
Poster: Automatic Profiling of Evasive Mixed-Mode
Malware with SEMU

Shabnam Aboughadareh, Christoph Csallner
Computer Science & Eng Dept
University of Texas at Arlington

Arlington, TX 76019, USA
shabnam.aboughadareh@mavs.uta.edu

csallner@uta.edu

Mehdi Azarmi
Computer Science Dept

Purdue University
West Lafayette, IN 47907, USA

mazarmi@purdue.edu

I. INTRODUCTION

Malware and malware analysis are in an arms race. While
analysis tries to understand the latest malware, malware tries
to evade the latest analysis techniques. Modern malicious
codes can evade analysis by manipulating structures that are
important to the analysis, i.e., OS and virtual machine intro-
spection components (VMI). An advanced evasion technique
is orchestrating actions between user-mode and kernel-mode
malware components. We also refer to such malware as mixed-
mode malware. Such malware can evade many kinds of current
dynamic malware analysis techniques, including those based
on TEMU [5], Anubis [2], and Ether [3], such as dAnubis [4]
and Panorama [6].

While many approaches have been proposed in the literature
to analyze malware either at the user-level or at the kernel-
level, mixed-mode malware has not received much research
interest. However, this type of malware is very powerful and
can be as dangerous as other forms of malware.

Specifically, previous dynamic malware analyses suffer
from one or both of the following shortcomings. (1) Many cur-
rent analysis techniques place analysis components in the same
domain in which the malware is executing and thereby expose
the analysis to malware manipulations. These approaches are
referred to as inside-the-box or inside-the-guest. For example,
popular analysis platforms such as TEMU and Anubis run
the malware in a virtual machine. To inspect the state of the
malware and the VM, such malware analyses often place some
virtual machine introspection (VMI) components inside the
VM, which exposes VMI and thereby the entire analysis to
malware manipulation.

(2) Second, many approaches focus on a single domain,
either kernel-mode or user-mode, but fail to fully capture
malware that operates in both modes. For example, Ether
leverages hardware extensions to operates outside-the-box but
focuses only on user-mode analysis.

To address the shortcomings in the existing techniques
we propose a novel dynamic malware analysis system called
SEMU, which operates both outside-the-box and across kernel
and user mode. SEMU leverages a reverse-engineered OS
model to (a) capture the OS state before malware analysis, (b)

Kernel

 User

Mal.exe KTHREAD

Pointer to
syscall table

Syscall
lookup

3. Call A(P)

Mal.exe

Fake syscalls

…

…
Real syscalls

index B

5. OS transfers control to rootkit

Rootkit

Service B

Service A index A

...

Pointer to B

Pointer to A

...

...

Pointer to rootkit

Pointer to rootkit

...

index B

index A

Fig. 1. Malware Mal.exe evades system call tracing and intrusion detection,
by installing a rootkit that redirects service A system calls to service B;
oval = original OS function; white box = original OS data; gray box = OS data
created or manipulated by rootkit; solid arrow = attack; dashed arrow = target
of original pointer; bold dashed arrow = target of manipulated pointer.

track OS and malware activities, and (c) create an accurate
log. SEMU can thus analyze many kinds of malware that
evade existing techniques. In preliminary experiments we
also found that SEMU’s overhead was in between existing
techniques, i.e., Ether and TEMU. While our current SEMU
implementation is for Windows, our approach could also be
implemented for other operating systems such as Linux.

II. MOTIVATING EXAMPLE

Figure 1 shows an example attack that evades state-of-the-
art outside-the-box malware analyses (such as Ether) that have
shortcoming (2). The user-mode malware Mal.exe installs a
kernel-mode component that redirects the subsequent system
calls by Mal.exe, which breaks system call tracing. That is,
Mal.exe can execute service B, which the analysis will log as
a call to some benign service A.

While this example focuses on Ether-like single-mode anal-
yses, it can be extended to also evade mixed-mode inside-the-
guest analyses such as TEMU and Panorama. That is, the
rootkit can detect the presence of inside-the-guest analysis
components such as VMI and thereby evade the analysis.

III. SOLUTION OVERVIEW

SEMU consists of four major components, (1) a reverse-
engineered model of the guest OS, (2) a pre-analysis phase
that captures the guest OS state before malware execution,
(3) the malware monitoring phase, which creates a precise log
of malware activities, and (4) a post-analysis log analysis.

Similar to TEMU, SEMU is implemented as an extension
of a whole system emulator, QEMU. However, while TEMU
places VMI components inside the guest OS, SEMU monitors
the guest OS from outside the guest. SEMU infers the guest
OS state via a carefully reverse-engineered model of the guest
OS, derived from ReactOS1 and Windows PDB symbols2. This
model documents the address and layout of all kernel objects
and functions.

Using this guest OS model, the pre-analysis phase identifies
the location of trusted OS code and data. That is, this phase
captures the clean OS state directly before malware execution.
This state can differ between OS installations and executions
and is therefore captured before each malware run.

