
LASTor: A Low-Latency AS-Aware Tor Client

Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha

Department of Computer Science and Engineering

University of California, Riverside

{makho001,cyu,harsha}@cs.ucr.edu

Abstract—The widely used Tor anonymity network is designed
to enable low-latency anonymous communication. However, in
practice, interactive communication on Tor—which accounts for
over 90% of connections in the Tor network [1]—incurs latencies
over 5x greater than on the direct Internet path. In addition, since
path selection to establish a circuit in Tor is oblivious to Internet
routing, anonymity guarantees can breakdown in cases where an
autonomous system (AS) can correlate traffic across the entry
and exit segments of a circuit.

In this paper, we show that both of these shortcomings in Tor
can be addressed with only client-side modifications, i.e., without
requiring a revamp of the entire Tor architecture. To this end,
we design and implement a new Tor client, LASTor. First, we
show that LASTor can deliver significant latency gains over the
default Tor client by simply accounting for the inferred locations
of Tor relays while choosing paths. Second, since the preference
for low latency paths reduces the entropy of path selection,
we design LASTor’s path selection algorithm to be tunable. A
user can choose an appropriate tradeoff between latency and
anonymity by specifying a value between 0 (lowest latency) and
1 (highest anonymity) for a single parameter. Lastly, we develop
an efficient and accurate algorithm to identify paths on which
an AS can correlate traffic between the entry and exit segments.
This algorithm enables LASTor to avoid such paths and improve a
user’s anonymity, while the low runtime of the algorithm ensures
that the impact on end-to-end latency of communication is low.
By applying our techniques to measurements of real Internet
paths and by using LASTor to visit the top 200 websites from
several geographically-distributed end-hosts, we show that, in
comparison to the default Tor client, LASTor reduces median
latencies by 25% while also reducing the false negative rate of
not detecting a potential snooping AS from 57% to 11%.

I. INTRODUCTION

Tor [2] is a widely used and deployed network for anony-

mous communication on the Internet. Unlike other systems

that facilitate anonymous communication [3], [4], Tor distin-

guishes itself by enabling low-latency communication. Indeed,

a vast majority of users—accounting for over 90% of TCP

connections [1] on Tor—use Tor for interactive traffic.

However, several measures for increasing client anonymity

in Tor fundamentally inflate communication latencies. For

example, the default Tor client sets up a tunnel between itself

and a destination via three relays selected at random, with

some preference for relay stability and access link bandwidth.

This random selection of relays can lead to circuitous rout-

ing of tunnels around the globe, resulting in high latencies.

Previous solutions for improving performance on Tor have

either focused on increasing throughput [5], or those that

focused on improving latencies mandate a revamp of the Tor

network, e.g., by having all Tor relays participate in a network

coordinate system [6], [7] or by modifying traffic management

at relays [8]. Due to the undoubtedly significant development

effort required to implement these changes, these solutions are

yet to be deployed.

In addition, Tor’s anonymity guarantees breakdown in some

cases due to its path selection being oblivious to Internet

routing. For example, on some paths, an Autonomous System

(AS) may be present on the Internet routes both between the

client and the entry relay and between the exit relay and the

destination. Such an AS can statistically correlate traffic on

the entry and exit segments of the path and potentially infer

the destination with which the client communicated. Though

this problem has been recognized previously [9], [10] and the

default Tor client attempts to preempt such cases by ensuring

that no two relays in a path are in the same /16 IP prefix,

we find that this heuristic is insufficient for detecting most

instances of potential snooping by ASes.

In this paper, we seek to address both of the above short-

comings with Tor today by making only client-side modi-

fications. This approach ensures that a user can obtain the

resultant benefits in latency and anonymity simply by updating

her Tor client, without having to wait for changes to the rest of

the Tor network. Therefore, we seek to answer the following

question: what latency improvements can a Tor client obtain

today, without any modifications to the rest of Tor, while

also avoiding paths on which an AS could break the client’s

anonymity by correlating traffic? Towards this end, we design

and implement LASTor, a new Tor client that differs from the

default Tor client only in its path selection algorithm.

In developing LASTor, we make three primary contributions.

First, we show that significant latency gains are possible by

solely accounting for the inferred geographic locations of

relays, rather than needing up-to-date latency information of

Internet paths (e.g., from network coordinates). We implement

the Weighted Shortest Path (WSP) algorithm that probabilis-

tically chooses paths with a preference for shorter paths.

However, with a naive implementation of WSP, an adversary

can increase the probability of a relay under his control being

on the chosen path by simply setting up a large number of

relays in the same location, which is close to the direct line

between the client and the destination. To preempt this attack,

we implement LASTor to execute WSP on a graph of the

Tor network where nearby relays are clustered together; this

increases the onus on an adversary to establish relays in several

2012 IEEE Symposium on Security and Privacy

© 2012, Masoud Akhoondi. Under license to IEEE.
DOI 10.1109/SP.2012.35

476

locations in order to ensure a high probability for the chosen

path traversing a relay under his control. A side-effect of

clustering relays is that WSP’s runtime is significantly reduced.

Second, we make LASTor resilient to the attack where an AS

can correlate traffic on the entry and exit segments of the cho-

sen path by explicitly avoiding such paths. To do so, we need

to equip LASTor with the ability to predict Internet routing be-

tween relays and end-hosts; we cannot simply measure routes

from every relay since we seek a solution that only requires

client-side modifications. The use of existing approaches for

predicting Internet routes is however impractical since they

either require clients to download gigabytes of data daily [11],

[12] or have significantly high runtimes [13], which would

override the benefits of selecting a low latency path. Therefore,

we instead develop a computationally lightweight technique

that has a low false-negative rate in failing to identify paths

that permit the possibility of “snooping” ASes. Our key insight

here is to predict the set of ASes through which the Internet

may route traffic between a pair of IP addresses, rather than

predicting the precise route between them. Importantly, in

order to run this AS set prediction algorithm, clients need

download only 13 MB of data initially and 1.5 MB every

week thereafter.

Finally, LASTor makes path selection tunable. Probabilistic

selection of paths with a preference for shorter paths re-

duces the entropy of path selection, and all users may not

wish to trade-off the resulting reduction in anonymity for

reduced latency. Therefore, LASTor enables a user to choose

an appropriate tradeoff between latency and anonymity. By

choosing a value between 0 (lowest latency) and 1 (highest

anonymity) for a single parameter, a user can configure LASTor

to appropriately tailor path selection.

