup Time 5min 17 s

pp 896MiB

CreateAddress Time 326.0ms
addrpk 343B
addrsk 319B

Mint Time 23 μs
Coin c 463B
txMint 72B

Pour Time 2min 2.01 s

txPour 855B16

VerifyTransaction mint 8.3 μs
pour (excludes L scan) 5.7ms

Receive Time (per pour tx) 1.6ms

Fig. 4: Performance of Zerocash algorithms.
(N = 10, σ ≤ 2.5%17)Thus Zerocash transactions may take longer to spread though

the network and blocks containing Zerocash transactions may

take longer to verify. While we are concerned with the first

issue, the potential impact of the second issue is cause for

greater concern. This is because Zerocash transactions cannot

be spent until they make it onto the ledger.

Because blocks are also verified at each hop before they are

forwarded through the network, delays in block verification

slow down the propagation of new blocks through the network.

This causes nodes to waste CPU-cycles mining on out-of-date

blocks, reducing the computational power of the network and

making it easier to mount a “51% attack” (dishonest majority

of miners) on the distributed ledger.

It is a priori unclear whether this potential issue is a

real concern. Bitcoin caches transaction verifications, so a

transaction that was already verified when it propagated through

the network need not be verified again when it is seen in a

block. The unknown is what percentage of transactions in a

block are actually in any given node’s cache. We thus conduct

a simulation of the Bitcoin network to investigate both the

time it takes Zerocash transactions to make it onto the ledger

and establish the effects of Zerocash transactions on block

verification and propagation. We find that Zerocash transactions

can be spent reasonably quickly and that the effects of increased

block validation time are minimal.

Simulation design. Because Zerocash requires breaking

changes to the Bitcoin protocol, we cannot test our protocol in

the live Bitcoin network or even in the dedicated testnet. We

must run our own private testnet. For efficiency and cost reasons,

we would like to run as many Bitcoin nodes as possible on the

least amount of hardware. This raises two issues. First, reducing

the proof of work to practical levels while still preserving a

realistic rate of new blocks is difficult (especially on virtualized

hardware with variable performance). Second, the overhead of

zk-SNARK verification prevents us from running many Bitcoin

16346B of this are due to the ciphertexts C1,C2. Future implementations
may significantly reduce this overhead or discard these (cf. Section VI-C).

17We note that σ for both Mint and VerifyTransaction (mint) is higher
than 2.5% due to the variability at such short timescales. Respectively, it is
3.3 μs and 1.9 μs.

nodes on one virtualized server.

The frequency of new blocks can be modeled as a Poisson

process with a mean of Λblock seconds. To generate blocks

stochastically, we modify bitcoind to fix its block difficulty

at a trivial level and run a Poisson process, on the simulation

control server, which trivially mines a block on a randomly

selected node. This preserves the distribution of blocks, without

the computational overhead of a real proof of work. Another

Poisson process triggering mechanism, with a different mean

Λtx, introduces new transactions at random network nodes.

To differentiate which transactions represent normal Bitcoin

expenditures vs. which contain Zerocash pour transactions,

simulated Zerocash transactions pay a unique amount of

bitcoins (we set this value arbitrarily at 7 BTC). If a trans-

action’s output matches this preset value, and it is not in

verification cache, then our modified Bitcoin client inserts

a 10ms delay simulating the runtime of VerifyTransaction.18

Otherwise transactions are processed as specified by the Bitcoin

protocol. We vary the amount of simulated Zerocash traffic by

varying the number of transactions with this particular output

amount. This minimizes code changes and estimates only the

generic impact of verification delays and not of any specific

implementation choice.

Methodology. Recent research [17] suggests that the Bitcoin

network contains 16,000 distinct nodes though most are likely

no longer participating: approximately 3,500 are reachable

at any given time. Each node has an average of 32 open

connections to randomly selected peers. As of November 2013,

the peak observed transaction rate for Bitcoin is slightly under

one transaction per second [34].

In our simulation, we use a 1000-node network in which

each node has an average of 32 peers, transactions are generated

with a mean of Λtx = 1 s, a duration of 1 hour, and a variable

percentage ε of Zerocash traffic. To allow for faster experiments,

instead of generating a block every 10 minutes as in Bitcoin,

we create blocks at an average of every Λblock = 150 s (as in

Litecoin, a popular altcoin).

18Subsequent optimizations lowered the cost of VerifyTransaction below
this, after our experiments.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

0% 20% 40% 60% 80% 100%

tim
e

in
 s

ec
on

ds

�

Zerocash

(a) Transaction latency

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0% 20% 40% 60% 80% 100%

tim
e

in
 s

ec
on

ds

�

last node
every node

(b) Block propagation time

 0

 10

 20

 30

 40

 50

 60

 70

 80

0% 20% 40% 60% 80% 100%

tim
e

in
 m

ill
is

ec
on

ds

�

Zerocash

(c) Block verification time

Fig. 5: The average values of the three metrics we study, as a function of ε, the percentage of transactions that are Zerocash transactions. Note
that, in (a), latency is undefined when ε = 0 and hence omitted.

