
Poster: Fit and Vulnerable: Attacks and Defenses for
a Health Monitoring Device

Mahmudur Rahman (PhD Student), Bogdan Carbunar, Madhusudan Banik (PhD Student)
Florida International University, Miami, FL

Email: {mrahm004, carbunar, mbani002}@cs.fiu.edu

I. INTRODUCTION

The fusion of social networks and wearable sensors is
becoming increasingly popular, with systems like Fitbit [1]
automating the process of reporting and sharing user fitness
data. Fitbit consists of (i) trackers, wireless-enabled, wearable
devices that record their users’ daily step counts, distance
traversed, calories burned and floors climbed as well as sleep
patterns when worn during the night, (ii) an online social
network (called webserver in the following) that automatically
captures, displays and shares fitness data of its users and (iii)
user USB base stations which acts as a bridge between trackers
and the online social network. Trackers communicate to bases
over the ANT [2] protocol. Figure 1 shows a system snapshot.

While popular and useful in its encouragement of healthy
lifestyles, the combination of health sensors and social net-
works makes social sensor networks the source of significant
privacy and security issues. We have reverse engineered the
semantics of tracker memory banks, the command types and
the tracker-to-social network communication protocol, and
have shown that Fitbit is vulnerable to a wide range of attacks.
We have then built FitBite, a suite of tools that exploit these
vulnerabilities. We propose FitLock, a lightweight extension
that uses efficient cryptographic tools to secure the Fitbit
protocol. The project website containing the source code of
FitBite and FitLock is made publicly available at [3].

II. REVERSE ENGINEERING FITBIT

We reverse engineered the Fitbit communication protocol,
including the message communication format among the par-
ticipating devices and the structure and data format of each
memory bank. A tracker has two types of memory banks, (i)
read banks, containing data to be read by the base and (ii)
write banks, containing data that can be written by the base.

Fitbit uses service logs, files that store information con-
cerning communications involving the base. On the Windows
installation of the Fitbit software, daily logs are stored in
cleartext in files. Data retrieved from the tracker to be uploaded
to the social network is encoded in base64 format. We have
exploited Fitbit’s lack of encryption in the messages sent
between the base and the tracker to implement a USB based
filter driver that separately logs the data flowing to and from
the base. The log data we captured reveals that during the
upload session, the webserver reads data from 6 memory
banks, writes on 2 write memory banks and clears data from
5 memory banks by sending requests to the tracker through
the base. The read bank #1 stores the daily user fitness
records while the write bank #0 stores 64 bytes concerning the
device settings as specified on the user’s Fitbit account. The
communication between the webserver and a tracker through a

Fig. 1. Fitbit system components: trackers (one mounted on the base), the
base (arrow indicated), user laptop. The arrow pointing to the tracker shows
the switch button, allowing the user to display various fitness data.

base is embedded in XML blocks, that contain base64 encoded
opcodes – commands for the tracker. All opcodes are 7 bytes
long and vary according to specific type of instructions (e.g.,
read, write, erase).

III. FITBITE: ATTACKING FITBIT

FitBite consists of two modules. The Tracker Module (TM)
reads and writes the tracker data. The Base Module (BM)
retrieves/injects data from/to the tracker and uploads it into
the account of the tracker’s owner on the webserver. FitBite
implements the following attacks:

Tracker Private Data Capture (TPDC). The TM module is
used to discover any tracker device within a radius of 15 ft
and capture the fitness information it stores. This attack can
be launched in public spaces(e.g., parks, sports venues, etc).

Tracker Injection (TI). The TM module is used to modify
any of the fitness data stored by nearby trackers. FitBite reads
the selected data from the specific memory bank and modifies
the target bytes. The TM can simultaneously modify multiple
fitness records (memory banks).

User Account Injection (UAI). The BM module is used to
inject data on the Fitbit social network accounts of the owners
of nearby trackers. It sends to the webserver a fabricated data
reply embedding the desired fitness data, base64 format. The
webserver does not authenticate the request message and does
not check data consistency, thus accepts the data.