We demonstrate LASTor’s benefits in improving latency by

using it to visit the top 200 websites from 50 geographically

distributed PlanetLab nodes. We see that even without any

modification to the rest of Tor, LASTor provides a median

latency improvement of 25% over the default Tor client. We

also use measurements of AS-level routes on over 200K

Internet paths to evaluate LASTor’s ability to preempt the

possibility of snooping ASes jeopardizing the anonymity of

clients. We see that for the median (client, destination) pair,

LASTor fails to identify only 11% of the instances in which

a snooping AS can exist; in comparison, we observe a false-

negative rate of 57% with the default Tor client.

II. BACKGROUND AND MOTIVATION

In this section, we provide some background on Tor and

discuss results that motivate our work.

A. Tor overview

Tor [14], a low-latency open source application that allows

users to use the Internet anonymously, was developed in

September of 2002. In Tor, clients download a list of relays and

some information about these relays from directory servers. To

establish a connection to a destination, a client selects three

(a)

S D
R1 R2 R3

AS4
AS2

AS5AS1

AS2

AS3

(b)

Fig. 1. (a) Random relay selection can inflate end-to-end latencies
due to circuitous routing, and (b) an example in which an AS (AS2)
can subvert the client’s anonymity by correlating traffic across the
entry and exit segments.

relays—entry, middle, and exit nodes—and builds a circuit 1

through these three relays. The client appropriately encrypts

the data it sends to the entry relay so that each of these three

relays only knows the nodes before and after it on the path,

i.e., the entry relay knows the source and the middle relay, the

middle relay knows only the entry and exit relays, and the exit

relay knows only the middle relay and the destination. This

form of onion routing [15] preserves the client’s anonymity

by ensuring that no one other than the client knows that it

communicated with the destination.

To avoid statistical profiling attacks, the default Tor client

restricts its choice of entry nodes to a persistent list of three

randomly chosen nodes named “entry guards” [16]. For the

middle node, the Tor client sorts Tor relays based on their

access link bandwidth and randomly selects a relay, with the

probability of selection being higher for relays with higher

bandwidth. For the selection of the exit node, clients are

constrained by the fact that a large fraction of relays choose

to not serve as exit nodes. This is because destination servers

see the exit node as the computer that communicates with

them; if any malicious activity is detected by the destination, it

will assume that the exit relay is responsible. Therefore, when

selecting an exit node, a client chooses at random (again with

bias for higher bandwidth relays) among those relays willing

to serve as an exit node for the particular destination that the

client is attempting to contact and the particular service with

which this communication is associated.

B. Motivation

The motivation for our work stems from two sources of

inefficiency in path selection as above in Tor today—high

latency due to circuitous routing and degradation of anonymity

because of path selection being oblivious to Internet routing.

Poor latency. First, as discussed above, a client selects en-

try, middle, and exit nodes in a circuit more or less at random.

As a result, the circuit between a client and a destination

1We use the terms path, circuit, and tunnel interchangeably in this paper.

477

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F
 o

f
(s

rc
,
d
st

)
p
a
ir
s

Latency (sec)

No Tor
SP Tor

Default Tor 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100
C

D
F

 o
f
(s

rc
,
d
st

)
p
a
ir
s

False negative rate (%)

Same AS
Same /16

(a) (b)

Fig. 2. (a) Comparison of latencies on the direct Internet path, with
Shortest Path routing on Tor, and with the default Tor client. (b) False
negatives in detecting snooping ASes with default Tor client.

can often be circuitous, causing significant latency overhead

compared to latency on the default Internet path between the

client and the destination. Since Tor is predominantly used

for interactive communication [1], e.g., to visit websites, this

increased latency degrades user experience. Fig. 1(a) presents

such an example. A client in the US communicates with a

server in Canada. The client incurs significant latency overhead

due to relay selection inefficiencies because all packets from

the client travel around the world two times before they reach

their destination.

To quantify the extent of this latency overhead, we measured

the latency of visiting the top 200 websites [17] from 50

PlanetLab nodes [18] spread across the globe. We measured

the latency between every PlanetLab node and every website

as the median latency of 5 HTTP HEAD requests. We first

measured latencies by having the PlanetLab nodes contact the

websites directly. Next, we repeated the same with the com-

munication happening over the default Tor setup. We finally

measured latencies via Tor when choosing entry, middle, and

exit nodes that result in the shortest end-to-end path based

on the geographical locations (inferred using MaxMind’s IP

geolocation database [19]) of the client, the destination, and

the relays on the path. Fig. 2(a) shows the distribution across

(PlanetLab node, website) pairs of the latencies measured in

the three cases. First, we see that latencies measured using

default Tor are more than 5x greater than via the direct Internet

path (no Tor) in the median case. Second, latencies over the

shortest path on Tor (SP Tor) result in a 2x reduction in median

latency compared to default Tor.

Circuit establishment in Tor however cannot simply be

modified to select the shortest path between the client and

the destination; this makes path selection deterministic and

enables adversaries to strategically setup relays that can sub-

vert the client’s anonymity. Instead, motivated by the latency

improvements possible by choosing geographically shorter

paths, our goal is to enable probabilistic path selection that

can deliver some of these latency benefits without significantly

compromising client anonymity.

Lack of AS-awareness. Though Tor’s use of onion routing

tries to ensure that no one other than the client has knowledge

of the destinations with which it communicates, there are a

variety of attacks possible (e.g., [20] [21]) from which this

information can be inferred. One such attack arises because

of Tor’s path selection being oblivious to Internet routing. In

the case where the routes through the Internet from the client

to the entry node and from the exit node to the destination

both traverse a common Autonomous System (AS), such an

AS can correlate the traffic it observes to infer the (client,

destination) pair [22], [23]. Fig. 1(b) shows an example in

which AS2, which appears on both the routes from the source

S to the entry relay R1 and from the exit relay R2 to the

destination D, can potentially infer that S is communicating

with D. We hereafter refer to such ASes that have the potential

of correlating traffic by snooping as snooping ASes. Note that

even though traffic between the client and the entry node is

encrypted, ASes can observe the client’s IP address in the

headers of the packets that the client sends to the entry node.

