
LAP: Lightweight Anonymity and Privacy

Hsu-Chun Hsiao† Tiffany Hyun-Jin Kim† Adrian Perrig† Akira Yamada‡

Samuel C. Nelson§ Marco Gruteser§ Wei Meng�
†CyLab/CMU ‡KDDI Labs §Rutgers University �Tsinghua University

Abstract—Popular anonymous communication systems often
require sending packets through a sequence of relays on dilated
paths for strong anonymity protection. As a result, increased
end-to-end latency renders such systems inadequate for the
majority of Internet users who seek an intermediate level of
anonymity protection while using latency-sensitive applications,
such as Web applications. This paper serves to bridge the gap
between communication systems that provide strong anonymity
protection but with intolerable latency and non-anonymous
communication systems by considering a new design space
for the setting. More specifically, we explore how to achieve
near-optimal latency while achieving an intermediate level of
anonymity with a weaker yet practical adversary model (i.e.,
protecting an end-host’s identity and location from servers)
such that users can choose between the level of anonymity
and usability. We propose Lightweight Anonymity and Privacy
(LAP), an efficient network-based solution featuring lightweight
path establishment and stateless communication, by concealing
an end-host’s topological location to enhance anonymity against
remote tracking. To show practicality, we demonstrate that
LAP can work on top of the current Internet and proposed
future Internet architectures.

I. INTRODUCTION

Staying anonymous in today’s Internet requires anony-
mous overlay systems, such as Tor [1], to conceal the
communicating endpoint’s IP address, as it can reveal the
end-user’s identity and location [2]. Such overlay systems
attempt to facilitate anonymous communication using layer-
encrypted packets traveling through indirect routes. How-
ever, this results in additional latency due to long end-to-end
path length and cryptographic operations indirectly traveling
through three Tor relays would be approximately four times
slower than traveling along a non-dilated path. Moreover,
Tor relays are constantly overloaded [3], further worsening
the latency and throughput. Measurements show that the
average time to fetch an HTTP header using Tor is 4.04s —
ten times higher than fetching it without Tor [4]. Although
privacy-anxious users may tolerate seconds of latency for
strong privacy, users desiring an intermediate level of privacy
for default protection of daily online activities (e.g., prevent
websites from tracking them for behavioral advertising1)

1Users might enable the DO-NOT-TRACK option supported by most
mainstream browsers. However, a recent study [5] has shown that this
mechanism is hard to use due to configuration complexity and provides
no guarantee as it depends on the self-regulation of online organizations.

Latency

Attack class

LAP

Tor [1]

Mix network [8]

Lightweight anonymity
Low-latency anonymity
High-latency anonymityEnd-server

Government
class

Global
eavesdropper Optimal solution

No anonymity protection

Figure 1. The design space of anonymous schemes.

may be impatient to wait.2

Despite existing work that attempts to protect end-users’
anonymity [1], [7], [8], it still remains a challenge to provide
an intermediate level of anonymity and privacy protection
without introducing much latency. In this paper, our main
goal is to bridge the chasm between systems that provide
strong anonymity with high latency and systems that support
no anonymity with zero latency, and explore how to support
lightweight anonymity and privacy that is efficient enough
to protect all traffic. Note that those end-users who want
an intermediate level of privacy primarily desire to remain
anonymous from servers such that servers cannot track
their behavior. This implies that guaranteeing the end-user’s
anonymity and privacy against a single remote entity rather
than a strong, global attacker may be a suitable relaxation
of the attacker model to gain higher efficiency.

We propose a new setting that we call Lightweight
Anonymity and Privacy (LAP-setting for short) for private
and anonymous communication in the Internet with the
following properties:

• Low-stretch anonymity: packets for anonymous and
private communication should travel through near-
optimal routes such that the increase in the number
of Autonomous Domains (ADs) normalized over the
original path length is low.

• Relaxed attacker model: an intermediate level of
privacy can be achieved with sender and receiver
anonymity and location privacy. Hence, we relax the
strong attacker model (e.g., global or government-class

2Studies have shown that online users are sensitive to waiting time:
Amazon’s sales dropped by 1% for every 100ms increase in page load
time, and Google’s ad revenue decreased by 20% for a 500ms increase in
search result display time [6].

2012 IEEE Symposium on Security and Privacy

© 2012, Hsu-Chun Hsiao. Under license to IEEE.
DOI 10.1109/SP.2012.37

506

attackers) considered by existing anonymity systems.

As Figure 1 shows, our aim is to address a relaxed attacker
model (e.g., end-server attack) with near-optimal latency
while existing work addresses stronger attacker models
(e.g., government class or global eavesdropper) with higher
latency. Although low-latency designs are shown to be
inherently vulnerable to a global eavesdropper, some users
who trust their local ISPs can achieve much higher efficiency
under the LAP-setting.

Our mechanism, Lightweight Anonymity and Privacy
(LAP), is an efficient and practical network-based solution
featuring lightweight path establishment and efficient com-
munication. LAP attempts to enhance anonymity by obscur-
ing an end-host’s topological location, based on two building
blocks: packet-carried forwarding state, and forwarding-state
encryption.

• Packet-carried forwarding state: each packet carries
its own forwarding state such that ADs can determine
the next hop from the packet without keeping local per-
flow state.

• Forwarding-state encryption: existing anonymity sys-
tems require entire packets to be decrypted/encrypted
as they travel using shared keys between the sender
and intermediate relays. In contrast, LAP allows each
AD to use a secret key (known to the AD only)
to encrypt/decrypt forwarding information in packet
headers. As a result, an AD’s forwarding information
can be hidden from all other entities while a LAP
packet remains the same at each hop.

LAP is extremely lightweight in the sense that (i) it
introduces minimal overhead over non-anonymous packets
in terms of latency and computational overhead on routers,
(ii) it does not require any per-flow state to be stored on
routers, and (iii) no separate keys are required to be set
up with routers. In addition to its performance advantages,
LAP’s unique design provides two additional merits. First,
LAP supports different privacy levels such that an end-host
can trade privacy for improved performance. Second, LAP is
a generic design that can work with a wide range of routing
protocols, which includes the inter-domain routing protocol
BGP and new proposals such as SCION [9] and Mobility-
First [10]. Furthermore, we show that LAP fits especially
well with proposed routing protocols that support packet-
carried forwarding state, such as SCION and ICING [11].

In this paper we focus on network-based solutions, where
users and locations can be identified through IP addresses.
While most current end-host tracking is implemented via
cookies [12] and applications may as well leak identifiable
information such as email addresses or browser configura-
tions, IP addresses have been used as an alternate identifier
when such auxiliary information like cookies is unavail-
able [13]. Hence, a complete solution for anonymous com-
munication must integrate network-layer techniques with

mechanisms for other layers, as recognized by previous
network-based proposals [7], [14].

Contributions.
1) We explore the design space of anonymous protocols

in the context of a relaxed adversary model.
2) We propose Lightweight Anonymity and Privacy

(LAP), an efficient network-based solution that en-
ables lightweight path establishment and efficient for-
warding.

3) We evaluate LAP’s security and performance advan-
tages. Our systematic analysis and the evaluation of
our software implementation confirm that LAP can
improve anonymity with low performance overhead.

II. PROBLEM DEFINITION

We study how to camouflage an end-host’s topological lo-
cation (i.e., potential origin within a given topological neigh-
borhood) in a network architecture to enhance anonymity
and location privacy in a practical manner. More specifically,
we study how to design an anonymous forwarding protocol
that can protect the identities and locations of end-hosts from
a weaker yet practical adversary, while demanding minimal
increase in latency. We do not claim to achieve complete
anonymity, but rather focus on providing an intermediate
level of anonymity.

In this section, we scope our problem in terms of desired
properties, assumptions, and threat model.

A. Desired Privacy Properties

Sender/receiver anonymity. Anonymity can be viewed
as being unidentifiable within a set of subjects (e.g., users),
also known as an anonymity set [15]. This implies that a
sender or a receiver can achieve stronger anonymity if its
identity is hidden in a larger anonymity set [16].3 As a
result, an attacker cannot link the sender and receiver if
either sender anonymity or receiver anonymity is achieved.
Since the design of a full anonymous communication system
that can defend against timing attacks and conceal unique
platform characteristics is beyond the scope of this paper,
we focus on concealing an end-host’s network identifier and
location in the network topology (which we call “topological
anonymity”), which is an important step towards improving
sender/receiver anonymity. For simplicity in expression,
we also abbreviate “topological anonymity” simply with
“anonymity” in the paper.

Session unlinkability. Session unlinkability prevents an
attacker from linking a user’s activities over time. We want

3As Syverson points out, the anonymity set is insufficient to analyze
complete sender/receiver anonymity as a thorough analysis with realistic at-
tacker strategies is appropriate [17]. However, we believe that the anonymity
set is a tangible metric for evaluating topological anonymity that we aim
to achieve in this paper, and we leave it as future work to address various
attacker strategies.

507

to ensure that given two packets from two different sessions,
an attacker cannot determine whether these packets are
associated with the same sender (or receiver).

Location privacy. Location privacy is achieved when a
user conceals her geographical location so that an attacker
cannot track her whereabouts.

