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I. INTRODUCTION

Botnets remain a persistent and evolving threat on the
computer security landscape. Most existing botnet detection
techniques rely on detection of specific botnet characteristics.
Consequently, they can neither adapt to different types of
botnets nor combine different detection techniques. Moreover,
existing techniques do not have integrated defense mechanisms
that can be triggered to curb the threat after detection.

Botnets exploit the rigidity of existing detection systems
and evade them by using several infection, attack and control
communication vectors [1]. Since the botnet threat landscape
continues to evolve faster than the detection strategies, we
advocate the need for a botnet detection framework which
is: (1) General and flexible in detecting different classes
of botnets while adapting to deployment requirements; (2)
Extensible to the evolving threat model by providing seamless
integration of new detection techniques; (3) Integrated with
defense strategies which can be triggered after detection and
classification of the threat.

In this poster we propose Bottleneck, a framework that
meets all the design objectives set above. We realize an
instance of this general framework using a Bayesian network
which allows the system to make evidence-based predictive
and diagnostic inferences for bot infections. We extend the
Bayes net to an influence diagram which automates the defense
strategy by optimizing a user-defined utility function over the
detection and classification of the bot.

II. BOTTLENECK: A GENERALIZED, FLEXIBLE, AND
EXTENSIBLE BOTNET DEFENSE FRAMEWORK

Bottleneck as shown in Figure 1, leverages the observation
that a set of five botnet characteristics — propagation, rallying,
C&C, attack, and evasion — provide a complete and time-
invariant high-level characterization of the botnet phenomena.
Let {c1, -+, c5} denote these characteristics. Botnet creators
employ a number of mechanisms to implement each char-
acteristic. For a given characteristic ¢y, let {M*,--- Mo}
represent the set of existing and detectable mechanisms. For
example, {scanning, client exploit, social engineering} repre-
sent a subset of all possible botnet propagation mechanisms,
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Fig. 1. Bottleneck: An extensible framework for botnet detection.

M*®*. These mechanism implementations, for any given char-
acteristic, can be detected by one or more of m detection
techniques represented by, { D", - -, DS }.

We make use of Crow’s Feet notation to demonstrate
the many-to-many relation between detection techniques and
mechanisms for each botnet characteristic. The exact relation-
ship between the detection techniques and these mechanisms,
and the weight assigned to each relation, are configurable
parameters in our framework. Thus, our framework is general
but configurable for different types of botnets. This framework
offers flexibility by adapting to different user requirements.
For instance, location of deployment (host vs. network) or
accuracy (precision vs. speed) can be implemented by the
framework by simply changing configurations and weight
assignments. Furthermore, the design is also extensible with
the provision to easily add new detection techniques or mech-
anisms. The classification engine uses a learning mechanism
(like Bayesian) to combine the detection of different mech-
anisms and can correlate different characteristics. Note that
this classification can incorporate both vertical (or temporal)
as well as horizontal (or spatial) correlation, depending on its
deployment location. Furthermore, we can analyze detection
results to give supporting evidence such as suspected malicious
IPs/URLs, botnet types IRC,HTTP,P2P), and C&C communi-
cation flows. This evidence is utilized to select the best strategy
for defense.
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Fig. 2. An example implementation of Bottleneck using a Bayesian

network.

III. AN IMPLEMENTATION OF BOTTLENECK USING
BAYESIAN NETWORKS

In this section, we describe a prototype Bayesian net-
work implementation of the proposed Bottleneck framework.
Bayesian network is a graphical model that encodes proba-
bilistic relations among random variables using a Directed
Acylic Graph (DAG). The nodes of the graph (uncertainty
nodes) represent the random variables, and the edges repre-
sent causal relationships between them [3]. A directed edge
E(V1,Vs) specifies that V5 is directly dependent on V;. In
order for a DAG to be a Bayesian network, each node must
be conditionally independent from all its non-descendants in
the tree, given its parents. In addition to the graph structure, a
conditional probability distribution is specified at each node.

A Bayesian network can be extended to an influence dia-
gram, which can model inference as well as decision problems
by adding decision and utility nodes. Parents of a decision
node reflect information available at the time of a decision,
while the utility function calculates the utility of a decision,
given the values of uncertainty parent nodes of the utility node
[4].

Figure 2 gives an influence diagram that instantiates the
generalized Bottleneck framework. The uncertainty nodes in
the diagram are either botnet characteristics or some specific
mechanisms used to implement them. The causality of botnet
life cycle is captured by edges between the nodes. The value of
an uncertainty node is determined by aggregating one or more
of its detection techniques. The results from these detection
techniques can be combined using conjunction, disjunction
or weighted sum. For example, three detection techniques
for portscan are aggregated in [2] using Complex Event
Processing, and their results are combined using weighted
sum. The approach for achieving the highest accuracy using
this combination is a topic for future work.

The decision and utility nodes are given by Defense and
Utility respectively in Figure 2. Our choice of defense strategy

TABLE I
UTILITY DEFINITION FOR DEFENSE

Centralized,bot  Decentralized,bot Nonebot —,bot
Block 100 10 -50 -100
G-Rep -80 100 70 -150
Nothing -200 -200 -100 100

is based on bot detection and type of C&C communication.
We provide an example utility function for defense in Table
I. In this example, the desired actions for centralized and
decentralized C&C are to block the IP and generate a report,
respectively. To achieve this, we scale utility values according
to our preference with positive values ranking higher. A
high negative value is assigned to blocking when no C&C
is detected because it disrupts normal internet activity of
user. Similarly, generating reports for centralized C&C creates
unnecessary work for the network administrator. In contrast to
these unfavorable decisions, we have certain situations where
the second best decision is also acceptable. For instance,
while blocking a decentralized C&C is not very effective,
it does not yield any adverse results for the user. The last
row aims to minimize false negatives of our defense system.
Moreover, since we expect to have very low false positives in
our ground truth data, the right most column summarizes the
cases (centralized, bot), (decentralized, bot, (none,bot) to
(—, bot). The utility values for each choice of action is given
as well.

The Expected Utility function is given by EU(D|C) =
> 5 P(B|C) x U(C, D, B) where C=C&C, D=Defense and
B=Bot. The optimal policy for defense given a particular
assignment for C' will be the maximum of the Expected Utility
values.

IV. CONCLUSION

In this poster we address the need for a generalized
framework for botnet defense by proposing Bottleneck. Our
framework combines several mechanism detection techniques
and merges evidence from various botnet fronts. This approach
promises a flexible and extensible system that can be config-
ured by users to meet their specific needs. Furthermore, we use
an influence diagram to realize one instance of the framework,
which is also self improving and automates defense using a
pre-defined utility function.
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