We run our simulation for different traffic mixes, where

ε indicates the percentage of Zerocash transactions and ε ∈
{0%, 25%, 50%, 75%, 100%}. Each simulation is run on 200

Amazon EC2 general-purpose m1.medium instances, in one

region on a 10.10./16 private network. On each instance,

we deploy 5 instances of bitcoind.

Results. Transactions are triggered by a blocking function call

on the simulation control node that must connect to a random

node and wait for it to complete sending a transaction. Because

the Poisson process modeling transactions generates delays

between such calls and not between the exact points when the

node actuals sends the transactions, the actual transaction rate

is skewed. In our experiments the real transaction rate shifts

away from our target of one per second to an average of one

every 1.4 seconds.

In Figure 5 we plot three metrics for ε ∈ {0%, 25%, 50%,
75%, 100%}. Each is the average defined over the data from

the entire run of the simulation for a given ε (i.e., they include

multiple transactions and blocks).19 Transaction latency is the

interval between a transaction’s creation and its inclusion in

a block. Block propagation time comes in two flavors: 1) the

average time for a new block to reach a node computed over

the times for all nodes, and 2) the same average computed

over only the last node to see the block.

Block verification time is the average time, over all nodes,

required to verify a block. If verification caching was not

effective, we would expect to see a marked increase in both

block verification time and propagation time. Since blocks

occur on average every 150 s, and we expect approximately

one transaction each second, we should see 150 × 10ms =
1500ms of delay if all transactions were non-cached Zerocash

transactions. Instead, we see worst case 80ms and conclude

caching is effective. This results in a negligible effect on block

propagation (likely because network operations dominate).

The time needed for a transaction to be confirmed, and hence

19Because our simulated Bitcoin nodes ran on shared EC2 instances, they
were subject to variable external load, limiting the benchmark precision. Still, it
clearly demonstrates that the mild additional delay does not cause catastrophic
network effects.

spendable, is roughly 190 s. For slower block generation rates

(e.g., Bitcoin’s block every 10 minutes) this should mean users

must wait only one block before spending received transactions.

VIII. OPTIMIZATIONS AND EXTENSIONS

See the extended version of this paper [26] for extensions

on everlasting anonymity, batched Merkle tree updates, faster

block propagation, and scaling to 264 serial numbers.

IX. CONCURRENT WORK

Danezis et al. [19] suggest using zk-SNARKs to reduce

proof size and verification time in Zerocoin. Our work differs

from [19] in both supported functionality and scalability.

First, [19]’s protocol, like Zerocoin, only supports fixed-value

coins, and is best viewed as a decentralized mix. Instead, we

define, construct, and implement a full-fledged decentralized

electronic currency, which provides anonymous payments of

any amount.

Second, in [19], the complexity of the zk-SNARK generator,

prover, and verifier all scale superlinearly in the number of

coins, because their arithmetic circuit computes, explicitly,

a product over all coins. In particular, the number of coins

“mixed together” for anonymity cannot be large. Instead, in our

construction, the respective complexities are polylogarithmic,

polylogarithmic, and constant in the number of coins; our

approach supports a practically-unbounded number of coins.

X. CONCLUSION

Decentralized currencies should ensure a user’s privacy from

his peers when conducting legitimate financial transactions.

Zerocash provides such privacy protection, by hiding user

identities, transaction amounts, and account balances from

public view. This, however, may be criticized for hampering

accountability, regulation, and oversight. Yet, Zerocash need

not be limited to enforcing the basic monetary invariants of

a currency system. The underlying zk-SNARK cryptographic

proof machinery is flexible enough to support a wide range of

policies. It can, for example, let a user prove that he paid his due

taxes on all transactions without revealing those transactions,

their amounts, or even the amount of taxes paid. As long

as the policy can be specified by efficient nondeterministic

computation using NP statements, it can (in principle) be

enforced using zk-SNARKs, and added to Zerocash. This

can enable privacy-preserving verification and enforcement

of a wide range of compliance and regulatory policies that

would otherwise be invasive to check directly or might be

bypassed by corrupt authorities. This raises research, policy,

and engineering questions over what policies are desirable and

practically realizable.

Another research question is what new functionality can

be realized by augmenting the capabilities already present in

Bitcoin’s scripting language with zk-SNARKs that allow fast

verification of expressive statements.

ACKNOWLEDGMENTS

We thank Amazon for their assistance and kind donation of

EC2 resources, and Gregory Maxwell for his advice regarding

the Bitcoin codebase. We thank Iddo Ben-Tov and the SCIPR

Lab members — Daniel Genkin, Lior Greenblat, Shaul Kfir,

Gil Timnat and Michael Riabzev — for inspiring discussions.