Feamster and Dingledine [9] showed that the probability

of existence of snooping ASes is 10–30%. This observation

was re-evaluated 5 years later by Edman and Syverson [10].

They observed that while there are many more Tor relays

than before, this growth has only a slight effect on mitigating

attacks by snooping ASes. This is because Tor relays are not

scattered uniformly among ASes, and so the growth of the

network does not guarantee path location diversity. Further,

the presence of ASes that can snoop is especially likely in

cases where the client and destination are in the same location,

because the entry and exit segments of the circuit may go

through the same ASes with presence in that region.

Therefore, to protect its anonymity, a Tor client needs to

ensure that its algorithm for path selection prevents, or at least

minimizes, the existence of common ASes across both ends of

a circuit. To preempt AS-level attacks and preserve anonymity,

Tor’s default path selection algorithm ensures that the entry

and exit nodes on any particular circuit do not share the same

/16 IP address prefix [24].

We however find that this heuristic performs poorly in

practice in avoiding snooping ASes. First, in the deployment

of Tor as of June 2011, we observe that 60% of ASes that

have Tor relays resident in them have at least two relays that

are in different /16 subnets. In addition, we evaluated the /16

prefix heuristic on a dataset of measured AS paths (the PL-

BGP-Rand dataset described later in Section III). For every

(client, destination) pair in our dataset, we computed the false

negative rate of the /16 heuristic, i.e., of all entry and exit

node combinations in which there was a common AS across

the entry and exit segments, the fraction that the /16 heuristic

deemed as safe from snooping ASes. Fig. 2(b) plots this false

negative rate for this heuristic across (client, destination) pairs.

The /16 heuristic for avoiding snooping ASes miss over 40%

of instances of snooping ASes for more than 80% of (client,

destination) pairs. Furthermore, we find that simply accounting

for the ASes in which the relays reside (the “Same AS” line

in Fig. 2(b)) is also insufficient.

To address the shortcomings of these heuristics, Tor clients

need to determine the ASes through which the Internet routes

traffic between them and entry nodes and between exit nodes

478

Goal Technique Section

Reduce latency of communication on Tor Weighted Shortest Path (WSP) algorithm for probabilistic selection of paths
with preference for low-latency paths

IV-A

Defend against strategic establishment of relays to increase
probability of compromised relays on chosen path

Clustering of relays in nearby locations IV-B

Enable user to choose trade-off between latency and anonymity Augment WSP with parameter α that can be varied between 0 (lowest
latency) and 1 (highest anonymity)

IV-D

Account for distributed destinations DNS lookup service on PlanetLab nodes IV-C

Preempt traffic correlation attacks by ASes Lightweight algorithm to determine set of ASes through which Internet
may route traffic between a pair of IP addresses

V

TABLE I
OVERVIEW OF TECHNIQUES DEVELOPED TO BUILD LASTor.

and destinations. Since we seek only client-side solutions,

modifying relays to measure routes is not an option. Querying

a route prediction service (e.g., iPlane [12]) for this informa-

tion is not an option either since the client and destination will

be revealed to the service. On the other hand, having clients

download pre-computed AS paths between themselves and all

entry guards and between all exit relays and all end-hosts will

require clients to download a prohibitively large dataset. For

example, even if we aggregate Tor relays and all end-hosts on

the Internet into BGP atoms [25] 2, based on the average AS

path length of 4 on the Internet, we estimate that clients will

have to download on the order of 500 MB of data. Further,

this data will have to be continually updated to account for

flux in the Internet’s routing.

Instead, it is imperative that clients download a snapshot

of Internet topology and routing information and make route

predictions locally. However, enabling such local route predic-

tions with current techniques poses two problems. First, it is

impractical to expect clients to download several gigabytes of

data, e.g., iPlane’s Internet atlas, to make such predictions.

Second, AS path inference techniques that operate on a

compact Internet atlas [11], [13], have high computational

overhead and take on the order of a second to estimate the AS

path between a pair of IP addresses. Since a Tor client has to

choose from around 1000 exit relays in setting up a circuit, the

use of such computationally-heavy techniques to estimate AS

paths can impose high overhead on path selection, rendering

the latency benefits of avoiding circuitous routes moot.

III. OVERVIEW

Next, we define the precise problem statement that we target

and provide a brief overview of our work. We also discuss

the datasets that we use throughout our work to evaluate the

techniques that we develop.

A. Problem statement

Our goal in this paper is to address the shortcomings in

Tor discussed above with respect to latency and anonymity

without requiring a revamp of Tor’s design. Leveraging the fact

that intelligence in Tor resides at the client, we seek to only

modify the client-side path selection algorithm so that clients

can benefit today without waiting on updates to relays to be

developed and deployed. In doing so, we respect conventional

2All IP addresses in the same atom have identical AS paths from/to them
to/from the rest of the Internet.

Dataset Clients Relays Destinations

PL-Tor-Web 50 2423 200

PL-BGP-Rand 50 378 500

PL-PL-Web 50 50 500

TABLE II
SUMMARY OF DATASETS.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
C

D
F

 o
f r

el
ay

s

CDF of ASes

Tor relays
BGP routers

Fig. 3. Distribution of relays across ASes in PL-BGP-Rand and PL-
Tor-Web datasets.

wisdom on how to preserve client anonymity in Tor, e.g.,

the use of three entry guards to protect against statistical

profiling attacks and the need for sufficient randomness in

relay selection to protect against colluding relays.

Table I summarizes the techniques that we present in the rest

of the paper to address this problem by developing LASTor.

B. Measurement datasets

To evaluate LASTor’s components, we make use of three

datasets (summarized in Table II), with PlanetLab nodes serv-

ing as clients in all three cases; we pick 50 PlanetLab nodes to

use as clients, in keeping with the distribution across countries

of Tor clients [26]. In our first dataset, PL-Tor-Web, we use 200

websites [17] as destinations and the relays in the actual Tor

network serve as relays. In this dataset, while we can measure

both latencies and AS-level routes from PlanetLab nodes to

Tor relays, we do not have access to either information on

paths from relays to destinations. Second, we use the PL-

BGP-Rand dataset, in which BGP routers seen in various

BGP feeds [27], [28] serve as relays and the .1 IP address

in 500 randomly chosen /24 prefixes serve as destinations.