Free Badges and Financial Rewards. By successful injection
of large values in their social networking accounts, FitBite
enables attackers to achieve special milestones and acquire
Fitbit provided “merit” badges, without doing the required
work. Fitbit users can link their social networking accounts to
systems that reward users for exercising, e.g., Earndit [4]. We



32 64 128 256 512 1024

Packet size (Bytes)

A
ve

ra
g
e
 E

n
cr

yp
tio

n
 t
im

e
 (

m
s)

 o
n
 X

p
e
ri

a

0
1

2
3

4
5

RC4
Salsa20
AES

(a)

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

Packet size (Bytes)

A
ve

ra
g
e
 D

e
cr

yp
tio

n
 t
im

e
 (

m
s)

 o
n
 L

a
p
to

p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RC4
Salsa20
AES

(b)

Current Mode Encrypted Mode

0

200

400

600

1 2 3 4 1 2 3 4
Phases

A
ve

ra
ge

 e
xe

cu
tio

n 
tim

e 
(m

s)

Tracker.on.Android Webserver.on.Laptop Communication.Overhead

(c)
Fig. 2. FitLock overhead. (a) Encryption time overhead on Xperia. (b) Decryption time overhead on webserver (Dell laptop). (c) Comparison of end-to-end
delay between the current Fitbit solution and our proposed encrypted solution

have shown through experiments that attackers can accumulate
undeserved financial rewards.

Battery Depletion Attack. FitBite allows the attacker to
continuously query trackers in her vicinity, thus drain their
batteries at a faster rate.

Mule Attacks. Attacks may also launch physical, mule attacks,
by attaching trackers to various moving objects (e.g., car
wheel, fan). This enables the attacker to unfairly increase her
fitness parameters.

IV. FITLOCK: PROTECTING FITBIT

The webserver WS is required to maintain a database
(Map) associating a tracker id to tracker related data including
symmetric key, user id and session id. FitLock consists of a
secure tracker binding procedure (BindUserTracker) and an
upload procedure (UploadData).

The BindUserTracker procedure allows a user A to bind
his tracker T to his social network account hosted on WS. A
logs in into his WS account and presses T’s switch button
for s seconds. T reports its identifier idT to WS, through
the user’s base. WS uses the Map structure to retrieve the
symmetric key associated with idT , i.e., skT . It then generates
a 6 digit long random value, N . WS sends to T the request
value idT , EskT (“WS′′, T ime,N) that uses skT , to decrypt
it. It verifies the freshness (the T ime value) and authenticates
WS through its ability to have encrypted this message. If
the verifications succeed, the tracker displays the 6 digit
random nonce N . User A reads and enters this nonce into a
confirmation box in her Fitbit account. If WS finds any pending
(not expired) request matching the value entered by the user,
WS associates IdA to idT and skT in the Map structure.

The UploadData procedure consists of a succession of
request/response steps between WS and T. A request from WS
to T has the format idT , EskT (REQ,Swst, Cws). T’s reply is
of format idT , EskT (RESP, Swst, CT ). Here, REQ ∈ {TRQ-
REQ, READ-TRQ, WRITE, ERASE, CLOSE} and RESP ∈
{TRQ-INFO, TRQ-DATA, CLEAR} are packet headers for
communication steps of the original Fitbit protocol. Swst is the
current session id, Cws and CT are retransmission counters.
Encryption authenticates the participants and the session ids
and counters prevent replay attacks.

Fig. 3. Snapshot of testbed for FitLock, consisting of BeagleBoard and
Xperia devices used as Fitbit trackers.

V. EVALUATION

We implemented FitLock in Android. We have tested
FitLock’s tracker side on a Revision C4 of an OMAP 3530
DCCB72 720 MHz BeagleBoard system [5] and a Sony
Ericsson Xperia X10 mini smartphone (ARM 11 CPU@600
MHz, 128MB RAM). We used a Dell laptop featuring a
2.4GHz Intel Core i3 processor and 4GB of RAM, for the web
server (built on the Apache webserver 2.4). Figure 3 shows the
setup. For a packet size of 1024 bytes, the average encryption
time for Salsa20 [6] stream cipher is only 4.62ms (see Fig-
ure 2(a)), wheres the average decryption overhead is 1.01ms
on the webserver (see Figure 2(b)). We have implemented both
the Fitbit and FitLock (each protocol was divided into four
phases) on our testbed. The end-to-end time of the FitLock
protocol is 1518ms where the total time of Fitbit is 1481ms
(see Figure 2(c)). Thus, FitLock adds an overhead of 37ms,
accounting for 2.4% of Fitbit’s time.

REFERENCES

[1] Fitbit. http://fitbit.com/.

[2] Ant message protocol and usage. http://www.sparkfun.com/datasheets/
Wireless/Nordic/ANT-UserGuide.pdf.

[3] FitBite and FitLock: Attacks and defenses on Fitbit Tracker. http://users.
cis.fiu.edu/∼mrahm004/fitlock.

[4] Earndit: We reward you for exercising. http://earndit.com/.

[5] G. Coley. Beagleboard system reference manual. BeagleBoard.org,
December 2009.

[6] Daniel J. Bernstein. The salsa20 family of stream ciphers. In New Stream
Cipher Designs, pages 84–97. Springer-Verlag Berlin, Heidelberg, 2008.


