Poster: “Quilt: A system for distributed queries of
security-relevant data”

Dr. Timothy Shimeall and George M. Jones and Derrick H. Karimi
CERT/Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213-2612
Contact: http://www.sei.cmu.edu/about/people/

Pattern

&
So v
SO

Queries

Results Archive

fer

Fig. 1. Quilt Overview

I. KEY CONTRIBUTION

Quilt defines a framework for for automated query, ex-
ploration, and analysis of network activity across large scale,
real-world diverse data sources in a distributed setting, incor-
porating the context gained from each data source in the query
for the other data sources. It incorporates time as a primary
component of the query language, and also supports abductive
matching to facilitate identification of patterns where some
data may be missing data .

The framework also allows patterns of network behavior
to be flexibly defined, which should permit sharing of such
patterns between analytical teams, without exposing the un-
derlying data.

II. PROBLEM BEING ADDRESSED

Detection of current security threats using existing data
sources and methods is difficult. Detection often involves:

e detection of complex, multi-step behaviors across
time;

e multiple data sets (IDS alerts, DNS, pcap, flow, etc);
e data distributed across a variety of systems;

e data distributed across administrative domains;

e differing access methods;

e large data that is slow to query;

e large data that is uneconomic to pull back to a central
repository;

e missing data due to incomplete collection or intruder
actions;

e detection of sequences of events;
e recognition of time/overlap of events;

e detection of patterns involving multiple services, pro-
tocols, etc.;

e manual integration across multiple data sources which
can be error prone, labor intensive;

e reliance on signature-based alerts;

e limited or primitive capability to bridge multiple data
sources to perform coordinated detection.

In addition, signature-based solutions often have the fol-
lowing problems:

e privacy concerns;
e failure to detect innovative attacks;

e failure to detect targeted attacks.

III. WHY Is THIS PROBLEM INTERESTING OR
IMPORTANT?

e The threats are real and often exhibit temporal or
sequential behaviors.

e Operators in this field lack solutions to the problems
listed above.

e Selected researchers have access to large quantities of
diverse data.

e There appears to be no widely available system that:

o Permits efficient, effective ways to express
queries that build context across data sources;
o Works at scale on diverse sources of real data;

IV. APPROACH
A. Design of a query language

The following is a sketch of the Quilt query language
grammar. It is conceptually related to STIX and CybOX [1].
The key additions to that structure are the temporal operators
at the top of the grammar, and the interpretation of fields as
attributes of sources rather than to portions of data structures.

Behavior Pattern ;
User Time / Location Pammclcrs;

ya
N Database of Matches

Query

Master

Flow DNS DS

Source Source Source

Manager Manager Manager

AN

Network Host

Native
Flow | Flow

ay

Records

Network Passive
Flow DNS DS DS

Database APL

Suite Archive

Fig. 2. Quilt Architecture

Pattern ::= UNTIL (pattern,pattern) |
CONCURRENT (pattern, pattern, ...)
FOLLOWS (dt, pattern, pattern)
expr
Expr ::= AND (expr, expr, ...) |
OR (expr, expr, ...) |
NOT (expr) | condition
Condition ::= Term > Term | Term == Term |
Term < Term | Term >= Term |
Term != Term | Term <= Term
Term
Term ::= Term Term | Term = Term |
Term / Term | Factor
Factor ::= Factor + Factor |
Factor - Factor | Value
Value ::= (pattern) | literal |
source.field
literal ::= string | numeric
source ::= identifier
field ::= identifier identifier [term]

B. Implement a prototype

We are developing a distributed system for implementing
temporal, sequential and abductive queries across diverse data
sets. The initial system will operate on data from SiLK
(NetFlow) [2], Snort (IDS Alerts) [3] and extracted DNS data
[4]. See Figure 2.

C. Expanded Example: Phishing email with DNS cache poi-

soning.

1) Description: Email is sent to all engineering staff at
XYZ.com, fraudulently sourced from CIO, requiring partici-
pation in security survey at DoSurvey.com (with very short
turn-around demanded)

DNS cache poisoning of DoSurvey at XYZ, redirec-
tion to dynamic DNS domain

Survey asks for “free registration” (email address and
user-specified password)

(1]

(3]

[4]

Survey questions on what network detection is present
at XYZ, which servers are used most often

Users are told responses would enable drawing for
cash prize

People often reuse usernames and passwords. The phishers
may be counting on this. One further indicator of compromise
would be subsequent password attacks.

2) Steps:
action condition data needed
email received containing a URL - IDS Alert
(phishing)
while - DNS data
DNS poisoned - Blocklists
for domain
followed by
web hit - Flow data
on Phishing
blocklist
followed by

brute force

- System Logs

3) Query Processing:

a Quilt sourceManager tracks each of several sources:
DNS, Network Flow, Blocklists, email server logs,
IDS alerts.

An IDS alert fires indicating possible phishing. The
alert indicates time and suspect URL.

A user process formulates a quiltQuery specifying the
URL and the time the message was received.

The queryMaster decomposes the quiltQuery into a
series of sourceQueries

The first sourceQuery, sent to the DNS sourceManager
asks “was this DNS name poisoned at the time the
mail was received”

The second sourceQuery, sent to a Netflow sourceM-
anager asks “did we see web traffic to the poisoned
address following receipt of the phishing email”?

If the answer both answers are “yes”, then return
a match to the quiltQuery indicating a successful
phishing attempt.

REFERENCES

S. Barnum, “Standardizing cyber threat intelligence information with
the structured threat information expression (stix),” MITRE Corporation,
July, 2012.

C. Gates, M. Collins, M. Duggan, A. Kompanek, and M. Thomas, “More
netflow tools for performance and security,” in Proceedings of the 18th

USENIX conference on System administration.

USENIX Association,

2004, pp. 121-132.

M. Roesch et al., “Snort-lightweight intrusion detection for networks,” in
Proceedings of the 13th USENIX conference on System administration.
Seattle, Washington, 1999, pp. 229-238.

V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23, pp. 2435-2463, 1999.