Here again, we can directly measure latencies and AS paths

from PlanetLab nodes to BGP routers. In addition, we obtain

the AS paths from the BGP routers to the destinations from

various BGP feeds, but we do not have latencies along these

paths. This dataset enables to evaluate our techniques for AS-

awareness in path selection using measured AS-level Internet

routes, unlike prior work in this area [9], [10] that has relied on

479

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f (
sr

c,
 d

st
)

pa
irs

Latency (sec)

WSP (Latency)
WSP (Distance)

Fig. 4. Comparison of end-to-end latency when using geographical
distance versus the use of path latency in the Weighted Shortest Path
algorithm.

inferred AS-level routes. Though we have to use BGP routers

as proxy for Tor relays for this purpose, Fig. 3 shows that the

distribution of relays across ASes in the PL-BGP-Rand dataset

is similar to that in the case of real Tor relays.

Finally, in the PL-PL-Web dataset, we use PlanetLab nodes

as both clients and relays and the top 200 websites as

destinations. In this case, we can measure latencies and AS

paths both from all clients to all relays and from all relays

to all destinations. To emulate typical Tor clients, we ensure

throughout our evaluation that we do not provide as input

to iPlane [12] any Internet topology measurements from the

50 PlanetLab nodes used as clients; as we describe later in

Section V, we use AS path length estimates from iPlane for

our AS set prediction.

IV. PATH SELECTION

Path latency on the Internet is a sum of three factors—

propagation delay (time spent by packets on the wire), queue-

ing delay (time spent by packets enqueued at end-hosts or

intermediate routers, waiting to be put onto the wire), and

transmission delay (time to put a packet onto the wire). Since

access link bandwidths of the client and Tor relays is beyond

our control, we cannot reduce transmission delay. On the

other hand, as we show later in Section VII, a modification

of Tor relays would be necessary to reduce queueing delays.

Therefore, we focus here on reducing propagation delay.

A. Preferential selection of low-latency paths

To reduce propagation delays, we need to reduce the prob-

ability of selection of circuitous paths. We cannot however

simply pick the shortest possible path through three relays

between a client and a destination. This would make path

selection deterministic and hence, susceptible to strategically

placed adversarial Tor relays. Therefore, we implement a

Weighted Shortest Path (WSP) algorithm. WSP orders all

possible paths between a client and a destination based on

the expected latency on each path. The latency along a path is

the sum of latencies on each of the four segments of the path—

(client, entry relay), (entry relay, middle relay), (middle relay,

exit relay), and (exit relay, destination). The probability of a

particular path being selected is then inversely proportional to

the expected latency on it.

However, in order to estimate the latency along every possi-

ble path of three relays between the client and the destination,

we would need latencies between the client and all candidate

entry relays, between all candidate exit relays and the destina-

tion, and between all pairs of relays. As proposed in previous

approaches to improve latency in Tor [6], [7], gathering this

latency information would require a modification of Tor relays.

Instrumenting measurements of the Internet at such a scale is

a non-trivial undertaking. As a result, these prior proposals are

yet to translate into practice.

Our focus here instead is on a practical implementation

of WSP, with changes only at the Tor client. Therefore, we

use the end-to-end geographical distance along a path as a

proxy for the latency along it. This ensures that we do not

need to modify relays to track latencies between them, but

we can rely instead on the estimated geographic locations

of clients, relays, and destinations. We compute the end-to-

end geographical distance along a path by summing up the

distance along each segment, which we in turn compute based

on the (latitude, longitude) coordinates of the hosts at either

end of a segment. We can estimate the geographic locations

of end-hosts and relays using an IP geolocation database,

such as MaxMind [19]. Out of all candidate paths, WSP then

selects one path with the probability of a path’s selection

being proportional to the weight associated with it; the weight

associated with a path is the difference between the maximum

end-to-end distance across all paths and the distance along this

particular path.

Though the use of geographical distance ignores the effect

of routing on latency (the Internet may forward packets along

a circuitous route [29]), we confirm empirically that our use of

geographical distance as the weight for every edge in the graph

when running WSP is a reasonable substitute for the latency

of every edge. Since we can compute end-to-end latencies of

paths only on the PL-PL-Web dataset, we perform this analysis

on that data. We perform this analysis first using latency as

the edge weight metric for running WSP and then repeat

the same using geographic distance for edge weights. Fig. 4

shows that the end-to-end latencies of chosen paths are similar

irrespective of whether WSP uses latencies or geographic

distances as edge weights. Therefore, we believe that our

use of geographic distances delivers most of the benefits of

reducing propagation delays without warranting the need for

a distributed infrastructure that measures latencies between all

pairs of relays, an unarguably arduous undertaking.

B. Clustering of relays

A straightforward implementation of WSP however causes

two problems. First, WSP’s preference for paths with lower

end-to-end geographical distance results in a greater prefer-

ence for paths through relays that are close to the direct

line between the client and the destination. For example, in

Fig. 5, WSP will select the path through relay R1 with a

higher probability than the path through R2. As a result, if

an adversary wishes to ensure that a relay under his control

is on the chosen path between S and D, then the adversary

can choose a location that is close to the direct line between S

and D and setup a large number of relays at that location. It is

480

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

C
D

F
 o

f (
sr

c,
 d

st
)

pa
irs

Percentage of compromised paths

Edge=0.25
Edge=0.5
Edge=1
Edge=2
Edge=4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

C
D

F
 o

f (
sr

c,
 d

st
)

pa
irs

Percentage of compromised paths

No clusters,default
With clusters,25x
No clusters,25x

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f (
sr

c,
 d

st
)

pa
irs

Normalized distance

No clustering
With clustering

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F
 o

f (
sr

c,
 d

st
)

pa
irs

Latency (sec)

WSP
Default Tor

(a) (b) (c) (d)

Fig. 6. (a) Clustering with higher cell sizes provides better resilience. Clustering of relays (b) reduces the probability of an adversary
compromising a large fraction of paths, but (b) increases the length of the chosen path. (d) WSP yields latencies lower than those obtained
with the default Tor client.

