
Poster: System Anomaly Detection with Program
Analysis and Machine Learning Assistance

Kui Xu, Danfeng (Daphne) Yao, Barbara Ryder
Department of Computer Science

Virginia Tech
Blacksburg, VA, 24060

{xmenxk,danfeng,ryder}@cs.vt.edu

Detecting anomalous program behaviors is an important
approach to protect personal computers and organizational
infrastructures from various exploitations and attacks.

We present a novel anomaly detection methodology that
efficiently provides quantitative measure to predict the real-
time assurance of a system or application. We define assurance
as evidence-based confirmation that the system or software
is behaving as intended and is not tampered by malicious
entities (e.g., malicious software or malicious insider). We
define real-time quantified system assurance (QSA) as the
capability to compute the likelihood of each system event
occurring according to the intended program behaviors.

For the purpose of understanding program anomalies, static
and dynamic analyses are two existing paradigms. In the
literature, static analysis may be referred to as a white-box
technique because the source code or binary is statically
analyzed. On the static end of the related-work spectrum, static
program analysis (such as [1], [9], [10], [11], [14]) provides
insights on the intended control flow, call context, and call
dependences of a program.

Prediction through pure static analysis usually incurs sig-
nificant overhead and may overestimate the possible execution
paths while ignore dynamic functionality. Thus dynamic tech-
niques can be combined to yield a hybrid approach such as
in [10] to refine the model and better predict the dynamic
functionalities such as dynamic linked libraries and indirect
calls. Conceivably, advanced program analysis techniques such
as blended analysis [2], [3], [5] may be used to capture
a more refined and accurate representation of the intended
program behaviors. However, the above solutions generate
binary predictions (i.e., allowed or not allowed), which is
not accurate enough to provide quantitative measurement. For
example, mass occurrences of low probability events could be
a symptom of DoS attack, but will be considered as normal
by these binary predictors.

A few dynamic analysis techniques based on probabilistic
machine learning algorithms can quantify the desirable like-
lihood of occurrence for observed system behaviors. For ex-
ample, the seminal work on anomaly detection by Forrest and
colleagues [7] trained hidden Markov model to classify system
call sequences based on their probabilities. Hidden Markov
model (HMM) can characterizes a programs normal behaviors
with respect to the training traces. In general, dynamic analysis
(aka black- or gray-box) techniques build a model of system

behaviors by monitoring sample executions. The system behav-
iors include system call sequence [6], libc call sequence [12],
and process memory [4], [8], [13]. These approaches do not
require code inspection and thus are referred to as black-box or
gray-box techniques (the latter usually requires more execution
information beyond system-call observables). However, the
overall accuracy of the dynamic models is severely limited
by the availability and completeness of the training data; thus,
the anomaly detection may be too conservative (causing false
alarms).

Nevertheless, a significant advantage of the probabilistic
machine learning based black-box techniques (e.g., [15] is
the ability to quantify anomalous events with probabilistic
reasoning. However, the existing solutions train the machine
learning models (e.g., HMM) from scratch, which is unneces-
sarily naive, since all the useful knowledge that can be obtained
through static analysis is completely ignored. This type of
practice yields biased models due to possibly incomplete
training data, also even the data used for training may contain
anomaly which will add false negatives to the classifier model.
Our proposed approach (QSA) will fill in the gap between the
state-of-the-arts and the vision of real-time quantified system
assurance.

Our hypothesis is that knowledge extracted from static
program analysis can be used to jump start the training of
a hidden Markov model for anomaly detection. Our technical
approach is to enhance a learning-based model with control
flow dependence information extracted from static program
analysis. Specifically, our approach is to initiate and refine
probabilistic dynamic learning model (namely hidden Markov
model) with static dependence information from control flow
graphs and call graphs produced by static program analysis.
The use of probabilistic machine learning technique allows
one to detect anomalies quantitatively. Compared to existing
approaches, our method will have the following two important
technical advantages:

• The probabilistic prediction of the likelihood of sys-
tem event sequence (e.g., with the forward algorithm
of HMM)

• The availability of program analysis information for
initial model construction.

• The complete and accurate coverage of both static and
dynamic program behaviors.



We have conducted extensive experimental evaluation cov-
ering:

• both client-side and server-side applications.

• different lengths of trace segments.

• both system call and library call sequences.
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Fig. 1. Compariosn of average probabilities on both true and false sequences,
between our model and randomized model (tested app: gzip).
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Fig. 2. Comparison of number of models not converged for a 10-fold cross
validation, between our model and randomized model (tested app: gzip).

Figure 1 shows the comparison between our model and
random model, about average probabilities on both true and
false sequences. Figure 2 gives the number of models that have
not converged during a 10-fold cross validation after iterations
of training. Both figures are regarding program gzip.

Through the experiment results, we found that:

• Models initialized with our approach achieve complete
coverage of program behaviors, and give quantitative
prediction after dynamic model training.

• Models initialized with our approach start at good ini-
tial positions and need less time for training procedure
to converge.

• Using longer trace segments for training and monitor-
ing achieves better accuracy, but also costs more time
for model training. Our approach significantly reduces
the amount of time for convergence, thus enables the
utilization of more accurate model.
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