Privacy levels. We want to provide different levels of
privacy to end-hosts under end-server attacks in case they
are willing to trade privacy for improved performance [18].

In this paper, we consider confidentiality of the packet
payload to be orthogonal to the scope of our work as data
confidentiality can be achieved using end-to-end encryption.
Also, privacy leakage from higher layer protocols/payload
is outside the scope of this paper as such an issue can be
alleviated by existing tools such as Privoxy.4

B. Desired Performance Properties

While providing an intermediate level of anonymity, we
want to assure that the anonymity protection introduces
marginal overhead. Following are the desired performance
properties:

Low path stretch. We define path stretch as the increase
in the number of AD hops normalized over the original (or
non-anonymity) path length. Since the latency increases as
the number of intermediate hops increase on the path, it is
desirable to minimize path stretch.

Low performance overhead. We want to minimize cryp-
tographic overhead, especially asymmetric operations and
packet decryption and re-encryption at each hop.

Minimal state. To avoid the state explosion problem, we
want to keep minimal or no per-flow state to reduce the
attack surface and increase scalability.

C. Assumptions

We assume that an end-user trusts her first-hop AD in the
sense that the first-hop AD keeps its customers’ information
private and correctly performs anonymous forwarding pro-
tocols. This is aligned with the trust relationship in today’s
Internet since end-users place more trust on topologically
closer ADs and generally have more control over the choice
of their first-hop ADs than over the other ADs on a routing
path. In case end-users do not trust their first-hop ADs
and have no options to pick their own ADs, they may use
anonymity systems such as encrypted tunnel IPsec, Tor [1],
or anti-censorship systems [19].

We envision that ADs can control the amount of band-
width allocated for anonymous communication, thus limit-
ing the misuse of anonymous protocols, e.g., for sending
untraceable attack traffic. We also assume that routers in
ADs support packet-carried forwarding states.

4http://www.privoxy.org/

D. Threat Model

An adversary’s goal is to break the desired privacy
properties described in Section II-A to discover the identity
or location of a sender or a receiver of a given packet.
More specifically, we focus on topology attacks where an
attacker attempts to de-anonymize the sender (or receiver)
using topological location information in a given AD-level
topology, and leave it as future work to defend against timing
correlation attacks [20]–[23].

We consider a relaxed threat model with respect to the
attacker’s capability: the attacker can compromise any AD
except the first-hop AD where the victim end-host resides.
Under this model, our primary attack case is an end-server
attack where a malicious server analyzes traffic to it or
initiate communication with others. We also consider an
in-network attack where a malicious AD beyond the first-
hop of the victim end-host leverages its cryptographic keys
to perform deep packet investigation or actively manipulate
(e.g., inject, delete, delay, and replay) packets. Malicious
servers and ADs can collude to share their knowledge base.

III. OVERVIEW: LAP

LAP is a lightweight protocol to facilitate real-time,
bidirectional anonymous communication. In this section we
first give a high-level overview of LAP, and explain how
end-hosts establish an encrypted path (e-path) and how ADs
forward packets along the e-path to achieve an intermediate
level of anonymity.

The core observation of this work is that encrypting path
information (i.e., concealing forwarding information in the
packet header) improves topological anonymity against an
adversary in the LAP-setting since the adversary cannot
retrieve the sender’s (or receiver’s) origin address from the
packet. Moreover, extending an encrypted path to a benign
AD increases the topological anonymity, simply because
there are more potential origins whose paths could route
through the AD. Extending an e-path beyond one hop
is desired because one-hop encryption offers insufficient
topological anonymity, as we demonstrate in the preliminary
analysis (Section V). We also discuss in Section VII the level
of anonymity when the adversary appears at different places
on the e-path.

Background: network setting. We consider a network
consisting of Autonomous Domains (ADs) as the basic
principal of inter-domain routing; each of these ADs has
a set of interfaces, each with a unique ID, that can connect
to neighboring ADs. ADs agree on an inter-domain routing
protocol Θ, e.g., the Border Gateway Protocol (BGP). Upon
receiving a packet destined to dest, an ADx evaluates
Θx(dest) to determine the next hop of the packet.

Each AD maintains a master secret key, perhaps stored
in a secure offline server, and derives short-term secret
keys, each associated with a certain time period, from the

508

master key. The actual encryption and authentication keys
are derived from the short-term key and a nonce specified
by the sender. We assume every gateway router in an AD
has a copy of the short-term keys and knows how to process
and route LAP packets within the AD.

LAP overview. At a high level, LAP has two phases,
as shown in Figures 2 and 3. Suppose Alice wants to
communicate anonymously with Bob without revealing her
identity and precise location.

❶-➀ request

❶-➁ reply

b

c

a

d

ADi

bd

bd

i

i

i-1

e-path
segment
offset

Figure 2. Operations within an AD. Step ❶-➀: upon receiving a request
packet, an AD encodes its ingress (b) and egress (d) interfaces, extends the
e-path in the packet, and forwards the packet (e.g., through interface d in
this figure). Step ❶-➁: an AD retrieves the interfaces from the e-path in
the reply packet and forwards it (e.g., to interface b).

❶-➀ A → B: request

❶-➁ B ← A: reply

❷ A ↔ B: data

aa
a

a bb
c

d

A

A

B BBBB

B

AD1 AD2 AD3 AD4

O1 O1 O1 O1O2 O2 O2O3 O3O4

Aa Aa Aa Aa

Aa Aa Aa Aa

AaAaAaAa

bd bd bd bd

bd bd bd bd

bdbdbd

ab ab ab ab

ab ab ab ab

abab

aB aB aB aB

aB aB aB aB

aB

3

3

2

2

1

1

0

0

e-path segment offsetaddress payload

Figure 3. Operations between ADs. Step ❶-➀: A sends a request to
B, which is routed by B’s address. Step ❶-➁: B replies e-path to A along
the reverse path. An AD locates its segment by the offset pointer. Phase ❷:
A and B send data to each other along the e-path.

Phase ❶ Establishing e-paths: This phase enables Alice
to obtain an e-path — a bi-directional routing path consisting
of encrypted forwarding decisions by intermediate ADs on
the path.

• Step ❶-➀ Request. To set up an e-path as shown in
Figure 3, Alice creates a request packet to reach
Bob. When her request packet reaches a gateway
router inside AD1, it creates a segment which contains
Alice’s address along with the egress interface, encrypts
the segment to anonymize Alice’s origin address, and

forwards the encrypted segment (O1) to AD2. Upon
receiving the request, as shown in Figure 2, AD2

encrypts its own forwarding decision in O2 (i.e., the
request packet from ingress interface b is forwarded
to egress interface d to reach Bob), appends O2 to
the request packet, and forwards it to the next AD.
This process continues until the request reaches
AD4, where Bob resides. Note that encryption and
authentication of Oi use secret keys that are only known
to ADi so that only ADi can later decrypt and verify
Oi.

• Step ❶-➁ Reply. The resulting e-path enables Bob
to send packets to Alice without knowing her origin
address, because the e-path encodes the forwarding
decisions made by ADs on the routing path. We lever-
age packet-carried forwarding state, where the network
forwards packets solely based on the state contained in
the header (i.e., e-path). More specifically, Bob retrieves
the e-path from the request and puts the e-path in the
header of a reply packet, which is a special type of
data packet without payload. As shown in Figures 2
and 3, upon receiving the reply, AD3 decrypts the
segment O3 that it encrypted during Step ❶-➀, retrieves
the egress interface a, and forwards the reply to
the next hop. This process continues until the reply
reaches the intended end-host Alice. If an AD fails to
correctly decrypt or verify the segment, the reply is
dropped.

Phase ❷ Forwarding: When Alice obtains the e-path
from the reply packet, she can start sending data packets
anonymously along this e-path using packet-carried forward-
ing state, as described above.

With LAP, Alice achieves sender topological anonymity
and location privacy with respect to a LAP-setting adversary
(e.g., Bob), because only her local AD knows her identity
and address. In the following sections, we describe LAP in
detail, and validate it using a real Internet topology. We also
address the challenges of instantiating LAP in the current IP
network and future Internet architectures.

IV. LAP: LIGHTWEIGHT ANONYMITY AND PRIVACY

In this section, we describe in detail how e-paths are
constructed, and present additional mechanisms to achieve
receiver anonymity and controllable privacy. We start with
the packet header formats.

A. LAP Packet Header Format

Figure 4 illustrates the format of a LAP packet header. The
header contains a 8-bit TYPE field to distinguish request,
reply, forward data (from Alice to Bob), and backward
data (from Bob to Alice) packets (six bits of the TYPE field
are reserved for future extensions). The header also contains
a 32-bit NONCE field to assist session unlinkability.

509

0 8 24 63

0 8 24 63

96+

0 16 32 63

127

64+

}

Request

Reply/Data

A segment
in e-path

encrypted

TYPE

TYPE HTE

LENGTH

LENGTH

DESTIP

NONCE

NONCE

E-PATH

E-PATH

OFFSET

SIZE RESERVED

MAC
INGRESS EGRESS

Figure 4. LAP packet header formats. In a segment, the first 64 bits
are encrypted, and the RESERVED field can be used to store additional
information of an AD.