During malware execution, SEMU logs key events in both
user-mode and kernel-mode such as system calls, library calls,
and IOCTLs in user-mode. In kernel-mode, SEMU tracks
the execution of kernel functions that load new code (i.e.,
drivers) or create, modify, or delete objects. SEMU uses this
information to update its model of the clean OS state, to
maintain the address ranges of all current trusted OS objects
and functions. This model allows SEMU to flag instruction
executions as belonging to a rootkit. SEMU also logs all
kernel-level malware operations. In the Figure 1 example,
SEMU logs any malware system calls from user-mode in
step 1, operations performed by the rootkit in steps 1 and 2,
the malware’s service A system call in step 3, and the rootkit’s
execution of service B in step 6.

The post-analysis aggregates the collected log, e.g., match-
ing system calls from user-mode with operations invoked by
kernel-mode malware. In the Figure 1 example, this post-
processing matches the A call with the invocation of B, which
reveals the malware’s system call redirections.

IV. PRELIMINARY RESULTS

To evaluate our approach, we ask two research questions.
Is the SEMU execution time competitive when compared with
the most closely related approaches that are publicly available,
i.e., TEMU and Ether (RQ1)? Can SEMU detect evasive
mixed-mode malware that evades TEMU and Ether (RQ2)?

For RQ1, we compared the total SEMU execution time
with TEMU (Table I) and Ether (Table II). SEMU was faster
than TEMU as SEMU uses a newer QEMU version. SEMU
was slower than Ether as Ether uses hardware extensions. But
SEMU also works without these extensions.

Table I shows a coarse-grained VMI task, symbol extraction,
which reports newly loaded images and periodically reports
all currently running modules. We used an Ubuntu 11.04

1http://www.reactos.org/
2http://msdn.microsoft.com/en-us/library/ff550665.aspx

Subject w/o VMI [s] coarse VMI [s] VMI adds [%]
Temu Semu Temu Semu Temu Semu

PsGetsid 1.68 0.56 3.44 1.09 105 95
Pslist -t 3.19 1.03 4.69 1.31 47 27
Psinfo -s 5.76 2.88 9.79 4.78 70 66
Coreinfo 1.70 0.65 3.75 1.07 121 63
LDLL -d ntdll.dll 3.20 2.58 5.01 3.75 57 45

TABLE I
COARSE-GRAINED VMI: SYMBOL EXTRACTION IN TEMU AND SEMU;

LDLL = LISTDLLS.

host OS on a 1.6 GHz i7 machine with 8 GB RAM with
a 512 MB RAM 32 bit Windows XP SP3 guest OS. SEMU
uses QEMU v0.14 vs. v0.9 in TEMU. SEMU had both an
overall lower runtime and a lower relative VMI overhead.

Subject w/o VMI [s] fine VMI [s] VMI slowdown
Ether Semu Ether Semu Ether Semu

Efsinfo 0.63 2.42 20.54 21.39 32 8
Timezone /g 0.05 0.79 4.41 13.03 87 16
Whoami 0.03 0.72 4.49 19.83 149 27
UPX 0.32 9.00 45.58 322.60 141 35
RAR a 0.15 3.07 45.16 302.93 300 98

TABLE II
FINE-GRAINED VMI: INSTRUCTION TRACING IN ETHER AND SEMU.

Table II shows a fine-grained VMI task—logging each
instruction. We used a Debian Lenny domain-0 OS on a
2.33 GHz Xeon machine with 32 GB RAM with a 1 GB RAM
32 bit Windows XP SP2 guest OS. Overall, Ether was faster
due to its use of hardware virtualization. However, instruction-
level tracing slows Ether down, as it requires a debug exception
after each instruction.

For RQ2, we developed and analyzed on TEMU, Ether, and
SEMU several mixed-mode malware samples, e.g., Figure 1.
The samples perform attacks including DKOM, DKSM [1],
and hooking, by manipulating OS objects or data structures
such as KTHREAD, EPROCESS, DRIVER OBJECT, and
SSDT. In this comparison SEMU was the only tool that could
log all the events that are necessary for analyzing these attacks.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grants No. 1017305 and 1117369.

REFERENCES

[1] S. Bahram et al., “DKSM: Subverting virtual machine introspection for
fun and profit,” in Proc. 29th SRDS. IEEE, Oct. 2010, pp. 82–91.

[2] U. Bayer, A. Moser, C. Krügel, and E. Kirda, “Dynamic analysis of
malicious code,” Journal in Computer Virology, vol. 2, no. 1, pp. 67–77,
Aug. 2006.

[3] A. Dinaburg, P. Royal, M. I. Sharif, and W. Lee, “Ether: Malware analysis
via hardware virtualization extensions,” in Proc. 15th CCS. ACM, Oct.
2008, pp. 51–62.

[4] M. Neugschwandtner, C. Platzer, P. Comparetti, and U. Bayer, “dAnubis
- dynamic device driver analysis based on virtual machine introspection,”
in Proc. 7th DIMVA. Springer, Jul. 2010, pp. 41–60.

[5] D. X. Song et al., “BitBlaze: A new approach to computer security via
binary analysis,” in Proc. 4th ICISS. Springer, Dec. 2008, pp. 1–25.

[6] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: Cap-
turing system-wide information flow for malware detection and analysis,”
in Proc. 14th CCS. ACM, Oct. 2007, pp. 116–127.