This work was supported by: Amazon.com through an AWS

in Education research grant; the Broadcom Foundation and

Tel Aviv University Authentication Initiative; the Center for

Science of Information (CSoI), an NSF Science and Technology

Center, under grant agreement CCF-0939370; the Check

Point Institute for Information Security; the U.S. Defense

Advanced Research Projects Agency (DARPA) and the Air

Force Research Laboratory (AFRL) under contract FA8750-

11-2-0211; the European Community’s Seventh Framework

Programme (FP7/2007-2013) under grant agreement number

240258; the Israeli Centers of Research Excellence I-CORE

program (center 4/11); the Israeli Ministry of Science and

Technology; the Office of Naval Research under contract

N00014-11-1-0470; the Simons Foundation, with a Simons

Award for Graduate Students in Theoretical Computer Science;

and the Skolkovo Foundation under grant agreement 6926059.

The views expressed are those of the authors and do not reflect

the official policy or position of the Department of Defense or

the U.S. Government.

REFERENCES

[1] D. Chaum, “Blind signatures for untraceable payments,” in CRYPTO
’82.

[2] J. Camenisch, S. Hohenberger, and A. Lysyanskaya, “Compact e-cash,”
in EUROCRYPT ’05.

[3] T. Sander and A. Ta-Shma, “Auditable, anonymous electronic cash,” in
CRYPTO ’99.

[4] F. Reid and H. Martin, “An analysis of anonymity in the Bitcoin system,”
in SocialCom/PASSAT ’11.

[5] S. Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to better - how to
make Bitcoin a better currency,” in FC ’12.

[6] D. Ron and A. Shamir, “Quantitative analysis of the full Bitcoin
transaction graph,” ePrint 2012/584, 2012.

[7] G. Maxwell, “CoinJoin: Bitcoin privacy for the real world,” August
2013, bitcoin Forum. [Online]. Available: https://bitcointalk.org/index.
php?topic=279249.0

[8] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
distributed e-cash from bitcoin,” in SP ’13.

[9] J. Groth, “Short pairing-based non-interactive zero-knowledge arguments,”
in ASIACRYPT ’10.

[10] H. Lipmaa, “Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments,” in TCC ’12.

[11] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth, “Succinct
non-interactive arguments via linear interactive proofs,” in TCC ’13.

[12] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct NIZKs without PCPs,” in EUROCRYPT ’13.

[13] B. Parno, C. Gentry, J. Howell, and M. Raykova, “Pinocchio: nearly
practical verifiable computation,” in Oakland ’13.

[14] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, “SNARKs
for C: verifying program executions succinctly and in zero knowledge,”
in CRYPTO ’13.

[15] H. Lipmaa, “Succinct non-interactive zero knowledge arguments from
span programs and linear error-correcting codes,” in ASIACRYPT ’13.

[16] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive arguments for a von Neumann architecture,” ePrint 2013/879.

[17] C. Decker and R. Wattenhofer, “Information propagation in the Bitcoin
network,” in P2P ’13.

[18] E. Ben-Sasson, “Universal and affordable computational integrity,” May
2013, bitcoin 2013: The Future of Payments. [Online]. Available:
http://www.youtube.com/watch?v=YRcPReUpkcU

[19] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno, “Pinocchio
Coin: building Zerocoin from a succinct pairing-based proof system,”
in PETShop ’13. [Online]. Available: http://www0.cs.ucl.ac.uk/staff/G.
Danezis/papers/DanezisFournetKohlweissParno13.pdf

[20] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,” 2009.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[21] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval, “Key-privacy
in public-key encryption,” in ASIACRYPT ’01.

[22] D. Boneh and X. Boyen, “Secure identity based encryption without
random oracles,” in CRYPTO ’04.

[23] R. Gennaro, “Multi-trapdoor commitments and their applications to
proofs of knowledge secure under concurrent man-in-the-middle attacks,”
in CRYPTO ’04.

[24] C. Gentry and D. Wichs, “Separating succinct non-interactive arguments
from all falsifiable assumptions,” in STOC ’11.

[25] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in ITCS ’12.

[26] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from Bitcoin
(extended version),” Cryptology ePrint Archive, 2014.

[27] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman
& Hall/CRC, 2007.

[28] M. Bellare, “New proofs for NMAC and HMAC: security without
collision-resistance,” in CRYPTO ’06.

[29] P. Wuille, “Proposed BIP for dealing with malleability,” Available at
https://gist.github.com/sipa/8907691, 2014.

[30] V. Shoup, “A proposal for an ISO standard for public key encryption
(version 2.1),” IACR E-Print Archive, 2001.

[31] Certicom Research, “SEC 1: Elliptic curve cryptography,” 2000. [Online].
Available: http://www.secg.org/collateral/sec1 final.pdf

[32] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the second-
generation onion router,” in Security ’04.

[33] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: design of
a type III anonymous remailer protocol,” in SP ’03.

[34] T. B. Lee, “Bitcoin needs to scale by a factor of 1000 to compete
with Visa. here’s how to do it.” The Washington Post (http://www.
washingtonpost.com), November 2013.