Request. A request packet indicates Alice’s intent to
anonymously communicate with Bob. To initiate a request,
Alice specifies Bob’s address in a 32-bit DESTIP field and
her desired privacy/performance tradeoff, expressed in a
8-bit HOP-TO-ENCRYPT (HTE) field (to be discussed in
Section IV-C). As the request travels through ADs until
it reaches Bob, each intermediate AD appends its own
encrypted path segment to the E-PATH field (to be described
later).

Reply. A reply/data header contains no IP address
since reply/data packets can be forwarded using the
bi-directional e-path that is copied from the corresponding
request packet. The header also contains a LENGTH field
to indicate the size of the packet, and an OFFSET field to
indicate the appropriate segment from the E-PATH field
that the receiving AD can decrypt. ADi adjusts the OFFSET

field based on the direction of the packet (e.g., for reply,
OFFSET is decreased by 1).

Segments in e-path. The E-PATH field comprises
a sequence of segments, each of which is 128 bits by
default. As shown in Figure 4, an AD creates each segment
consisting of INGRESS and EGRESS interfaces, size of the
segment, RESERVED to store additional information (e.g.,
source AD can store the source IP address which does not
fit in the INGRESS field), and MAC to store the Message
Authentication Code over all segments in the E-PATH field
(including its own). Note that LAP can support variable-size
segments in multiples of 128 bits (and thus a SIZE field is
needed in a segment) to defend against size-based passive
traffic analysis, as discussed in Section IV-E.

B. LAP Protocol Description

We now describe Phases ❶ and ❷ in detail.

Encrypted path establishment. To construct an e-path,
Alice sends a request to Bob (Step ❶-➀), and by default,
LAP requires each AD to append its encrypted routing
decision to the received request packet.

Suppose Alice resides in AD1 and Bob resides in ADn,
and the request packet moves along a path AD1, AD2, . . .,

ADn. As shown in Figure 3, ADi generates a segment Oi,
which contains the encrypted ingress and egress interfaces
for bi-directional forwarding, and appends to the packet. As
a result, a resulting e-path OA,B consisting of {O1, . . . , On}
is constructed as follows: Let O0 = ∅. For i = 1 · · ·n,

χi = Encke
i
(Mi),

Oi = χi‖MACks
i
(χi‖Oi−1) (1)

where Mi contains an AD’s routing decision (i.e., the ingress
and egress interfaces), Enck(m) means encrypting m using
key k, and MACk(m) is the Message Authentication Code
of m using k. ke

i and ks
i are symmetric keys derived from

the nonce and the ADi’s current short-term key, known only
to ADi.

We include the previous segment in the MAC computation
to enforce the routing decision while preventing attackers
from crafting an arbitrary path. Without MACs, an adversary
can easily find a ciphertext decrypted to some meaningful
egress/ingress interfaces. Simply adding a regular MAC is
insufficient because an adversary may be able to craft an
invalid path by combining segments obtained from two
separate requests. Hence, in LAP, we use layered MACs
to prevent arbitrary combinations of segments.

ADi appends Oi to the E-PATH field of the request,
and forwards it to ADi+1 (via egress interface) until the
request reaches Bob.

Packet-Carried Forwarding State. For successful packet
forwarding using packet-carried state, end-hosts copy the E-
PATH field from the preceding packet. For example, upon
receiving the request, Bob copies the E-PATH field to the
reply packet. Similarly, when Alice receives the reply,
she copies the E-PATH to the data packet, and Alice and
Bob copy the E-PATH for succeeding data packets.

Using the e-path in a reply packet (Step ❶-➁) and a
data packet (Phase ❷), ADs can forward the reply/data
packet along the encrypted path bi-directionally without ac-
tually knowing Alice’s or Bob’s address. Suppose a reply
packet enters an ADi from interface d, as shown in Figure 2.
The AD proceeds as follows:

1) Retrieve forwarding decision: It first locates its seg-
ment Oi based on OFFSET and TYPE (which encodes
the direction of forwarding) in the header. It then
decrypts χi to recover the ingress interface ig, egress
interface eg.

2) Verification: Oi is valid if the following conditions
hold: i) For a forward packet (e.g., data), d = ig; for
a backward packet (e.g., reply, data), d = eg, ii)
MAC verification succeeds (i.e., the AD re-computes
the MAC using its current secret key and the infor-
mation embedded in the header, and checks if the
resulting MAC matches the one included in Oi.)

3) Forwarding: If this segment is valid, the AD de-
termines the exiting interface and adjusts the offset.

510

In our example, since this is a backward packet,
the exiting interface is ig and the offset should be
decreased by 1. The AD then forwards the packet to
the exiting interface.

Since ADs rotate their short-term keys periodically (e.g.,
every hour) for security, Alice may have to renew or request
a new e-path if any key for decrypting or verifying the e-
path expires during her session. LAP can support efficient
renewal by embedding updated e-path in data packets.

Session unlinkability. Alice can request a new e-path
(by specifying a different nonce) for every new session to
achieve session unlinkability. Also, the encryption algorithm
should be secure against chosen-plaintext attacks such that
encrypting the same plaintext twice would result in two
different ciphertexts with high probability. For example,
one can use AES in CTR mode. The initialization vector
(IV) in CTR mode can be derived from the nonce and the
previous Oi to avoid allocating extra space for storing IV
in the packet. Since a different nonce or routing path would
result in a new e-path, an attacker has a low success rate in
correlating two separate sessions based on an e-path.

C. Controllable Privacy Levels

Encrypting every AD hop in LAP increases the packet
header size and computational overhead, and may reduce
the flexibility in routing (e.g., in the case of multipaths, the
sender cannot make an informed decision in path selection
without knowing which ADs are on the path.) Although
LAP provides negligible computational overhead on routers
(see Section VIII) and we anticipate that routers will be
improved to support larger packets, users may still want to
trade privacy for improved performance.

LAP provides options for end-hosts to control the length
of e-paths, which results in differentiated privacy disclosure.
The intuition is that the degree of anonymity and privacy
(in terms of the size of an anonymity set) increases with the
length of an e-path (in terms of the number of AD-hops).
More specifically, Alice specifies the desired length of the
e-path in a Hop-to-Encrypt (HTE) field in the request
packet. Each AD checks the HTE field before updating the
e-path, and if HTE ≥ 1, the AD updates the request
packet as usual and decreases the HTE field by 1. If HTE
reaches zero before reaching Bob, the intermediate AD
returns the e-path to Alice on a reply packet. Similarly,
if Bob receives the packet with HTE ≥ 0, Bob returns
the e-path to Alice on a reply packet. Note that to use
such partially encrypted paths, packets have to contain an
extra field storing the destination’s address (which, however,
can be in plaintext, as receiver anonymity is provided using
rendezvous points, as will be explained in Section IV-D).
During the forwarding phase, the AD at the end of the e-
path converts data packets between the LAP- and regular-
mode. For example, in BGP routing, the AD encapsulates

the e-path in a normal IP packet and sets the source address
to be its own address and the destination address to Bob’s.

D. Path Publishing for Receiver Anonymity

We have shown that Alice can achieve sender anonymity
and location privacy by constructing an e-path to Bob (i.e.,
only Alice’s first-hop AD knows her identity and location).
However, sometimes Bob may want privacy protection as
well. For example, a user running a controversial website
(e.g., WikiLeaks) would prefer to hide his location and
permanent identity to prevent tracking or avoid censorship.
However, since a receiver is unaware of who a sender might
be in advance, the challenges become (1) how the receiver
constructs an e-path for any potential sender and (2) how a
sender looks up the receiver’s e-path without knowing his
permanent identity.

At a high level, to achieve receiver anonymity, Alice and
Bob each initiate an e-path to a rendezvous point so that
only the local ADs know the identity of end-hosts. Such
an indirection technique is commonly used in anonymity
systems [1]. To address the second challenge, Bob publishes
his e-path associated with his pseudonym on a publicly-
accessible path server. As a result, a sender knowing Bob’s
pseudonym (e.g., via out-of-band communication) can re-
trieve Bob’s e-path from the path server and reach Bob
through the rendezvous AD. In theory, any AD in the
Internet could be a rendezvous point or host a path server. To
minimize the path stretch and communication overhead, in
practice, tier-1 ADs are a reasonable choice of rendezvous
ADs and path server administrators, because most of the
Internet traffic goes through tier-1 ADs.

E. Padding Against Size-Based Traffic Analysis

If we use fixed-size segments, an attacker can determine
the distance (in terms of AD hops) to a sender based on the
size of the header. Hence, LAP allows ADs to pad segments
(variable-size segments) to enhance topological anonymity.
As mentioned in Section IV-A, the size of each variable-size
segment is in multiples of 128 bits. For proper decryption
and adjustment of the offset, each AD needs to know the size
of its own segment. Hence, to allow proper operations on
both forward and backward packets, an AD using a variable-
size segment encodes the size in both the first and last 128-
bit blocks in the SIZE field as follows: ADi (1) creates the
first 128-bit block Oi using symmetric key ki as described
in Section IV-B; and (2) copies the same INGRESS, EGRESS,
and SIZE to the last 128-bit block of its segment, and creates
the MAC over the entire segment using another symmetric
key k′

i. In this manner, the first 128-bit block looks different
from the last 128-bit block. With this process, the AD can
recover the length of its own segment from either the first
or the last 128 bits of the segment, and adjust the offset
properly. For (1), note that since an AD does not know the

511

size of the previous segment, it computes a MAC over the
last 128 bits of the previous segment.