Fig. 5. WSP results in greater preference for paths through relays
located close to the direct line between the client and the destination.

relatively easy for an adversary to setup several relays in the

same location, for example, by renting several virtual machines

in a cloud service. The high probability of at least one of the

adversary’s relays being on the selected path increases the

chances for the adversary to use recent traffic analysis attacks

on Tor [30] and infer that S is communicating with D.

The second problem with a strawman implementation of

WSP is its runtime. Today, Tor has over 2500 relays with

roughly 1000 of these relays willing to serve as exit nodes. The

number of candidate paths between a client and a destination

is therefore in the order of billions. So, a naive computation of

the end-to-end geographical distance on every candidate path

is computationally expensive and takes roughly 6.5 seconds

to run even on a 2.5 GHz processor. This large runtime—in

comparison to Internet path latencies that are of the order of

tens or hundreds of milliseconds—to even select a path can

render the selection of a low latency path redundant.

To address both of these problems, we cluster Tor relays

that are located in geographically nearby locations. We employ

a simple clustering algorithm in which we divide the globe

into a grid of square cells and cluster all relays within a cell;

the edge length of the cells is a configurable parameter. We

then execute WSP on the clustered Tor network where every

node is a cluster of relays, and each candidate path is through

three clusters. WSP computes the end-to-end distance on every

cluster-level path and then selects one path with preference to

shorter paths as before. We translate the chosen cluster-level

path to a path through three Tor relays by picking one relay

at random from each of the clusters on the selected path.

This modification of WSP reduces its runtime to select a

path between a client and a destination through today’s Tor

network to 245 milliseconds, in comparison to the runtime of

6.5 seconds with the naive implementation. More importantly,

the modified WSP ensures that the establishment of a large

number of relays in the same location does not bias the

selection of paths through them since WSP considers paths

at the granularity of the cluster to which all of them belong;

paths through different relays in a cluster are not considered

independently. Thus the modified WSP increases the onus on

an adversary to establish relays in multiple locations in order

to have one of those relays be on the chosen path with a very

high probability.

We conduct the following experiment 1) to choose the cell

size to be used in clustering of relays, and 2) to demonstrate

the improved resilience of WSP to an adversary as discussed

above. In the PL-Tor-Web dataset, for every (client, destina-

tion) pair, we emulate an adversary who controls the 5% of

relays that are closest to the direct line between the client

and the destination. We then model the adversary increasing

the number of relays that he controls by replicating these

5% of closest relays by a factor of 25. We run WSP on

this modified Tor network with and without clustering of

relays. In either case, given a (source, destination) pair, we

compute the probability of the path between them selected

by WSP traversing at least one compromised relay. This value

represents an upper bound on the fraction of cases in which the

chosen path will traverse a relay controlled by the adversary,

if the adversary controls at most 5% of relays.

Fig. 6(a) compares the distribution across (source, destina-

tion) pairs of this upper bound when clustering relays with

different cell sizes. We vary the edge length of every cell

from 0.25 to 4—measured in terms of the difference in latitude

or longitude—and, in each case, we compute the fraction of

paths that traverse a relay controlled by the adversary. We

see that using a edge length of 2 for each cell significantly

decreases the influence of the adversary compared to the effect

when using lower edge lengths, and increasing the edge length

further has minimal impact.

Next, we evaluate the resilience offered by running WSP

after the clustering of relays. Fig. 6(b) compares the distri-

481

bution across (source, destination) pairs of the fraction of

paths that traverse a compromised relay in the following

three cases: 1) when running WSP on the PL-Tor-Web dataset

without clustering of relays (No clusters, default), and when

an adversary replicates relays in this dataset as above and

WSP is executed 2) after clustering relays (using a cell size

of 2x2) (With clusters, 25x), or (3) without clustering (No

clusters, 25x). By comparing the “No clusters, default” and

“No clusters, 25x” lines, we see that, in the absence of

clustering, the adversary can increase the fraction of paths

that traverse a compromised relay from around 35% to over

65% on average by replicating the relays that he controls by

25x. In contrast, when relays are clustered into cells of size

2x2, the adversary gains nothing by replicating relays.

Clustering of relays however has a negative impact on the

latencies along paths chosen by WSP. This is because, in

cases where there are several relays in a location close to the

direct line between the source and the destination, the basic

version of WSP can choose from the several candidate paths

through these relays. In contrast, after these relays have been

clustered, WSP has only path of choice through these relays.

Hence, as shown in Figure 6(c), the geographic distance along

the path chosen by WSP increases by roughly 15% in the

median case when relays are clustered. This inflation in path

length due to relay clustering is a compromise that we have

to bear, in exchange for increasing the onus on adversaries

to setup relays in several locations to attract traffic through

compromised relays with high probability.

Finally, we evaluate the latency improvement obtained

with WSP in practice. We modify the default Tor client to

implement the WSP path selection algorithm and use the

modified client to measure latencies over the Tor network

to the top 200 websites from 50 PlanetLab nodes. For each

(client, destination) pair, we run WSP 5 times and on each

attempt, we measure the median latency of 5 HTTP HEAD

requests. We then compute the median latency across the

5 attempts. We repeat the same process using the default

Tor client and compute the median latency across 5 paths

chosen by it, considering the median latency across 5 HTTP

HEAD requests on each path. Fig. 6(d) presents the latency

distribution measured across (client, destination) pairs when

using WSP as compared to that when using the default Tor

client. We see that WSP results in a 25% reduction in latency

in the median case.

C. Accounting for distributed destinations

Thus far, our exposition of WSP has assumed that the desti-

nation has a single location associated with it. In practice, the

destinations associated with interactive communication (e.g.,

webservers) are often replicated across several geographic

locations. In such cases, users specify the destination by its

hostname, and upon DNS resolution of the hostname, the

webservice provider returns the IP address of the server located

closest to the end-host that performs the DNS lookup. This

implies that when a client uses a Tor circuit to contact a

destination, the particular server with which the client ends

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
D

F
 o

f (
sr

c,
 d

st
)

pa
irs

Latency (sec)

Distributed DNS
Single DNS

Fig. 7. Lower latencies obtained with WSP when accounting for
distributed destinations.

up communicating depends on DNS resolution of the desti-

nation’s hostname at the exit node on that circuit. Therefore,

when WSP estimates the end-to-end distance on any candidate

path, it must take into account the location of the particular IP

address to which the exit node on that path will be redirected.

