
Poster Proposal for IEEE Security and Privacy, May 2013

RedactDOM: Preventing Sensitive Data
Leaking through Embedded Scripts

Longze Chen and Yuchen Zhou and David Evans
University of Virginia

[lc8dp, yz8ra, evans]@virginia.edu

Abstract—Third-party embedded scripts provide a powerful
way to build rich web applications, but raise important security
risks. These untrusted scripts can access everything on the
embedding web pages including sensitive data, which can then be
leaked to malicious third-party servers. We propose RedactDOM,
an egress-based approach that prevents untrusted scripts from
leaking sensitive information without disrupting the scripts’
functionality. For each page, a projection page is created with a
redacted DOM that has the structure and scripts from the original
page but removes all potentially sensitive data. RedactDOM
blocks outgoing requests generated by untrusted scripts on the
real page and replaces them with a safe substitutes from the
redacted page.

I. MOTIVATION

Modern websites favor third-party scripts for the variety
of services they can provide. For example, embedded widgets
can make the page more interactive while powerful JavaScript
libraries can provide web developers more functionality with
less effort. Embedded scripts run as the same principal as the
host scripts: they can access any (sensitive) web content and
exfiltrate it to an external server. Nikiforakis et al.’s recent large
scale study on JavaScript inclusions found that almost 90% of
the Alexa top 10K websites include remote inclusions and the
total number of inclusions increased by 40% each year for the
past three years [1]. Their results show that scripts provided by
low-maintenance websites are risky to include. These remote
sites have security vulnerabilities and each embedded script is
a potential vector for attacking the containing site.

To prevent private information leakage from third-party
scripts, one general solution is to restrict what page content
the third-party scripts may access. For example, AdJail [2]
puts third-party advertising scripts into a shadow iframe with
a different domain, using the browser’s same origin policy to
isolate that frame and setting up a restricted communication
channel between the shadow iframe and host page. However,
AdJail and many similar approaches often rely on developer-
defined policies and precisely identified private information.

Instead, we propose an alternative solution based on egress
control that filters the outgoing traffic from untrusted scripts.
Our approach duplicates responses into two pages, a real page
which is displayed to the user, and a hidden redacted page
which only contains insensitive page content. We compare
outgoing traffic to untrusted servers between real page and
redacted page, discarding message that are only seen from the

real page but not from the redacted page. Our approach is
similar to the idea of multi-execution to enhance application
privacy used by Capizzi et al. [3] to prevent information
leakage in Windows applications and FlowFox [4], a variant
of Firefox that can enforce information flow control in web
applications. However, these works did not address possible
divergence issues in multi-execution process and their eval-
uations were limited to trivial policies that do not provide
protection for any sensitive information in the DOM.

II. DESIGN

We consider a script safe if it does not leak any sensi-
tive information to untrusted servers. Our goal is to prevent
untrusted scripts from leaking private data back to third-
party servers. Our approach focuses on filtering the outgoing
traffic rather than restricting third-party scripts’ access to page
resources. Scripts which have full access to the page can only
initiate safe requests that do not leak any private information.
A clear benefit this offers is that it allows library scripts
such as jQuery to access sensitive information on the page
while preventing them from giving those information away to
untrusted destinations.

RedactDOM may be implemented as a browser extension
or a proxy, as illustrated in Figure 1. Every web page, which
we refer to as the real page, has a corresponding redacted
page. The redacted page is created (1) in a way that preserves

Request/Response
Cache

1

2

4 5

7

Untrusted
3rd-Party Servers

Trusted
Host Servers

Request Monitor (as a proxy)