With these variable-size segments, an attacker can only
obtain an upper bound on the distance to the sender, which
is the size of the e-path in bits divided by 128. The optimal
way of padding results in an e-path of 128 · l bits, where l

is the distance of the farthest potential sender in AD hops.

V. PRELIMINARY ANALYSIS

In this section, we illustrate that the current Internet
provides minimal anonymity, and demonstrate how LAP can
increase the level of anonymity with a real Internet topology.

A. Anonymity and Privacy in the Current Internet

Anonymity in the Internet is hindered by long lasting end-
host identifiers, namely IP addresses. From a network layer’s
perspective, IP addresses identify both the source and the
destination of the traffic. Hence, by snooping on traffic flows,
malicious nodes can easily determine which end-hosts are
communicating with each other and link different sessions to
the same end-hosts. While public servers prefer long-lasting
IP addresses for availability, current Internet protocols and
ISP policies generally assign IP addresses that last on the
order of days [24] to clients who have no desire to run
public servers. Typically, these IP addresses (from the ISPs
allocated address space) change only when the DHCP lease
time expires. While NAT boxes can provide an anonymity set
greater than one, devices behind them are usually both small
in number and in the same geographical area, thus providing
extremely limited privacy guarantees. In the cellular realm,
the situation is better since providers’ NATs can mask a
wider range of clients [25]. Ideally, privacy solutions should
be available in all domains that easily allow end-hosts to
retain anonymity at the network level.

Consequently, while the current Internet intrinsically pro-
vides a certain level of anonymity based on dynamic ad-
dressing techniques (e.g., DHCP and NAT), the degree of
anonymity is constrained by the size of the IP prefixes. More
specifically, we estimate the anonymity set size by analyzing
the announced prefix sizes and the number of subscribers of
six main ISPs in the U.S., as Table I summarizes. We group
the prefixes (extracted from the RouteViews dataset [26])
into ISPs using AS description from the CIDR report.5

Assuming that subscribers are uniformly distributed in an
ISP’s address space, the size of an anonymity set can be as
low as 24.7 � 26.

Similar studies have shown that hiding behind a prefix
provides insufficient anonymity [7]. Although aggregating
prefixes associated with the same location may increase the
size of the anonymity set (but not location privacy), the
flexibility of route management within an ISP may diminish.
Also, users have no control over their level of anonymity.

5http://www.cidr-report.org/as2.0/

 1

 10

 100

 1000

 10000

 100000

2^0 2^5 2^10 2^15 2^20 2^25 2^30

N
u

m
be

r
of

 C
it

ie
s

Number of Addresses

Figure 5. As the number of possible IP addresses increases, so does the
number of potential cities.

 0

 0.2

 0.4

 0.6

 0.8

 1

2^0 2^4 2^8 2^12 2^16 2^20 2^24 2^28 2^32
C

D
F

Anonymity Set Size

1 Hop
2 Hop
3 Hop
4 Hop

Figure 6. Comparison of anonymity set size based on the number of
encrypted hops. As the number of encrypted AD hops increases, the
anonymity set size increases. For the case of 4 encrypted hops, almost
all origins enjoy an anonymity set size of over 228 hosts.

We also investigate location privacy in the current Internet.
We use the Maxmind GeoIP locationing tool to estimate an
end-host’s current city6 based on its IP address and quantify
the location-privacy level based on the number of cities the
end-host may reside in. Figure 5 shows the relationship
between the number of cities and the anonymity set size:
the level of location privacy can be increased by increasing
the number of possible IP addresses.

B. Anonymity in LAP

In LAP, users can improve their anonymity set size by
extending the length of their e-paths.

To show the effectiveness of LAP path encryption,
we evaluate anonymity in LAP using traceroute data
from iPlane’s measurements and routing data from Route-
Views [26]. The iPlane dataset contains traceroute data
between 197 sources and about 13 thousand destinations. We
eliminate 28 sources with incomplete logs and choose 1,000
destinations for each source. For each pair of source and
destination, we calculate the size of the source anonymity
set with respect to the destination based on the Internet
topology and the assigned address space extracted from the

6Maxmind determines city names based on the Geographic Names Data
Base. http://www.maxmind.com/

512

Table I
ANONYMITY SET SIZE OF US TOP ISPS.

ISP Address Space Announcing Subscriber [27] Subscriber Entropy/Prefix
(Entropy) Prefix (Entropy) Ave. Min Max

Comcast 70,374,912 (26.1) 865 17,406,000 (24.1) 19.5 6.0 22.0
Time Warner 27,556,352 (24.7) 2,158 9,992,000 (23.3) 14.4 6.5 17.5

Cox 11,971,584 (23.5) 1,507 4,400,000 (22.1) 18.8 6.6 19.6
ATT 114,544,128 (26.8) 6,127 16,485,000 (24.0) 18.3 5.2 21.2

Verizon 84,403,200 (26.3) 4,376 8,490,000 (23.0) 15.5 4.7 19.7
Quest 84,403,200 (24.0) 899 2,965,000 (21.5) 16.2 5.5 18.5

RouteViews dataset. According to Figure 6, which illustrates
the CDF (cumulative distribution function) of the number
of addresses, the increase in the number of encrypted hops
increases the anonymity set.

VI. LAP INSTANTIATION

In this section, we discuss how LAP can be accommo-
dated in the current IP network running BGP. We then
discuss the potential benefits of tailoring LAP to two future
Internet architectures: SCION [9] and MobilityFirst [10].

A. LAP in the Current Internet

In this section, we delineate how LAP can be incremen-
tally deployed in the current IP network. We consider both
LAP-enabled ADs and legacy ADs that do not support LAP.
In such heterogeneous networks, one main challenge is to
enable a LAP-enabled AD to discover and build virtual
channels to nearby LAP-enabled ADs. For this integration,
we assume that the IP header contains a LAP-flag bit that is
set if an IP packet encapsulates a LAP packet.7

A legacy AD is agnostic to the encapsulated LAP packet
and routes IP packets based on the destination IP as specified
in the IP packet header. A LAP-enabled AD, on the other
hand, installs dedicated LAP routers where each of them has
a publicly-accessible address, and configures every gateway
router to route LAP packets (whose LAP-flag is set) to the
nearest LAP router. Figure 7 illustrates a scenario where
AD1 and AD3 are legacy ADs, and AD2 and AD4 are LAP-
enabled ADs. X and Y represent the LAP routers in AD2

and AD4, respectively.
When Alice (whose IP address is A) wants to diffuse her

topological location for her communication with Bob (whose
IP address is B), she installs a LAP application proxy on
her machine. To obtain an e-path, this proxy prepares a LAP
request packet and encapsulates it in an IP packet. Then,
this IP packet is initiated with srcIP = A and destIP = B.

7Several potential approaches exist to add LAP to the current IP header.
One approach would be to add a LAP IP options field, however, this would
constrain the length of the LAP header and possibly also slow down packet
processing at legacy routers. Another approach would be to use a bit in the
current IP header to indicate presence of a LAP header. We could use bit 0
of the 3-bit FLAGS field, which is currently unused. Another potential use
could be a bit within the TYPE OF SERVICE OR DIFFERENTIATED SERVICE

byte, since the PRECEDENCE or the ECN bits are rarely used. Yet another
approach would be to set the PROTOCOL field to indicate that the next
header is a LAP protocol header. In the two latter cases, the LAP header
could be placed between the IP and TCP or UDP headers.

Encrypted path establishment. The request packet
sets up an anonymous return path by which Bob can reach
Alice without knowing her IP address. When a gateway in
the LAP-enabled AD2 receives a LAP-flagged request
packet, it routes the packet to the dedicated LAP router X .
X then encrypts the srcIP to generate its e-path segment
O2 and appends O2 to the encapsulated LAP packet. X

also updates the srcIP = X in the IP header but destIP

remains the same. Similarly, AD4 process the packet in the
same way. When Bob, receives a packet whose srcIP = Y

and destIP = B, he sends a reply packet with srcIP =
B and destIP = Y . We assume that the LAP-flag and
LAP header are preserved in the reply packet. When router
Y receives the reply, it verifies O4, extracts the IP of
the previous LAP router (i.e., X) from O4, and updates the
destination address to be X . Similarly, router X retrieves A

from O2 and updates destIP = A.

Forwarding. Alice obtains an e-path from the reply
packet. To send a data packet to Bob, Alice prepares a LAP
data packet that contains the e-path and encapsulates it
in an IP packet whose srcIP = ∅ and destIP = B. Upon
receiving a LAP data packet, Bob returns data packets using
the embedded e-path, as described above. Note that ADs can
distinguish forward and return data packets based on the
TYPE field and adjust the OFFSET correctly.

❶ A→ B: request

❷ A← B: reply
X

X

X

Y

Y

Y

A A

A

A

B B B B

B
BB

B

AD1 AD2 AD3 AD4

A

A A A A

AA X

X X X X

X Y

Y Y Y Y0 1 2

e-path segment offsetaddress

legacy AD LAP-enabled AD

Figure 7. Incremental deployment.

