
Poster: Save our passwords
Martin Boonk

Department of Computer Science
University of Paderborn

33098 Paderborn, Germany
mboonk@mail.upb.de

Ronald Petrlic
Department of Computer Science

University of Paderborn
33098 Paderborn, Germany

ronald.petrlic@upb.de

Christoph Sorge
Department of Computer Science

University of Paderborn
33098 Paderborn, Germany

christoph.sorge@upb.de

I. INTRODUCTION

Passwords, despite the problems they entail in terms of
security, are widely used for user authentication towards web
services, mail boxes, etc. [1] They are often used improperly:

• users often use short and easy to remember passwords
• the same password is used for different services
• passwords are stored in unsafe locations (on the com-

puter) or are written down on paper
Many services use Transport Layer Security (TLS) [2],

providing confidentiality, integrity, and authenticity, to secure
the communication between the user’s host and the service
provider’s server, thus securing passwords during transmission.

Even if using secure transmissions, passwords are still
unprotected on the user’s host. This host may be compromised,
i.e. controlled by an attacker (due to malware infections or
other reasons). Techniques like certificate-based client authen-
tication as part of the TLS handshake—with the private key
stored on the user’s smartcard—solve the problem, but they
are not popular in practice as they mostly entail changes on
the server side. Few service providers offer such functionality.

A. Contribution

We come up with a solution that protects users’ passwords
from being spied out by an untrusted user’s host during the
password-based authentication to a server. The main advantage
of our solution is that it does not require any modifications
on the server-side. While smartcard producers have presented
cards that support TLS, our approach has been tested on cards
that are available at low cost to end customers.

We assume that the attacker we are dealing with is only
interested in passwords. The attacker has control over the
user’s host, i.e. he can arbitrarily compromise the software.
Moreover, we assume that the attacker can mount a hardware
key logger. Users might face such an attacker in an Internet
Cafe or at other publicly available terminals.

We require the server to support passwords with a sufficient
amount of characters consisting of letters/numbers/special
characters and which cannot be found in a dictionary.

II. APPROACH

Our basic approach is as follows. The user is in possession
of a smartcard (SC) and a smartcard reader (card acceptance

device, CAD) that includes a PIN pad1. In a first step, the
user initializes the SC in a “trusted environment”, e.g. on
his own computer that is (assumed to be) uncompromised.
Intialization means that the user sets the PIN for his SC and
further stores passwords (and settings2) for services that he
will be using in the future on the SC. As a more convenient
alternative, we suggest to develop a distributed system, in
which a subset of users performs the configuration for each
website, and this configuration is automatically adopted by
other users’ smartcards. However, the decisions on other users’
trustworthiness in such a system are not straightforward, so the
initial version depends on manual configuration.

The authentication protocol works as follows. The user first
authenticates with his PIN (entered on his CAD) towards the
SC. Then, the SC initializes a TLS handshake with the service
provider. The server’s certificate is validated (by checking for
equality with the server certificate stored on the SC, or by
validating a certificate chain). If this check succeeds, both
parties negotiate a pre-master secret via RSA key exchange
as defined in the TLS standard [2] and then derive the
master secret. When the server sends the website that requires
the client authentication via password over the TLS-secured
channel, the SC submits the values for the username and
password fields—which are part of the TLS settings stored
on the SC—to the server. The client is now authenticated and
for performance reasons, the TLS session is transferred from
the SC to the host. This transfer is performed by the SC by
initiating a new TLS handshake—using the resumption feature
of the TLS protocol, i.e. using the previous session ID. This
results in new key material—based on hashing the previous
master secret and new random values exchanged during the
current handshake. The new key material is provided to the
host. The host can now communicate with the server over
the TLS-protected channel. On the host, a browser extension
handles the handover of the secure communication session.

III. DISCUSSION

We briefly discuss our concept in terms of security and give
an overview of the overall performance of the implementation.

1Note that SCs including a PIN entry facility exist—in which case a
separate CAD would not be needed.