However, at the time of path selection, it is impractical to

perform DNS lookups for the destination on all candidate exit

relays. Doing so would require the client to setup a circuit

for every candidate exit relay; the client cannot simply ask

a relay to resolve the destination hostname since that would

leak the client’s anonymity. Establishing one circuit for every

candidate exit relay every time a path needs to be selected

would not only impose significant overhead on Tor but also

take several tens of seconds, thus nullifying the benefits of

selecting a low-latency path.

Instead, we setup a DNS lookup service across a set of

15 geographically distributed PlanetLab nodes. When a client

needs to run WSP for a destination, it submits a request to

resolve the destination’s hostname to each of the PlanetLab

nodes running the DNS lookup service. The client submits

these requests via any one of the circuits that it had previously

established, e.g., the default Tor client establishes three circuits

when it starts up. The client uses HTTPS to submit these DNS

resolution requests to the PlanetLab nodes so that the exit

node on the circuit used for communicating with the PlanetLab

nodes cannot infer the destination. Once the client receives the

set of IP addresses obtained for the destination, we assume any

candidate exit relay would be redirected to the IP address that

is geographically closest to it amongst this set. Thus, when

we subsequently run WSP to pick a path to the destination,

we compute the end-to-end distance on each candidate path

by using the distance along the exit segment as the distance

between the exit node on that path and the destination’s IP

address to which we believe the exit node will be redirected.

To evaluate the utility of this modification to WSP, we

consider the top 1000 websites from Quantcast and focus

on those that return IP addresses in multiple locations when

resolved from all PlanetLab nodes. We then measure latencies

over the Tor network to these websites with 50 PlanetLab

nodes as clients. We measure latencies in two cases. In the

first case, we run WSP as described above where it uses

IP addresses obtained by resolving the destination on 15

geographically distributed PlanetLab nodes. In the second

case, we run WSP assuming the destination to have a single

482

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
D

F
 o

f (
sr

c,
 d

st
)

pa
irs

Latency (sec)

α=0
α=0.25

α=0.5
α=0.75

α=1

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
D

F
 o

f (
sr

c,
 d

st
)

pa
irs

Gini coefficient

α=0
α=0.25

α=0.5
α=0.75

α=1

(b)

Fig. 8. Increasing the value of α when using WSP results in (a)
higher latencies and (b) greater entropy of path selection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f (
sr

c,
 d

st
)

pa
irs

Normalized distance

α=0
α=0.25
α=0.50
α=0.75

α=1

Fig. 9. End-to-end distances on paths chosen with WSP when using
α to tailor the set of relays from which we select entry guards.

IP address obtained by DNS resolution at a randomly chosen

exit relay. Fig. 7 compares the latencies measured in these two

cases. We see that accounting for the fact that destinations

could be potentially distributed reduces path latency in the

median case by 15%.

D. Latency versus anonymity tradeoff

Though clustering of relays reduces the chances of com-

promised relays being present on a large fraction of chosen

paths, WSP’s preference for shorter paths naturally reduces

the entropy of path selection. All users may not wish to trade-

off this reduction in entropy for lower latencies. Therefore,

we make path selection with WSP tunable with a parameter

α. A user can vary α in the range 0 to 1, with a value

of 0 corresponding to lowest latencies and a value of 1

corresponding to highest entropy.

We incorporate this parameter α into WSP as follows. As

previously mentioned, after computing the end-to-end distance

on every candidate path, WSP associates a weight with every

path that is equal to the difference between the maximum

end-to-end distance across all paths and the distance on that

path. The probability of WSP choosing a particular path is

then proportional to its weight. We now modify this weight

w for a path to instead be w(1−α). In the case when α is

equal to 0, WSP defaults to the original version we presented

above, which picks paths with a preference for shorter ones.

On the other hand, when α is equal to 1, all paths have a

weight of 1 and thus, any particular path is chosen at random.

For any other value of α between 0 and 1, path selection is

appropriately biased towards low latency or higher entropy.

Fig. 8 shows the effect that varying α has on both latencies

and entropy. Figure 8(a) shows latencies measured with α

equal to 0, 0.25, 0.5, 0.75, and 1 in the same setting as that

used in Section IV-B—median latency from 5 HEAD requests

each to the top 200 websites from 50 PlanetLab nodes as

clients. Lower values of α result in lower latencies.

To capture the corresponding variance in entropy, we use the

Gini coefficient metric [31], which has previously been used to

measure anonymity of path selection in Tor, e.g., in [5]. Gini

coefficient is a measure of skew in a set of values. A value

of 0 for the Gini coefficient indicates perfect equality—that

all values in the set are equal, whereas a value of 1 indicates

perfect inequality. We use this metric to measure, for each

(client, destination) pair in the PL-Tor-Web dataset, the skew

across candidates paths of the probability of them selected by

WSP. Fig. 8(b) shows that higher values of α result in lower

values for the Gini coefficient, which corresponds to a lower

skew across paths in the probability of their selection.

Finally, we use the parameter α to also guide the selection of

entry guards. To avoid statistical profiling attacks, the default

Tor client restricts its choice of entry nodes to a persistent list

of three randomly chosen nodes selected when the client starts

up [16]. All circuits setup by the client thereafter choose entry

relays from one of these three entry guards. As one would

expect, this constraint on the selection of entry relays, though

good for anonymity, hurts the selection of low-latency paths

by WSP; the path between a client and a destination may be

unavoidably circuitous if all three entry guards chosen happen

to be distant from both the client and the destination.

Therefore, in keeping with our goal of making path selection

tunable between a preference for low latency or anonymity,

we modify the selection of entry guards as follows. After

we cluster relays as above, we order all clusters that contain

candidate entry relays 3 based on their distance from the

client. We then choose three clusters at random from the

closest (g + α · (100 − g))% clusters in this ordering, and

pick one relay at random from each of these clusters as the

three entry guards, where g is a configurable parameter; in

our implementation we use a value of 20 for g. Thus, when

α equals 0—a preference for the lowest latencies—we choose

the entry guards at random from the closest 20% of relays to

the client. This minimizes the probability of circuitous routes

when α = 0, while still providing good anonymity by selecting

entry guards from a fairly large subset (20%) of the candidate

3The default Tor client considers a subset of all Tor relays for selection as
entry guards based on their stability.

