
Poster: Experiments in Hardware Security Tagging

J. Song (Ph.D. student) and S. Zakeri (M.S. student), J. Alves-Foss (faculty),

Center for Secure and Dependable Systems,

University of Idaho

Moscow, ID USA

song3202@vandals.uidaho.edu, zake7991@vandals.uidaho.edu, jimaf@uidaho.edu

Abstract—To enhance the security of computer systems, and

to take some of the burden off of the software developers,

researchers are looking at hardware-based security tagging

schemes to enhance system security. The research highlighted in

this poster addresses the evaluation, design and implementation

of tagging schemes for access control and information flow;

specifically the implementation at the assembly language level for

a zero-kernel operating system. We highlight key lessons learned

that we have not seen addressed in related literature.

Keywords—hardware tagging, RTEMS, SPARC, zero-kernel

operating system (ZKOS)

I. INTRODUCTION

Researchers and hardware developers have been exploring
techniques to enhance the security of our computer systems.
They are painfully aware that even the best software
developers make mistakes, and with an internet user base of
billions of inter-connected people, there are just too many
opportunities for our systems to come under attack. One of the
technologies being explored involves the use of a data tagging
scheme. These schemes attach security labels to memory
regions and processor registers to carry information about
tagged data during program execution. They can be used to
ensure the semantics of computations are correctly
implemented; to isolate code and data, users and system; or be
used to enforce security policies at the hardware level. The
implementation of tagging in hardware provides developers
with enhanced security mechanisms with improved
performance, as compared to traditional microprocessors.

We have been investigating these tagging schemes through
a multi-part research project. The first part involves the
modification of a hardware simulator, based on the Open
SPARC microprocessors and the SIS simulator, to provide a
template for the insertion of different tagging engines. The
second part involves the development of our own tagging
scheme. Our initial implementation was based on 'C'
programming language features and then it was mapped down
to the SPARC assembly language level. The third part involves
integrating the tagging scheme into a zero-kernel operating
system (ZKOS). During this mapping, implementations and
simulations we learned a few things that have not been
discussed in the prior literature.

This poster provides an overview of the parts of this
project, including the simulator, new tagging scheme and
ZKOS.

II. CONCEPTS

Modern hardware tagging approaches have followed one of
three main lines of research. The first is dynamic information
flow tracking (DIFT) which adds taint bit(s) to user provided
data, propagates those taint marks and throw security
exceptions when the data is used in unacceptable ways (e.g.,
used as memory addresses to modify flow control – i.e., stack-
based buffer overflows). The second involves semantic
protection of program data by adding additional control bits to
the data and then generating errors when data usage violates
the expected semantics indicated by the control bits. For
example these approaches have been used for uninitialized
memory checks, or fat-pointers for bounds checking. The third
approach uses tags to augment the separation provided by
hardware protection rings, providing a much finer granularity
of protection and a richer set of security domain tags.

In the literature we have also found that some of the
tagging schemes are being implemented by hardware
developers and the testing and simulation of those techniques is
based on select, hand generated assembly code, possibly within
circuit simulators. This places a great restriction on the
completeness of the testing or the evaluation of the impact of
the scheme in a complex software system. Other proposed
schemes place an additional burden on the software developers
– the compiler writer, the operating system developer or the
application developer. The later is the developer we trust the
least, since they are the ones developing vulnerable code in the
first place and are not likely to understand the added
complexity of new tagging schemes.

III. SIMULATOR

To provide a functional evaluation of proposed tagging
schemes, and to allow for comparison, we modified the
SPARC Instruction Simulator (SIS) that is included with GDB.
We added hooks into the simulator, and developed a template
for adding specific tagging scheme functionality – which
includes programming of the tag engine, tag propagation and
tag checking for the different instructions/instruction classes
affected by the proposed schemes.

We have implemented several tagging schemes that we
found in the literature, as well as a new scheme we developed.
The schemes we have tested included those that implement
DIFT, uninitialized memory checks as well as memory bounds
checking. During our implementation, we noticed some

mailto:song3202@vandals.uidaho.edu
mailto:zake7991@vandals.uidaho.edu
mailto:jimaf@uidaho.edu

disconnects between what is reported in the literature, and what
we were able to accomplish with the simulator. Some schemes
require cooperation with the operating system (to taint the user
input data) or compiler (to populate the fat pointers) in ways
that are not obvious reading the published papers. We found
one approach that claimed hardware tagging could be used to
prevent SQL-injection attacks; only to determine that the
solution was really a software-based solution (meant to replace
a vulnerable software-based solution written by the same group
of developers).

