
Poster: Rethinking Operating System Interfaces to Support Robust Applications

W. Michael Petullo (Student) and Jon A. Solworth (Faculty)
Department of Computer Science
University of Illinois at Chicago

Chicago, Illinois
mike@flyn.org, solworth@rites.uic.edu

Abstract—In current systems, application developers must
provide substantial security-critical code—including code to
handle authentication—in their applications. The result is
that application flaws often undermine system security. We
are building Ethos, an Operating System (OS) that lever-
ages the kernel’s complete mediation property to guarantee
more security protections—including network encryption and
authentication—across all applications. Here we provide an
overview of Ethos and a subset of its system call interface.

I. INTRODUCTION

Computer systems are organized into a strata—a layering
that begins at hardware and progresses to an application.
Each layer exports a set of interfaces to the layer above
it. These layers include the aforementioned hardware, an
optional Virtual Machine Monitor (VMM), an OS kernel, a
programming language, libraries, and an application.

The OS kernel is the first software layer that completely
mediates all program access to external resources [6]. Thus
the OS kernel is in a unique position with respect to
security. Properly designed and implemented, its controls are
absolute; they cannot be bypassed by applications. For this
reason, we focus on the OS kernel as the decisive component
of the strata.

Many design decisions must be balanced to produce a
software strata. For example, an OS’s system calls embody
the interface exported to the stratum above it; an architect
may design these system calls to export a very low level
of abstraction so that application programmers can achieve
high levels of performance for their particular application.

Applications (Postfix)
Libraries (OpenSSL/SASL)
Programming Language (C)
Operating System (Linux)

VMM (Xen)

Figure 1. A software strata

When an OS provides a low level of abstraction, it
increases the burden on application developers. For example,

POSIX networking does not provide for strong authentica-
tion. Such security functionality is left to applications or the
libraries they build upon. This leads to duplicating critical
code; even when authentication is consolidated in a library,
the amount and complexity of code required to properly
invoke the library is often non-trivial. Furthermore, libraries
do not provide complete mediation; an application could be
written to avoid authentication entirely.

We believe POSIX provides too many opportunities to
make security errors. Consider Postfix, which was written
by a security expert. Postfix can be considered a rough
limit on our ability to develop a robust application on the
POSIX strata. Yet, even Postfix contained a flaw in its use of
OpenSSL that resulted in the possibility of a plaintext injec-
tion attack [2]. In this case, fixing Postfix does not preclude
other applications from having the same flaw. Postfix con-
tains around 2,000 lines of code to support robust network-
ing. The Dovecot IMAP server, Apache, and mod auth kerb
contain 15,000, 1,800, and 1,500 authentication-related lines
of code, respectively. (These counts do not include libraries;
OpenSSL is around 250,000 lines.)

II. ETHOS: A STRATA DESIGNED FOR SECURITY

Ethos is a clean-slate OS with a primary goal of security
[7]. We are developing Ethos because the current software
strata does not sufficiently aid writing robust applications.

A. Overview of Ethos system calls

Ethos has relatively few system calls and they provide
higher levels of abstraction than POSIX, simplifying appli-
cation development and authorization policy specification.
This differentiates Ethos authorization from SELinux—the
latter is complex [3], partly because Linux’s system call
interface is complex. Ethos’ authorization system also has
more information available to it. In particular, Ethos can
make authorization decisions based on a remote user because
network authentication is performed by the OS.

B. A clean slate enables different design choices

In the last decade, we have witnessed the rise of com-
modity system virtualization platforms. Ethos is built on
top of the Xen VMM [1]. A principal advantage of this
approach is that Ethos need only support a few virtualized



devices yet can run on any hardware supported by Xen.
This dramatically reduces Ethos’ code base and decreases
the vulnerabilities associated with device drivers.

A Virtual Machine (VM)-based approach also means that
Ethos can coexist with other OSs, avoiding the application
trap [5]. The use of Ethos is justified even if it has only a
single desirable application, since Ethos does not preclude
using legacy OSs and their applications.