483

entry relays. On the other hand, when a user chooses a value

of 1 for α to get the best level of anonymity, selection of

entry guards defaults to the current best practice of choosing

from all candidate entry relays at random. Fig. 9 shows the

effect that this modified entry guard selection algorithm has

on the end-to-end distance of the chosen path in the PL-Tor-

Web dataset. With increasing α, the randomness of entry guard

selection increases and results in longer path lengths.

V. AS AWARENESS

Next, we address the second limitation of interest in the

default Tor client—avoiding paths in which an Autonomous

System (AS) can correlate traffic across the routes between

the client and entry relay and between the exit relay and the

destination. Since our goal is to not require any modifications

to Tor relays, we cannot avoid such paths by simply having

all relays measure routes from them to the client and to the

destination. Therefore, we next discuss how a client can locally

make estimations of routing in the Internet in order to identify

and ignore paths that present the possibility of snooping ASes.

A. AS set estimation

Precise inference of AS-level routes between arbitrary IP

addresses is hard, as seen in the fact that no existing technique

for doing so [32], [11], [33], [12], [13] is close to perfect.

Therefore, when evaluating whether a particular combination

of entry and exit relays offers the possibility of a snooping AS,

we preclude the approach of estimating the AS-level route on

the entry and exit segments of the circuit. Instead, we take the

approach of predicting for either segment, a set of candidate

ASes through which the Internet is highly likely to route traffic

on the segment. We can then determine the potential existence

of snooping ASes by checking if the intersection between the

AS sets for the paths between the client and the entry relay

and between the exit relay and the destination is non-empty.

To enable such inference of AS sets by Tor clients, we

require clients to download three inputs. First, we use the

Internet’s AS-level topology represented as a set of inter-AS

links. Second, we need an estimate of the AS path length

between every Tor relay and every end-host on the Internet.

We need this information as input because the AS path selected

by BGP is often longer than the shortest path in the AS

topology [13]. As we show later, AS path lengths can be

stored much more compactly and are significantly more stable

compared to AS paths. Third, we store AS three-tuples as

described below to represent routing policies being employed

by ASes.

Given this AS-level topology and an estimate L for the

AS path length between a source S and destination D, we

put together the set of ASes through which traffic may be

routed from S to D as comprising any AS that is on any

policy-compliant route of L AS hops between S and D in

the topology. Here, we stress on policy-compliance because

every path in the AS-level topology does not conform to

routing policies of ASes. Therefore, to ensure that we only

consider the ASes on policy-compliant paths, we borrow the

Algorithm 1 Pseudocode of AS set estimation algorithm.

1: Inputs: AS graph G, AS three-tuples set T , source S, destination
D, AS path length L

2: Shortest Path(G, T,D)
3: Queue Q
4: List Node PossibleSet
5: List Node AS set
6: S.hops = 0
7: Add S to Q
8: while Q is not empty do
9: cur ← Q.pop

10: cur.added← 0
11: Add cur to PossibleSet if cur /∈ PossibleSet
12: for n ∈ cur.neighbors do
13: Skip n if (cur.parent, cur, n) /∈ T
14: Skip n if � m ∈ n.neighbors such that m.pathLength+

cur.hops+ 2 = L
15: if n has ancestor p with p.pathLength <

p.parent.pathLength then
16: Skip n if n.pathLength > cur.pathLength
17: end if
18: n.hops = cur.hops+ 1
19: Add n to Q
20: cur.added += 1
21: end for
22: if cur.added = 0 then
23: Decrement n.added for every ancestor n of cur
24: end if
25: end while
26: for n ∈ PossibleSet do
27: Add n to AS set if n.added > 0
28: end for
29: return AS set

technique of using AS three-tuples from iPlane Nano [13].

From a collection of AS path measurements—obtained from

BGP feeds [27], [28] and by mapping traceroute measure-

ments [34], [12] to AS paths—we identify every sequence of

three consecutive ASes seen on any AS path and add them to

a set of AS three-tuples. For example, if we observe an AS

path AS1 → AS2 → AS3 → AS4 → AS5, then we add

(AS1, AS2, AS3), (AS2, AS3, AS4), and (AS3, AS4, AS5)
to our set of AS three-tuples. Any such AS three-tuple

(A,B,C) represents routing policy by showing that B is

willing to transit traffic from A on to C (in other words, B

passes along route announcements received from C on to A).

We generated such a set of AS three-tuples by aggregating

various BGP feeds, and we are able to represent this data

in about 1 MB. Note that though Internet routing can be

asymmetric in practice, i.e., the route from S to D can differ

from the route from D to S, we assume routing asymmetry

here and add the three-tuple (C,B,A) to our set of three-

tuples for every tuple (A,B,C) discovered from the AS path

measurements.

Given an estimate L for the AS path length between a

pair of IP addresses S and D, we estimate the set of ASes

that are likely to occur on the the route between them using

the following two phase algorithm. In the first phase, we

run Dijkstra’s shortest path algorithm to compute the length

of the shortest path from every AS to D’s AS. We modify

the standard Dijkstra’s algorithm to ensure that shortest path

484

lengths are computed only across those paths that satisfy the

criterion that any three consecutive ASes on a path are in the

set of AS three-tuples. Next, we determine for every AS in

the topology, the set of path lengths to D available via any of

the AS’s neighbors.

In the second phase, we determine the output set of ASes

by performing a modified breadth-first search (BFS) from S.

While performing BFS, we traverse a neighbor B of an AS

A that is k hops away from S only if B has a path of length

(L−k−1) available to D via one of its neighbors. In addition,

we enforce the valley-free nature of Internet routes [35] by

ensuring that once the BFS goes from a node A to a neighbor

B that has a shorter shortest path to D than from A, thereafter,

we never traverse a node’s neighbor that has a longer shortest

path to D than from that node. Furthermore, we again ensure

that the input AS three-tuples are respected; we traverse a

neighbor B of A, whose parent in the BFS is C, only if

(C,B,A) is in the input set of AS three-tuples. Algorithm

1—which takes as input the AS graph G, the set of AS three-

tuples T , the source S, the destination D, and the estimated

AS path length between them—summarizes the pseudocode

of this algorithm.

