
SCANDAL: Static Analyzer for Detecting Privacy
Leaks in Android Applications

Jinyung Kim, Yongho Yoon, and Kwangkeun Yi
Programming Research Laboratory

Seoul National University
Seoul, Korea

{jykim,yhyoon,kwang}@ropas.snu.ac.kr

Junbum Shin
SW R&D Center

Samsung Electronics
Suwon, Korea

junbum.shin@samsung.com

A. Problem

Smartphone applications can steal users’ private data and
send it out behind their back. Smartphones store various per-
sonal data, such as phone identifiers, location information, and
contacts. Third-party applications, which can be downloaded
freely at markets, frequently access the data. Most of the
applications do so to explore the fun and utility of smartphone
technology. However, such accesses also raise concerns and
issues of privacy risk.

Android’s permission-based approach is not enough to
ensure the security of private information. Android requires
application developers to declare the permissions so their
applications can access users’ private information. However,
the permissions does not let you know the actual trace of
private data. It is uncertain if an application only accesses
private data locally, or sends the data out. Also, developers
tend to request more permissions than what they need. As a
result, users also tend to care less about the permissions when
they install applications.

B. Our solution

We developed a static analyzer SCANDAL that detects
privacy leaks in Android applications. SCANDAL determines
if there exists any flow of data from an information source
through a sink. SCANDAL is a sound analyzer. It covers all
possible states which may occur when using the application.
In other words, SCANDAL can detect every possible privacy
leak in the application.

We analyzed 90 popular applications using SCANDAL from
Android Market and detected privacy leaks in 11 applications.
We also analyzed 8 known malicious applications from third-
party markets and detected privacy leaks in all 8 applications.

C. Example

The following is a simple example of an interprocedural
privacy leak SCANDAL detected. The example code is
from the Dalvik bytecode of Google Wallpaper 4.2.2. This
application sends a device ID, called IMEI, to the content
server. At line 2, the application gets device ID by calling the
getDeviceId API and stores it in a global variable. After
that, in the getLocale_version_IMEI_W_H method,
the IMEI is loaded and is appended to some other string

values and returned. The returned string is passed to the
getSearchURL method, and also manipulated and returned
to initTagWebView. Finally, the string that contains IMEI
is made into a URL and sent to the content server of the
application.

1 Wallpapers.onCreate()

2 callv TelephonyManager.getDeviceId()

3 move-result r3
4 puts r3 eWallpaperConst.IMEI

5

6 XMLTools.getLocale_version_IMEI_W_H()

7 gets r5 eWallpaperConst.IMEI

8 callv StringBuilder.append(r4,r5)
9 move-result r4

10 callv StringBuilder.toString(r4)
11 move-result r4
12 return r4
13

14 XMLTools.getSearchURL()

15 calld getLocale_version_IMEI_W_H

16 move-result r2
17 callv StringBuilder.append(r1,r2)
18 move-result r1
19 callv StringBuilder.toString(r1)
20 move-result r0
21 return r0
22

23 SearchTagsActivity.initTagWebView()

24 calld XMLTools.getSearchURL(r1)

25 move-result r1
26 callv WebView.loadUrl(r1)