IV. A NEW TAGGING SCHEME

As our research progressed, we developed a new tagging
scheme to support fine-grain access control and to support
implementation of a ZKOS. Our tags introduce the concepts of
owners and code-space for data and code in the system. The
owner portion of the tag reflects the end user of the data (or at
least the subject of the data). For example, the data in the
process control block for process 35 in the system is tagged
with a process 35 owner). The code-space portion of the tag
indicates the module that is authorized to manipulate the data.
For example, the scheduler module is authorized to manipulate
schedule related data in the process control block. We also
provide portions of the tags to differentiate code from data,
function entry points from regular executable code, and
read/write access to memory. This can also be used to provide
access control to specific functions, allowing for the creation of
internal functions and isolating OS kernel modulus from the
authorized user interface OS modules. We can include DIFT-
style protection in the tags, and are in the process of examining
the utility of that and other extensions.

Our first tagging model was specified using a ‘C’
programming language view of the world. When we went to
implement the tags in the simulator we found some disconnects
between the ‘C’ model of the world and the assembly
language/microprocessor architecture view, which required
some changes in the tagging scheme. We wrote many small
test cases to evaluate many features of our schemes. For each
case we would set appropriate tags, turn on the tag propagation
and checking engine, and evaluate the results. We found that
we were constantly thwarted by “optimization” features of the
compiler that are not discussed in the related research.

V. ZERO KERNEL OPERATING SYSTEM

A ZKOS differentiates itself from a normal operating
system by acting as a run-time executive with security features.
A run-time executive consists of a set of library routines that
provide hardware abstractions, common services and system
management for the user, all running in the user address space
with the same permissions as the user. A ZKOS provides this
close coupling of services to application code, reducing the
need for costly context switches, but providing secure
separation and access control through use of advanced
hardware tagging features.

We have decided to take the RTEMS run-time executive
and modify it to run on our modified tagging hardware as a
ZKOS. We are currently part-way through the port, adding
additional functionality to RTEMS to support multiple users

and our tagging scheme (RTEMS currently supports a multi-
threaded, multi-processor, single-user execution model). We
are executing RTEMS both on our simulator and now on an
FPGA implementation of the modified SPARC processor
developed by a Cornell University research group.

VI. LESSONS LEARNED

Initial work on security tagging architecture seemed
interesting; we felt that we could give the hardware the ability
to help us enforce security by providing fine-grain protection.
We used the 'C' programming language as the initial model of
execution, giving us a high-level language approach to the
security model, while being able to reason about the lower-
level security operations. When we moved to implementation,
we found we had to look at how the assembly language
implementation actually worked. We found several issues that
were missed at the higher level, and in the discussions of other
tagging schemes in the literature:

• Compiler optimizations can change and/or remove
security relevant code. For example, we could tag a small
function with a high-level security tag, hoping to prevent user
access to the tag. The compiler can then "in-line" the function,
effectively moving the code into user code space and ignoring
the security tags. This was especially a problem when writing
small test cases for evaluating the tagging and the simulator.

• Hardware features can change the execution and
security model. The SPARC processor uses a register window
to improve performance, and does not necessarily use the
stack. Security models that assume access to the run-time stack
may fail when the compiler does not implement a stack, but
instead just uses the hardware features.

• History has shown us that programmers make
mistakes. They will forget about adding security features, they
will leave code vulnerable to attack or they will mislabel or
misuse security tags. We have no clear indication that the
addition of security tagging architecture will protect
programmers from themselves, or that the added complexity of
the tagging hardware control software will not make the
security problem even worse.

VII. CONCLUSION

There is an ever increasing number of software developers
building new applications, using new services, protocols and
languages on hardware with ever advancing features and
complexity. These developers are not all well trained in
software engineering of secure systems, and often have a
mental model disconnect between their view of the execution
environment (as well as the end users) and reality. Worse yet,
many of these developers have little formal training in software
development, but rather took a few courses while they pursued
an education in another discipline, but ended up being software
developers.

We need enhanced hardware and software system security
features that can help us protect the software developers from
themselves, and simplify the development of more robust,
more secure software. We believe hardware tagging may
provide some of that help.