Asymmetric paths. Another advantage of LAP integrated
with the current Internet is that it can support asymmetric
inter-domain paths, which may exist in BGP due to routing
policies, because in this instantiation LAP path is defined
by a list of IP addresses instead of interfaces.

513

B. Integrating LAP into SCION

In this section, we show that LAP can be seamlessly
integrated into SCION [9], a high-availability network archi-
tecture. LAP only requires an overhead for path establish-
ment and encryption/decryption of packet-carried forward-
ing information, because packet-carried forwarding state and
encrypted path publishing/downloading can be embedded
into the existing SCION framework.

Background of SCION routing. SCION groups ADs into
Trust Domains (TDs), where each TD aggregates ADs that
agree on a common root of trust, usually mapping to an
area of uniform legal jurisdiction. Each TD has a TD core
consisting of the tier-1 ISPs within this trust domain. TD
cores are in charge of two tasks. First, they periodically
broadcast Path Construction Beacons (PCBs) by which an
AD can learn one or more paths to/from this AD’s TD
core. Second, TD cores manage authoritative servers such as
SCION path servers. Upon receiving PCBs, an AD selects
multiple paths along which it can be reached from its TD
core, and publishes these (downstream) paths to a path
server. To create an end-to-end routing path, a source queries
a path server for the destination’s downstream paths and then
splices one of its upstream paths with one of the destination’s
downstream paths.

Path encryption requests. SCION ADs route packets
using (unencrypted) packet-carried forwarding state and
verify the forwarding information using MACs. Hence,
running LAP with SCION requires adding symmetric en-
cryption/decryption functions to routers. In SCION, a source
obtains a set of paths to reach the destination for source-
selection routing. Hence, Alice embeds a request packet
inside a SCION packet by specifying one of the (unen-
crypted) paths for an e-path construction. Upon receiving
this packet, an intermediate AD (ADi) appends its Oi and
removes the (unencrypted) previous hop information to erase
the trace. The reply and data forwarding can be done as
described in the LAP protocol section (Section IV-B).

Path server and rendezvous points in TD cores. The
design of SCION requires a path server to store ADs’
downstream paths, as an end-to-end path is constructed
by splicing a source-to-core path with a core-to-destination
(downstream) path. Similarly, LAP also requires a path
server that stores encrypted paths to certain rendezvous
points. Hence, SCION path servers can manage both SCION
paths and LAP’s encrypted paths. In this manner, a TD
core becomes a default rendezvous point since all paths can
traverse the TD core. Note that for the sake of efficiency
(shorter paths), SCION may permit shortcuts that bypass a
TD core by comparing and finding the intersection of the
upstream and downstream paths. However, in LAP, finding
such common intersections (common links or ADs) when
the intersections are encrypted is fundamentally infeasible

because an attacker could take the intersection finding algo-
rithm as an oracle to decipher encrypted paths. Fortunately,
the semi-encrypted paths (constructed by setting a small
HOP-TO-ENCRYPT value in the request) in LAP enable
part of a path to be encrypted for a sufficient degree of
privacy with the other half remaining unencrypted to enable
shortcut construction.

C. Integrating LAP into MobilityFirst

To further illustrate the flexibility of LAP, we now
describe how it can also be integrated into a mobility-
centric future Internet architecture called MobilityFirst [10].
MobilityFirst retains a distributed routing control plane
similar to that of BGP, while providing a clean separation of
network “entities” and routable addresses. Privacy is a major
concern for mobility-centric architectures since they allow
humans, via devices they carry or drive, to be continuously
connected to the broader Internet. Hence both control-
plane reachability updates as well as content generated by
these devices have the potential to breach privacy. Low-
stretch privacy solutions that cleanly integrate with mobility-
centric architectures can give end users privacy with minimal
disruption. As with SCION, LAP naturally complements
MobilityFirst and adds little overhead.

Background of MobilityFirst. MobilityFirst is a clean-
slate Internet architecture designed to address challenges
brought about by an increase in the number of mobile,
wireless devices. At its core, MobilityFirst provides a mech-
anism to abstract network entities important to applications,
and bind those abstractions into routable network addresses.
Specifically, entities such as an individual laptop, a vehicle,
a piece of content, or a group of people each obtain a
globally unique identifier, or GUID, that the application
uses for communication. When data destined for a GUID
is received by a MobilityFirst router, the router will either
attempt to directly route on the GUID or bind the GUID
to a routable address via a massively distributed global
name resolution service, or GNRS. All publicly available
entities are responsible for ensuring that their GUID-to-
network address mapping is up-to-date in the GNRS. The
GNRS is accessible from all MobilityFirst routers and hence
GUIDs can easily be re-bound deeper in the network if the
destination’s network address has changed. In addition to
separating naming from addressing, MobilityFirst heavily
utilizes in-network storage and hop-by-hop transfer of large
data chunks to react to network and host mobility.

Path encryption requests. MobilityFirst’s low-level rout-
ing plane is similar to that of BGP, with the exception of IP
prefix announcements. Since the GNRS handles the “who
is in what network” question, MobilityFirst routing simply
needs to exchange AD-level reachability information. A
LAP path encryption request will occur after a MobilityFirst
router (e.g., the border router of the source AD) queries the

514

destination GUID for a destination network address. The
destination network address can be used as the destination
of a path encryption request. This process, as described in
Section IV-B, can then proceed as it would with BGP.

Path server and rendezvous points. The GNRS is
responsible for binding GUIDs to routable addresses, and
hence is a perfect match for the LAP path server. Using LAP,
the GNRS will bind a GUID (which may be a pseudonym) to
an e-path leading to a rendezvous point. Therefore, a router
wishing to route towards a destination GUID will make a
GNRS query and either get back the destination network
address or an e-path leading to a rendezvous point. Mobili-
tyFirst networks, however, do not have a strict hierarchy, and
hence choosing a rendezvous point is less intuitive. However,
since the GNRS is capable of handling multi-homed GUIDs,
multiple rendezvous points can be uploaded and bound to
the same GUID. If the destination also provides hints, such
as “use encrypted path 3 if in North America”, this can
alleviate stretch problems at the expense of some decrease
in location privacy.

Handling mobility. In order to dynamically respond to
mobility and disconnection deep within the network, the
destination GUID is always available as the authoritative
header on a piece of data. Routers detecting a problem with
a destination network address can always query the GNRS
and re-bind the GUID to a new destination address. LAP
integration does not change this, as the destination GUID
can always be re-bound to a new e-path obtained from the
GNRS.

VII. SECURITY ANALYSIS

We analyze how LAP conceals end-hosts’ topological lo-
cations for an intermediate level of anonymity, and achieves
session unlinkability. We also describe how LAP defends
against attacks.

A. Sender/Receiver Anonymity Analysis

In this analysis, we consider a scenario where Alice and
Bob communicate with each other along an AD path AD1,
AD2, · · · , ADn and quantitatively analyze the degree of
anonymity with respect to an adversary, adv, at various
vantage points on the path.

We compare LAP with three related anonymous systems:
Tor [1], Tor Instead of IP [14], and AHP [7]. We show that
LAP provides a competitive degree of anonymity compared
to low-latency anonymity systems in the presence of LAP-
setting adversaries. Also, LAP guarantees much stronger
anonymity properties compared to AHP, which provides a
limited level of protection due to a small anonymity set and
does not support receiver anonymity.

Notation. We denote A
adv
s (x) as the sender anonymity

set of user x with respect to adversary adv. The receiver
anonymity set A

adv
r is defined similarly. Let N be the total

number of Internet users; thus, N is the maximum size of an
anonymity set. Nt is the number of Tor users and Nt ≤ N .
In practice, Nt � N because Nt is between 105 – 106 [28]
while N is on the order of 109 [29].

Assumptions. As mentioned in Section II-A, a sender
can achieve stronger anonymity if its identity is hidden
in a larger anonymity set. For the analysis, we assume
equiprobability for subjects in an anonymity set. That is, an
adversary can determine who may have sent or received a
packet within a given anonymity set but cannot tell whether
one is more likely to send/receive than the others in the
same set. We consider a LAP-setting adversary, who can
leverage topological information but not timing information
and cannot compromise the first-hop AD of a victim. An
adversary with the knowledge of the AD-level topology
can narrow down the anonymity set of a packet based,
for example, on the length of the packet header and the
packet’s incoming interface. For this analysis, we assume
full deployment of LAP, Tor Instead of IP, and AHP.

We summarize our analysis in Table II, where the first
column describes the adversary’s location and the following
columns present (|Aadv

s (Alice)|, |Aadv
r (Bob)|) for LAP, Tor,

Tor instead of IP, and AHP. Below, we justify the table.

1) LAP: In this analysis, we consider LAP with full
path encryption (Alice’s e-path + Bob’s e-path through a
rendezvous AD ADv in Tier 1) and optimal padding. Hence,
a malicious AD can conclude that the sender (or receiver)
must reside in an AD that is reachable from the incoming (or
outgoing) interface. However, because of optimal padding,
an attacker cannot obtain identifiable information from the
size of the header.