2Settings include the preferred cipher suite as well as the server’s certificate
or trusted root certificates.



A. Evaluation

Our solution achieves the required properties. The user does
not need to remember his passwords and thus is able to create
good passwords uniquely for each service during initialization
of the SC. The user only needs to remember the SC’s PIN.
Moreover, our solution does not require any changes to be
done on the service providers’s side, which allows for an easy
roll-out of our solution.

In terms of security, we achieve our requirement that an
attacker as depicted above—controlling either the used host
or eavesdropping on the communication channel as man in
the middle (MITM)—cannot access the user’s passwords.
Even though the TLS session is transferred from the SC to
the host, the attacker cannot retrieve the password as new
key material is generated during the TLS session transfer.
The SC’s internal random number generator (RNG) is used
to create random numbers for the pre-master secret—which
yields “good” random numbers with high entropy.

Due to the low throughput of the SC, as covered next, our
solution does not allow transmission of large amounts of data
between the SC and the server. Besides authentication, the
solution could be used for other scenarios as well, though. For
example, some very sensitive (small amounts of) data could be
stored on the SC in a trusted environment, e.g. on a SIM card3

by the mobile phone, and the data can be securely transmitted
in an Internet Cafe rather than via using some mobile carrier
network in foreign countries to avoid roaming costs.

B. Results

Our used Javacard 2.2.2 SC has the following features:
• 200KB ROM
• 80KB EEPROM
• 6KB RAM (3.5KB usable)
• 16Bit processor
• Crypto co-processors for RSA, ECC, DES and AES
• Hardware RNG
The standard Sun/Oracle JavaCard SDK 2.2.2 (2006) and

the OpenJDK 1.7 (SmartcardIO) were used.
Besides implementing the TLS 1.2 handshake with RSA

key exchange and the TLS RSA WITH AES CBC 128 SHA
cipher suite specified in [2], we implemented the pseudo-
random number generation (PRNG) function as well as the
HMAC algorithm. The HMAC algorithm is indeed part of the
JavaCard specification and could be implemented natively on
SCs, however, it is not implemented on our used SC. Due to
the card’s limited performance, we have not implemented cer-
tificate chains validation, but rely on stored server certificates.

The achieved throughput is shown in Fig. 1 and is as
follows. The throughput of data from the SC to the CAD is
6KB/sec. and from CAD to SC is 5.6KB/sec. (Fig. 1(a))—
this is the hardware’s upper bound for the throughput of
our solution. SHA-1, used for integrity validation, achieves
a throughput of 11KB/sec. (Fig. 1(b)) and SHA-256, used

3Note that a SIM card is a smartcard as well and could thus easily be used
in our scenario.

as part of HMAC for the PRNG (Fig. 1(c)), 5.5KB/sec. The
smartcard’s AES implementation provides a surprisingly low
throughput of only 0.9KB/sec. (Fig. 1(d)) The running times
of our implemented TLS PRNG are shown in Fig. 2.

(a) Communi-
cation

(b) SHA (c) HMAC (d) AES

Fig. 1. Throughput in KB/sec.

Fig. 2. Running times in ms.

The TLS handshake with the cipher suite
TLS RSA WITH AES CBC 128 SHA performed between
the SC and the server—up to the first transmission of
application data takes 11 seconds. The computation of the
master secret, keyblock and verify data with the pseudo-
random function takes 2.8 seconds. The following data
transmission achieves a throughput of 0.8KB/sec.

We published part of our implementation—a library that
performs the smartcard-enabled TLS handshake—as open
source project at https://github.com/halemmerich/opentlssc.
Furthermore, we would like to test our solution on more
efficient SCs as we believe that the solution will achieve a
much better throughput on newer SCs.

REFERENCES

[1] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano, “The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in Proceedings of the 2012 IEEE Symposium
on Security and Privacy, ser. SP ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 553–567.

[2] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Proto-
col, Version 1.2, Internet Engineering Task Force (IETF) Request For
Comment (RFC) 5246, Aug. 2008, Proposed Standard.