Original Page

Original DOM

Host
Scripts

3rd-Party
Scripts

Cookies

Redacted Page

Redacted DOM

Host
Scripts

3rd-Party
Scripts

No/invalid cookies

3

6

Redact
response

Fig. 1: RedactDOM Design

all trusted and untrusted scripts and DOM structure from the
real page, but removes all potentially sensitive data including
text content, attributes, and cookies associated with the original
domain. Hence, requests from the redacted page are known to
be safe. The request monitor observes outgoing requests from
both pages. Since our focus is on preventing leaks to untrusted
servers, all requests from the real page to the trusted server are
allowed to proceed normally (2), but in addition their responses
are redacted and then cached in the request monitor (3). As
the redacted page makes the same request, its response will be
directly drawn from the cache (4), thus preserving the number
of requests sent from the browser. Vice versa, when the real
page makes a request to an untrusted server (5), its response is
directly drawn from cache if a matched request is made earlier
(6), or is put on hold until the same request is made by the
redacted page, in which case the request proceeds as normal
(7) and responses are returned to both pages. The requests
will be dropped if no matching request are found after a fixed
period. Hence, all external servers see the same number of
requests as seen from an unmodified client.

III. OPEN QUESTIONS

Our design raises a number of open questions, which
we will explore by conducting a variety of synthetic and
user-driven experiments using our implementation. The main
questions concern whether it is possible to maintain page
functionality with our redacted requests, and whether our
security assumptions hold for most web applications.

A. Preserving Functionality

Our design relies on there being a clear correspondence
between external requests (that do not leak private information)
made by the redacted page and the real page. This could fail
if the behavior of scripts on the redacted page diverge because
of DOM differences in two pages. Since we are not able to
precisely identify private information on the page, the redacted
page is also missing all public information. If scripts’ behavior
on the redacted page depends on that content it will diverge
from the scripts on the real page. It may also diverge because
of nondeterminism in the execution.

Another concern is how to handle user inputs to the real
page in the redacted page. The user inputs may be sensitive
and should not be visible to the redacted page, but may
lead to further divergences between the pages. We propose to
conduct experiments to test if our system yields reasonable
compatibility if user inputs are completely ignored in the
redacted page. If this turns out to be unacceptable, we may
need to replace the redacted page with a new copy that reflects
any changes to the page structure that resulted from user input,
while keeping the content redacted.

B. Security Assumptions

Our design assumes that private information can be easily
redacted from the DOM. This depends on being able to identify
and strip out the private information. We expect that all the
private information is in the form of text content or attributes,
but there is no guarantee that this is the case. For example, a
site could easily embed private information directly in scripts.
We do not consider the case where the server is malicious,

though, since our goal is to prevent private information that
the server already has from leaking to other parties. We plan
to test this assumption by comparing the responses from a set
of test servers on requests issued with different credentials.

We also assume the redacted page and real page can be
sufficiently isolated to prevent scripts running on the redacted
page from learning about user actions or redacted content on
the real page. There could be side channels (such as timing of
events) that would leak such information, and the adversary has
a powerful resource in controlling scripts that run on the real
page. Our design will need to limit the interaction between the
two pages, and carefully reason about how much information
may be leaked by any interactions.

IV. CONCLUSION

RedactDOM is an egress-based approach to prevent un-
trusted scripts from leaking sensitive data. By limiting external
requests to those generated by a redacted page containing no
sensitive information, we can provide high assurance that no
sensitive information is leaking through these requests.

Our work is focused on privacy, but does not place any
limits on what adversarial scripts could do to the real page,
other than the external network traffic. This prevents some
clear and important threats, but does not prevent annoying page
modifications, or more seriously, forged requests to the origin
site (which will have the client’s credentials). We will explore
variations on our redaction policy to include also requests to
the origin site, but this will require a careful balance between
compatibility and security.

REFERENCES

[1] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, “You are what you include: Large-
scale evaluation of remote javascript inclusions,” in ACM Conference on
Computer and Communications Security, 2012.

[2] M. T. Louw, K. T. Ganesh, and V. N. Venkatakrishnan, “Adjail: Practical
enforcement of confidentiality and integrity policies on web advertise-
ments,” in 19th USENIX Security Symposium, 2010.

[3] R. Capizzi, A. Longo, V. N. Venkatakrishnan, and A. P. Sistla, “Prevent-
ing Information Leaks through Shadow Executions,” in Proceedings of
the 24th Annual Computer Security Applications Conference, 2008.

[4] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens, “FlowFox:
A Web Browser with Flexible and Precise Information Flow Control,”
in Proceedings of the 19th ACM conference on Computer and Commu-
nications Security, 2012.