In LAP, only the first- or last-hop AD knows the identity
of the sender or receiver, respectively. Hence an adversary
cannot link the sender and the receiver in LAP unless he
controls both the first and the last ADs along the path (adv8
in Table II), which is, however, outside our threat model.
Moreover, the degree of anonymity increases with the length
of the e-path. In other words, the farther away an attacker
is from the user, the higher the degree of anonymity. For
example, if Bob is an attacker (adv1 in Table II), Alice’s
sender anonymity set is N , because Bob has no knowledge
of the interface information, and every Internet user could
be the sender from Bob’s point of view. On the other hand,
if Alice’s first-hop AD is the attacker (adv7), her anonymity
set is 1.

Generally, the degree of anonymity strictly increases as
the attacker’s position moves toward ADv (adv3), because
for each additional AD between Alice and the attacker, users
in that AD are added to the anonymity set:

|AADi

s (A)| ≥ |AADj

s (A)| + |ADj |

⇒|AADi

s (A)| > |AADj

s (A)| if v + 1 ≥ i > j

515

Table II
COMPARISON OF SENDER AND RECEIVER ANONYMITY, REPRESENTED BY THE PAIR OF (|Aadv

s (Alice)|, |Aadv
r (Bob)|). ASSUME FULL DEPLOYMENT

OF LAP, TOR INSTEAD OF IP, AND AHP. |ADx| IS THE NUMBER OF CLIENTS IN ADx .
Adversary adv LAP Tor [1] Tor instead of IP [14] AHP [7]

LAP-setting

adv1 ADn (N , n/a) (Nt, n/a) (N, n/a) (≤ |AD1|, n/a)
adv2 ADi (v < i < n) (N, < N) (Nt, Nt) (N, < N) (≤ |AD1|, 1)
adv3 ADv (or Tier 1) (≈ N,≈ N) (Nt, Nt) (N, N) (≤ |AD1|, 1)
adv4 ADi (1 < i < v) (< N, N) (Nt, Nt) (< N, N) (≤ |AD1|, 1)
adv5 AD1 (n/a , N) (n/a, Nt) (n/a, N) (n/a, 1)

non-LAP-setting
adv6 ADn (N , 1) (Nt, 1) (N, 1) (≤ |AD1|, 1)
adv7 AD1 (1, N) (1, Nt) (1, N) (1, 1)
adv8 adv6+adv7 (1,1) (1, 1) (1,1) (1, 1)

If the attacker is beyond ADv (adv4), the anonymity set is
|A

ADv+1

s (A)| because the rendezvous AD is known. That is,
|AADi

s (A)| = |A
ADv+1

s (A)| if i > v + 1. Therefore, when
the attacker is on the path between Bob and ADv (including
Bob), Alice has the highest degree of anonymity, where any
end-host in the network could be the sender (assuming that
ADv is reachable from all end-hosts).

Finally, colluding ADs can easily share knowledge and
correlate packets since LAP does not conceal packet content
and packet size. Thus, the resulting anonymity set is the
intersection of those perceived by individual malicious ADs.
Also, LAP provides no anonymity if both end-point ADs
collude.

2) Tor [1]: For the purpose of this analysis, we assume
that Alice and Bob are Tor clients but do not serve as Tor
relays. An attacker can learn a list of Tor relays from Tor
directory servers. Hence Alice’s first-hop AD (AD1) can
observe that she is sending packets. However, the second-
hop AD (AD2) cannot learn the origin of the packet because
it cannot distinguish whether the Tor sender resides in AD1,
or the packet is relayed by other Tor servers and routed
through AD1. In general, if an attacker is an AD except AD1,
Alice is hidden within all active Tor users (Nt). The same
analysis can be applied for receiver anonymity. Unlike LAP,
Tor can prevent colluding ADs from linking Alice with Bob
based on topological or packet information, because layered-
encrypted packets look different at each AD. However, Tor
is vulnerable to timing attacks performed by colluding ADs
(e.g., adv 8).

3) Tor Instead of IP [14]: Recent proposals identify
the importance of improving the default privacy level at
the network layer. Instead of using Tor as an overlay, Liu
et al. propose replacing IP with Tor. They assume that each
AD runs a Tor server, and that packets travel from the
sender to the Internet core (Tier 1) and then to the receiver
similar to LAP rather than being routed via an indirect
path. Tor instead of IP, however, allows zigzag paths in
the core to improve anonymity. Hence, this scheme exhibits
the same level of anonymity as LAP when an attacker is
not at the core, but a slightly better anonymity when the
core AD is malicious. However, in terms of performance,
this scheme suffers from expensive path establishment and

stateful communication similar to Tor.

4) AHP [7]: Raghavan et al. propose Address Hiding Pro-
tocol (AHP), in which an ISP shuffles its own address space
and assigns a random IP to a sender. Trostle et al. present a
similar approach to enhance sender’s location privacy using
Cryptographically Protected Prefixes (CPP) [30]. Both AHP
and CPP achieve a level of sender privacy constrained by the
available address block and geographical distribution of the
sender’s hosting ISP. For example, the sender anonymity in
AHP is bound by the size of the first-hop AD (or ISP). Also,
they do not offer receiver anonymity or location privacy.

B. Session Unlinkability

Session unlinkability can be achieved by requesting a
new e-path for every new session. Furthermore, a sender
can refresh paths more frequently or use more than one
path simultaneously, thanks to the lightweight construction
of an e-path. Hence, LAP does not require the same path
to be reused for multiple TCP sessions. We show that LAP
achieves session unlinkability by considering the knowledge
of a malicious AD in the LAP-setting as follows. From a
request packet, an AD knows an e-path to the sender, the
size of e-path (which provides an upper bound on the AD-
level distance to the sender), the receiver’s ID (say, Bob), and
its own segment. A malicious AD can store this information
in his own local database. Upon receiving a reply or data
packet, the malicious AD can compare the stored segments
from the e-path in the packet, and learn the missing segments
from the sender to the receiver. As a result, all data packets
carrying the same segments would be linked to the same
sender-receiver session. On the other hand, when different
segments are used in a new session, the AD cannot tell
if Bob is still communicating with the same sender, thus
achieving session unlinkability.

C. General Attack Resilience

DoS resilience. Prior anonymity systems are often vulner-
able to computational-based DoS due to expensive asym-
metric operations for setting up communication paths or
storage-based DoS due to stateful forwarding. As a result,
they require additional DoS defense mechanisms, such as
introduction points [1] or mailboxes [14], as an extra layer of
indirection to actively block unwanted requests. On the other

516

hand, LAP is robust against Denial-of-Service (DoS) attacks
in many aspects, thanks to its lightweight path establishment
and stateless forwarding mechanism. For example, a receiver
can filter incoming traffic by selectively announcing paths
and frequently updating paths.

A common challenge for all anonymity systems is when
an attacker sends untraceable traffic. To prevent such misuse
of anonymous communications, an AD can allocate only
a small amount of bandwidth for anonymous traffic. To
prevent such attacks, we leave it as future work to study
the tradeoffs between anonymity and accountability.

Resilience against traffic analysis. Traffic analysis com-
prises two parts: observing traffic and correlating traffic.
Compared to Tor, LAP makes correlations much easier
but observations much harder. For correlations, an attacker
controlling two or more distinct entities in the network can
easily correlate observed packets to estimate their routes,
because LAP packets in the same session look the same at
each hop. For observations, a Tor attacker controlling all
entry and exit relays has a good chance of de-anonymizing
Tor traffic. However, the equivalent attack is almost impos-
sible in LAP because the attacker has to compromise all the
first-hop ADs.

D. Resilience against Known Attacks

DoS-based side-channel attacks. In the category of DoS-
based side-channel attacks, the approach proposed by Burch
and Cheswick [31] for IP traceback could also be applied
to trace back an e-path to its origin. The basic idea is
to send a large amount of traffic over a link that the e-
path may be using. If the link is indeed part of the e-path,
one will observe a slowdown of the session using the e-
path. By repeating this process, one could eventually trace
back the entire path. The essence of the approach is to
induce a DoS attack and to use other packets as a side
channel to determine the packet flow. Numerous such side
channels have been investigated in the literature [20], [21],
[23], [32]. Flow watermarking techniques also fall into this
attack category, using slight time-based variations to infer
which packets belong to the same session [33], [34] —
however, this requires multiple observation points in the
network. These attacks are possible even on more heavy-
weight schemes such as Tor, and naturally our lightweight
approach will not offer protection. These attacks, however,
require more significant effort than passive observations of
network traffic.

Time-based identity inference attacks. A related attack
class is time-based identity inference attacks. Specifically,
Kohno et al. propose device fingerprinting based on clock
skew inferred from TCP timestamps [35]. Since in LAP,
TCP headers are not encrypted by default, this attack would
apply; however, the standard countermeasures apply as well:
end-to-end IPsec tunnel, perturbation of TCP timestamp,

etc. Another potential location leak is round-trip-time (RTT)
based location inference, where the observation is that the
lowest observed RTT induces an upper bound on the distance
of the other party. Consequently, ACK packets for example,
may need to be delayed to increase the anonymity set.

TTL-based attacks. Finally, in the case of LAP used on
IP-based networks, we need to defend against a TTL-based
attack: by sending a LAP packet with a small TTL, the
TTL may expire while a router within the e-path forwards
the packet, which in turn would trigger an ICMP message
sent to the source address. Fortunately, the first router in the
e-path sets the IP source address to its own address, thus the
attacker would not receive the ICMP error message.