Another opportunity arises because network latency, not
processing encryption, is now often the critical performance
consideration [4]. Thus Ethos encrypts all network traffic and
authenticates using cryptography all network data provided
to applications. (There may still be applications that require
unencrypted network connections, perhaps for very sensitive
performance reasons. Such applications can be run on a
legacy OS in a separate VM.)

C. The role of programming languages

Programming languages also have a large impact on
system security. For example, language design can remove
buffer overflows. In this way, language and system design
are complimentary. Over time, languages have become more
abstract, allowing programmers to reason about increasingly
complicated software. Ethos intends to do the same for
system design. Ethos’ design allows for the use of any
programming language and does not require the use of an
application virtual machine (e.g., JVM or CLR).

III. A CASE STUDY: NETWORK AUTHENTICATION WITH
ZERO LINES OF APPLICATION CODE

Figure 2 presents an Ethos network application. A distrib-
utor process accepts connections from a remote client. Ethos
does not authorize the distributor to read or write the network
file descriptor—it must be passed to a server process. The
server process must run with the remote user’s credentials
in order to read or write the descriptor.

R
em

ot
e

cl
ie

nt

D
is

tr
ib

ut
or

Se
rv

er

ipc

import fdSend

fdReceive
write

read. . .

Figure 2. An Ethos network application

Here we provide a more detailed look at the system calls
referenced in Figure 2. The client uses the ipc system call
to connect to a remote host. Ethos restricts ipc based on a
user, program, service, and remote host tuple.

ipc (service, remoteHost)

The distributor calls import to accept a connection. As
the connection is coming from a remote host, Ethos ensures
that the traffic is encrypted. Ethos restricts import based on
a user, program, and service tuple. Furthermore, the import
system call will not return unless Ethos identifies the remote
end as an authorized client host and user using cryptographic
authentication.

netFd, user←import (serviceFd)

Instead of setuid, Ethos provides fdSend/fdReceive, a
pair of system calls that pass a file descriptor from one
process to another. The distributor sends the descriptor to
the server using this mechanism.

fdSend (fd, user, program)

Finally, the server receives and uses the descriptor.

fd←fdReceive ()

Thus Ethos relieves the burden of application developers
to provide authentication through system-wide guarantees.
In fact, a user that Ethos does not authenticate and authorize
never even interacts with user space code.

IV. STATUS AND FUTURE WORK

It is already possible to write applications for Ethos in
C or Go. Ethos currently provides processes, encrypted
networking, and a filesystem. We have completed 39 system
calls and related Go packages. We have implemented a shell,
basic command-line utilities, and a networked messaging
system. The latter provides a case study of our strata.

We are beginning to shift our focus from kernel devel-
opment to creating a robust user space. Projects underway
include writing Go packages to aid application development,
designing a graphics subsystem, and developing substantial
applications. This, in turn, will provide continued evaluation
of the design decisions embodied in our strata.

REFERENCES

[1] BARHAM, P. ET AL. Xen and the art of virtualization. In SOSP
(2003).

[2] CVE-2011-0411. National Vulnerability Database, 2011.

[3] HICKS, B. ET AL. A logical specification and analysis for
SELinux MLS policy. In Proc. of the 12th ACM symposium
on Access control models and technologies (2007).

[4] LANGLEY, A. ET AL. Overclocking SSL. In Velocity: Web
Performance and Operations Conference (2010). http://www.
imperialviolet.org/2010/06/25/overclocking-ssl.html.

[5] PIKE, R. System software research is irrelevant, 2000.

[6] SALTZER, J. H. AND SCHROEDER, M. D. The protection of
information in computer systems. Proceedings of the IEEE
(1975).

[7] SOLWORTH, J. A. Robustly secure computer systems: A new
security paradigm of system discontinuity. In NSPW (2007).