VIII. EVALUATION

In this section, we evaluate the performance of LAP in
terms of latency and throughput. Specifically we compare
three systems: LAP-disabled (no anonymity), LAP-enabled
(intermediate anonymity), and Tor (high anonymity). Our
results show that LAP improves anonymity with a negligible
overhead (i.e., lightweight) and is more efficient compared
to high anonymity systems like Tor.

LAP implementation. We implement basic routing and
forwarding elements based on Click software routers [36]
to support packet-carried forwarding state (LAP-disabled).
We extend the prototype to further support encryp-
tion/decryption of LAP (LAP-enabled). The only overhead
that LAP introduces for an e-path construction per AD hop
is the extra packet space needed for optimal padding, and
the time for a symmetric encryption. This is because packet-
carried forwarding state already requires ADs to verify their
own routing decisions using MACs. Since routing decisions
are carried in each packet, the overhead caused by the
forwarding phase for each AD is the time to decrypt its
own segment. We show that our software-based implemen-
tation of LAP exhibits competitive performance, with an
anticipation that LAP will perform even better on dedicated
hardware.

A. Latency Evaluation

We first examine the latency introduced by LAP’s cryp-
tographic operations. We then estimate LAP’s latency in the
real Internet and compare with Tor.

We measure the latency of LAP-disabled and LAP-
enabled systems in one LAN network. Each AD is simulated
on one machine with 1 Gbps connection to its adjacent ADs.
Since our tests are run on a local LAN, the latency is domi-
nated by the cryptographic operations. We implement LAP’s
encryption/decryption using the AES function in OpenSSL.
For the LAP-disabled case, ADs perform forwarding using
packet-carried state, which involves one MAC computation
using the same AES function. For the LAP-enabled case,
ADs verify a MAC and decrypt their own state during

517

(a) Average latency with LAP disabled and LAP
enabled.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

C
D

F

latency

Tor
LAP

(b) Latency comparison of LAP and Tor using the
real Internet topology.

(c) Average throughput with LAP disabled and
LAP enabled.

Figure 8. LAP evaluation.

forwarding. We run each test 10 times and present the
average value. As Figure 8(a) shows, LAP adds a small
amount of latency to packet processing; in our software
implementation, this is on the order of microseconds, but a
hardware implementation would shrink the extra decryption
time to nanoseconds.

We also compare the latency experienced by LAP and
Tor users using the real Internet topology as follows: we
estimate LAP’s latency based on the actual Round-Trip-Time
of receiving HTTP packet headers and the estimated latency
overhead of LAP cryptographic operations. For Tor, we
measure latency using the actual Tor network. Specifically,
we measure the latency with and without Tor between
10 geographically distributed machines and the top 200
university websites reported by Alexa8, and also resolve the
URLs of these sites in advance to exclude DNS lookup
time. We use university sites as they are less likely to
redirect traffic based on source addresses (in contrast to
popular commercial sites). As Figure 8(b) shows, LAP
users experience significantly lower latency compared to Tor
users: 90% of LAP requests finish in less than one second,
while most (> 99%) of Tor requests take more than one
second.

B. Throughput Evaluation

We evaluate LAP’s impact on throughput using Netperf
2.5.09 with synthetic traffic of different packet sizes. Fig-
ure 8(c) shows the average throughput of LAP-disabled and
LAP-enabled systems. We observe that the throughput grows
with packet size for both cases. In particular, the throughput
for the LAP-enabled case is slightly lower than the one for
LAP-disabled, since it takes more time for LAP to process a
packet than to simply forward it. However, the difference in
these throughput is very small or even negligible, especially
when the packet size is beyond 1 KByte. This result confirms
that LAP has a small impact on router performance.

We also compare the throughput between LAP and Tor
using a small testbed that runs LAP as well as a private Tor

8http://www.alexa.com/topsites/
9http://www.netperf.org/netperf/

network with three Tor relays. For this evaluation, we set
four machines in the testbed to be connected among each
other using 1-Gbps links, each machine dedicated to be a
source, a destination (file server), an intermediate machine
running three Tor relays, and a Tor directory server. With
this testbed, we measure the average throughput of a client
machine that is downloading a 10-GB file from the file server
for LAP and Tor. When downloading a 10-GB file using the
Tor network, the client’s average throughput is μ = 50.79
Mbit/s (σ = 1.41). With LAP, μ = 939.50 Mbit/s (σ =
32.76), showing a significant throughput increase.

To summarize, the overhead that LAP imposes is minor,
which makes LAP suitable for practical deployment. In
particular, at the cost of a small throughput decrease, LAP
can improve the anonymity in current IP networks.

IX. RELATED WORK

The most closely related schemes for anonymity pro-
tection, namely Tor Instead of IP [14] and AHP [7], are
described and compared in the security analysis section
(Section VII).

High-stretch anonymity systems. In Chaum’s mix net-
work [8], layer-encrypted messages are sent through a list
of mixes, each of which can buffer, reorder, decrypt/encrypt
these messages to defend against a global eavesdropper.
However, delaying and reordering renders it impractical for
real-time communication.

Onion routing systems, such as Tor [1], enable low-
latency, bi-directional anonymous communication by send-
ing layer-encrypted packets through indirect and unpre-
dictable cryptographic circuits [37]. Unlike mix networks,
onion routing systems are designed to defend against a local
attacker (or a government-class attacker, as referred to in this
paper) that observes only a fraction of the network. Under
some realistic attacker scenarios, onion routing systems
are shown to be more secure than mix networks [38].
Tarzan [39] explores onion routing in a peer-to-peer setting,
and ANDaNA [40] adopts Tor in content-centric network-
ing. However, onion routing systems still suffer from high
latency due to high path stretch. To reduce Tor’s latency,

518

new relay selection algorithms are suggested considering
relay geolocations or link characteristics in addition to relay
bandwidth [4], [41]. However, further studies are required
to understand their impact on existing attacks against Tor.

Researchers have also explored solutions without layered
encryption. For example, Information slicing [42] achieves
source and destination anonymity through multi-path and
secret sharing. However, Information slicing operates on
overlays and suffers from noticeable latency. Crowds [43]
leverages a crowd of users to collaboratively remove the
trace of the real requester, and Hordes [44] exploit the inher-
ent crowds within muticast groups for receiver anonymity.
However, both Crowds and Hordes significantly stretch end-
to-end paths.

Low-stretch anonymity systems. Using a single anony-
mous proxy such as anonymizer.com [45] results in low
path stretch. However, users have to trust a remote proxy
in burying the linkage between a sender and a receiver, and
the proxy could easily become a single point of failure.

Censorship-resilient systems such as Decoy routing [46],
Telex [47], and Cirripede [48] rely on ISPs to redirect traffic
to blocked destinations. Although they also require enlisting
ISPs for protection as LAP does, they place trust on remote
ISPs to help defend against a much stronger adversary
monitoring local networks.

Attacks on anonymity systems. Several researchers have
studied how to passively and actively attack anonymity
systems. For passive attacks, the adversary attempts to de-
anonymize traffic by observing side-channel information
such as packet timing [49], clock skew [35], and unique
system state [50], [51]. However, such passive attacks often
fail to scale or rely on information leaked from higher layer
protocols. On the other hand, active attacks can accelerate
traffic correlation. DoS is one type of active attacks that can
be used for additional attack opportunities [32]. For example,
by clogging the network and monitoring the latency change,
the attacker can identify Tor entry nodes [20], [21] and locate
Tor users [22]. Although our main objective is to camou-
flage one’s topological location to enhance anonymity and
privacy, LAP can mitigate DoS-based attacks by selectively
publishing encrypted paths.

Low-latency anonymity systems are shown to be inher-
ently vulnerable to timing and traffic analysis [22], [23],
[52], because an adversary can easily correlate the traffic
patterns of a sender and a receiver. Since our goal in this
paper is to provide topological anonymity, we consider such
temporal side-channel attacks as future work.

X. CONCLUSIONS

Current anonymous communication systems achieve a
high level of anonymity against a strong attacker model, but
pay a dear price in terms of overhead: high communication
latency with high in-network computation and storage state.

Especially the high latency causes the Internet browsing
experience to endure a significant slowdown.

Anonymous communication would thus be more usable
with reduced overhead. Indeed, we believe that many users
can live with a relaxed attacker model, as they can trust their
local ISPs but want protection from tracking by ISPs that
are further away (potentially in other countries with different
privacy laws) and from tracking by websites. Given such a
weaker attacker model, we attempt to provide source and
destination anonymous communication, session unlinkabil-
ity, and location privacy at a very low overhead, barely more
than non-anonymous communication.

In this framework, our approach is simple yet effective: by
leveraging encrypted packet-carried forwarding state, ISPs
that support our protocol can efficiently forward packets to-
wards the destination, where each encrypted ISP-hop further
camouflages the source or destination address or its location.

Although encrypted packet-carried forwarding state is cur-
rently not supported in IP, we design simple extensions to IP
that could enable this technology. In particular, our approach
is even more relevant in future network architectures, where
the design can be readily incorporated.

This new point in the design space of anonymity protocols
could also be used in concert with other techniques, for
example in conjunction with Tor to prevent one Tor node
from learning its successor. Despite weaker security proper-
ties than Tor, we suspect that LAP contributes a significant
benefit towards providing topological anonymity, as LAP is
practical to use for all communication.

ACKNOWLEDGEMENTS

We gratefully thank Soo Bum Lee and Sangjae Yoo for
their help with Tor experiments, Nicholas Hopper and Paul
Syverson for bringing related work to our attention and
providing insightful feedback, and the anonymous reviewers
for their valuable comments.

This research was supported by CyLab at Carnegie Mellon
under grants DAAD19-02-1-0389 and W911NF-09-1-0273,
from the Army Research Office, and by support from NSF
under the TRUST STC award CCF-0424422, CNS-1040801,
CNS-1040735, and CNS-0845896. The views and conclu-
sions contained here are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either express or implied, of ARO, CMU,
NSF or the U.S. Government or any of its agencies.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the second-
generation onion router,” in Proceedings of conference on USENIX
Security Symposium, 2004.

[2] J. A. Muir and P. C. V. Oorschot, “Internet geolocation: Evasion and
counterevasion,” ACM Comput. Surv., vol. 42, pp. 4:1–4:23, December
2009.

[3] R. Dingledine and S. J. Murdoch, “Performance improvements on
Tor — or, why Tor is slow and what we’re going to do about it,”
2009. [Online]. Available: https://www.torproject.org/press/presskit/
2009-03-11-performance.pdf

519

[4] A. Panchenko, L. Pimenidis, and J. Renner, “Performance analysis of
anonymous communication channels provided by Tor,” in Proceedings
of Availability, Reliability and Security, 2008.

[5] P. G. Leon, B. Ur, R. Balebako, L. F. Cranor, R. Shay, and Y. Wang,
“Why johnny cant opt out: A usability evaluation of tools to limit
online behavioral advertising,” in Proceedings of CHI, 2012.

[6] R. Kohavi and R. Longbotham, “Online experiments: Lessons
learned,” Computer, vol. 40, pp. 103–105, 2007.

[7] B. Raghavan, T. Kohno, A. C. Snoeren, and D. Wetherall, “Enlisting
ISPs to improve online privacy: IP address mixing by default,” in
Proceedings of PETS, 2009.

[8] D. L. Chaum, “Untraceable electronic mail, return addresses, and
digital pseudonyms,” Commun. ACM, vol. 24, pp. 84–90, February
1981.

[9] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G. An-
dersen, “SCION: Scalability, control, and isolation on next-generation
networks,” in Proceedings of IEEE Symposium on Security and
Privacy, 2011.

[10] “MobilityFirst future internet architecture project.” [Online].
Available: http://mobilityfirst.winlab.rutgers.edu/

[11] J. Naous, M. Walfish, A. Nicolosi, D. Mazires, M. Miller, and
A. Seehra, “Verifying and enforcing network paths with icing,” in
Proceedings of ACM CoNEXT, 2011.

[12] A. Efrati, “’like’ button follows web users,”
May 2011. [Online]. Available: http://online.wsj.com/article/
SB10001424052748704281504576329441432995616.html

[13] “British telecom phorm pagesense external validation report,” 2008.
[Online]. Available: http://www.wikileaks.org/wiki/British Telecom
Phorm Page Sense External Validation report

[14] V. Liu, S. Han, A. Krishnamurthy, and T. Anderson, “Tor instead of
IP,” in Proceedings of ACM Hotnets, 2011.

[15] A. Pfitzmann and M. Köhntopp, “Anonymity, unobservability, and
pseudeonymity — a proposal for terminology,” in Proceedings of
PETS, 2001.

[16] O. Berthold, A. Pfitzmann, and R. Standtke, “The disadvantages of
free mix routes and how to overcome them,” in Proceedings of PETS,
2001.

[17] P. Syverson, “Why I’m not an entropist,” in International Workshop
on Security Protocols. Springer-Verlag, LNCS, 2009, forthcoming.

[18] J. Krumm, “A survey of computational location privacy,” Personal
Ubiquitous Comput., vol. 13, pp. 391–399, August 2009.

[19] S. Burnett, N. Feamster, and S. Vempala, “Chipping away at censor-
ship firewalls with user-generated content,” in Proceedings of USENIX
Security, 2010.

[20] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in
Proceedings of IEEE Symposium on Security and Privacy, 2005.

[21] N. S. Evans, R. Dingledine, and C. Grothoff, “A practical congestion
attack on Tor using long paths,” in Proceedings of USENIX security,
2009.

[22] N. Hopper, E. Y. Vasserman, and E. Chan-Tin, “How much anonymity
does network latency leak?” in Proceedings of ACM CCS, 2007.

[23] S. Chakravarty, A. Stavrou, and A. Keromytis, “Traffic analysis
against low-latency anonymity networks using available bandwidth
estimation,” in Proceedings of ESORICS, 2010.

[24] M. TechNet, “DHCP best practices.” [Online]. Available: http:
//technet.microsoft.com/en-us/library/cc780311(WS.10).aspx

[25] Z. Wang, Z. Qian, Q. Xu, Z. M. Mao, and M. Zhang, “An untold
story of middleboxes in cellular networks,” in Proceedings of ACM
SIGCOMM, 2011.

[26] “The RouteViews project.” [Online]. Available: http://www.
routeviews.org

[27] L. R. Group, “Nearly 1.3 million add broadband in the first quarter of
2011.” [Online]. Available: http://www.leichtmanresearch.com/press/
051711release.pdf

[28] “Tor metrics portal: Users.” [Online]. Available: https://metrics.
torproject.org/users.html

[29] “Internet world stats.” [Online]. Available: http://www.
internetworldstats.com/

[30] J. Trostle, B. Way, H. Matsuoka, M. Tariq, J. Kempf, K. T., and
R. Jain, “Cryptographically protected prexes for location privacy in
IPv6,” in Proceedings of PETS, 2004.

[31] H. Burch and B. Cheswick, “Tracing anonymous packets to their
approximate source,” in Proceedings of LISA, Dec. 2000.

[32] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz, “Denial of service
or denial of security?” in Proceedings of ACM CCS, 2007.

[33] A. Houmansadr and N. Borisov, “Swirl: A scalable watermark to
detect correlated network flows,” in NDSS, 2011.

[34] P. Mittal, A. Khurshid, J. Juen, M. Caesar, and N. Borisov, “Stealthy
traffic analysis of low-latency anonymous communication using
throughput fingerprinting,” in Proceedings of ACM CCS, 2011.

[35] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device
fingerprinting,” IEEE Trans. Dependable Secur. Comput., vol. 2, pp.
93–108, April 2005.

[36] “The click modular router project.” [Online]. Available: http:
//read.cs.ucla.edu/click/

[37] P. Syverson, “A peel of onion,” in ACSAC, 2011.
[38] ——, “Sleeping dogs lie in a bed of onions but wake when mixed,”

in HotPETs, 2011.
[39] M. J. Freedman and R. Morris, “Tarzan: a peer-to-peer anonymizing

network layer,” in Proceedings of ACM CCS, 2002.
[40] S. DiBenedetto, P. Gasti, G. Tsudik, and E. Uzun, “ANDaNA:

Anonymous named data networking application,” in Proceedings of
NDSS, 2012.

[41] M. Sherr, M. Blaze, and B. T. Loo, “Scalable link-based relay
selection for anonymous routing,” in Proceedings of PETS, 2009.

[42] S. Katti, J. Cohen, and D. Katabi, “Information slicing: anonymity
using unreliable overlays,” in Proceedings of NSDI, 2007.

[43] M. K. Reiter and A. D. Rubin, “Crowds: anonymity for web transac-
tions,” ACM Trans. Inf. Syst. Secur., vol. 1, November 1998.

[44] C. Shields and B. N. Levine, “A protocol for anonymous communi-
cation over the internet,” in Proceedings of ACM CCS, 2000.

[45] “Anonymizer.” [Online]. Available: http://www.anonymizer.com/
[46] J. Karlin, D. Ellard, A. W. Jackson, C. E. Jones, G. Lauer, D. P.

Mankins, and W. T. Strayer, “Decoy routing: Toward unblockable
internet communication,” in Proceedings of FOCI, 2011.

[47] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman, “Telex:
Anticensorship in the network infrastructure,” in Proceedings of
USENIX security, 2011.

[48] A. Houmansadr, G. T. Nguyen, M. Caesar, and N. Borisov, “Cirripede:
circumvention infrastructure using router redirection with plausible
deniability,” in Proceedings of CCS, 2011.

[49] B. N. Levine, M. K. Reiter, C. Wang, and M. K. Wright, “Timing
attacks in low-latency mix-based systems,” in Proceedings of FC,
2004.

[50] P. Eckersley, “How unique is your web browser?” in Proceedings of
PETS, 2010.

[51] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi, “Host Fingerprinting
and Tracking on the Web: Privacy and Security Implications,” in
Proceedings of NDSS, 2012.

[52] S. J. Murdoch, “Hot or not: Revealing hidden services by their clock
skew,” in Proceedings of ACM CCS, 2006.

520

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