B. Avoiding snooping ASes

When selecting a path from itself to a destination, a client

needs to use the above procedure to determine AS sets for

paths between itself and its 3 entry guards and between all exit

relays and the destination. For the latter set of paths, we do not

compute the AS sets independently. Instead, we run the first

phase of our AS set estimation algorithm once, and thereafter

run the BFS in phase two of the algorithm from each exit relay

independently. We can then ignore from consideration all paths

that potentially have snooping ASes on them by ignoring those

combinations of entry and exit relays for which the intersection

between the AS sets for the (client, entry relay) and (exit relay,

destination) paths is non-empty. This algorithm can prune out

paths with snooping ASes in around 3 seconds, even when

choosing from 1000 exit relays.

Other than being efficient in terms of computation, our

approach also minimizes the data to be downloaded by a client

to make local inference of AS sets. First, the set of inter-AS

links and the set of AS three-tuples are each roughly about 1

MB in size and changes to these datasets are rare. Second, all

Tor relays and all end-hosts on the Internet can be grouped

into roughly 600 and 50K BGP atoms [25], [12], respectively.

Therefore, we need every client to download AS path lengths

for 30M paths—between every (relay, end host) pair.

We evaluate the expected size to store these AS path lengths

and the stability of this data using traceroutes gathered daily

by iPlane [36] from all PlanetLab nodes to all IP address

prefixes at the edge of the Internet. We analyze this data for the

period of three weeks in July 2011. On each day, we map all

traceroutes to their corresponding AS-level routes and compute

the AS path length, i.e., the number of ASes seen on the route.

First, we find that less than 0.05% of paths traverse more than

8 AS hops. So, every AS path length can be stored in 3 bits,

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7

R
el

at
iv

e
ch

an
ge

 (
%

)

Number of days

Week 1
Week 2
Week 3

Fig. 10. Relative changes in AS path length data across days.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f (
sr

c,
 d

st
)

pa
irs

Probability of common AS

WSP α=0

Fig. 12. The probability of existence of snooping ASes across (src,
dst) pairs in the PL-BGP-Rand dataset.

making the size of the AS path length data to be downloaded

initially by a client to be around 11 MB.

For each week in the considered period, we then compare

AS path lengths on every day with those measured on the first

day in that week. We perform the comparison by computing

the fraction of paths that have a different AS path length on

day i compared to that on day 0. As shown in Figure 10, AS

path lengths changed on a little over 5% of paths even after

a week. Therefore, in summary, our design requires clients to

initially download 13 MB of data across inter-AS links, AS

three-tuples, and AS path lengths—a close to 40x reduction

in size compared to pre-computed AS paths between all Tor

relays and all end-hosts—and a client need only fetch less than

1.5 MB weekly thereafter to keep the data up-to-date.

C. Evaluation of AS-awareness

Next, we evaluate our technique for AS set estimation in two

parts. First, we examine if the estimated AS sets accurately

cover actual AS paths. For this, we estimate AS sets for

the paths from PlanetLab nodes to Tor relays in the PL-Tor-

Web dataset. Fig. 11(a) and 11(b) show that the estimated AS

sets are typically compact—90th percentile size less than 10

ASes—and at most one AS on the actual AS path is not in

the estimated set for over 75% of paths.

Second, we use the PL-BGP-Rand dataset to study the

accuracy with which AS sets enable prediction of potential

snooping ASes; we do not have AS paths from exit nodes

to destinations in the PL-Tor-Web dataset, and the PL-PL-

Web dataset is biased for this analysis 4. For every (client,

destination) pair in the PL-BGP-Rand dataset, we partition

4Paths between PlanetLab nodes typically traverse a different set of ASes,
e.g., research and educational ASes, compared to paths from PlanetLab nodes
to random destinations on the Internet

485

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60

C
u
m

u
la

tiv
e
 f
ra

ct
io

n
 o

f
p
a
th

s

AS set size

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6 7 8
C

u
m

u
la

tiv
e
 f
ra

ct
io

n
 o

f
p
a
th

s
Number of ASes not in AS set

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100

C
D

F
 o

f
(s

rc
,
d
st

)
p
a
ir
s

False negative rate (%)

AS sets
E&S

iPlane
Same AS 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100

C
D

F
 o

f
(s

rc
,
d
st

)
p
a
ir
s

False positive rate (%)

Same AS
iPlane

E&S
AS sets

(a) (b) (c) (d)

Fig. 11. (a) Distribution of predicted AS set sizes, (b) accuracy of predicted AS sets encompassing actual AS paths, and distribution of (c)
false negative and (d) false positive rates in predicting the existence of snooping ASes.

all entry and exit relay combinations into those that have a

common AS across the entry and exit segments and those that

do not. We compute the false negative rate in predicting the

presence of snooping ASes as the fraction of entries in the

former partition not caught by our approach of computing

intersections between estimated AS sets. Fig. 11(c) shows

that our median false negative rate is 11%. This compares

to median false negative rates of 28–57% with alternate

approaches—using iPlane’s predicted AS paths, using the

approach proposed in [10] (the “E&S” line), or when only

accounting for ASes of end-hosts and relays (the “Same AS”

line). On the flip side, in Fig. 11(d), we see that AS sets

produce a much greater false positive rate—fraction of paths

that do not have a snooping AS but are declared as having one

by our technique—compared to other approaches. However,

as we see in Fig. 12, the fraction of paths with potential

snooping ASes is low for most (src, dst) pairs. So, pruning

out about 45% of candidate paths in the median case still

leaves a sizeable set of paths from which WSP can choose.

D. Impact of AS-awareness on path latency

Finally, we evaluate the impact that the incorporation of

AS-awareness has on path latencies obtained with WSP. WSP

has to now select from a subset of all possible candidate

paths, because it has to ignore those detected by our AS set

estimation algorithm as potentially traversing an AS capable

of inferring the (client, destination) pair by traffic correlation.

Though the subset of candidate paths with snooping ASes is

typically small in practice, the high false positive rate of our

detection procedure significantly reduces the subset of paths

considered. Therefore, we again use WSP (with α set to 0) to

measure latencies over the Tor network from 50 PlanetLab

nodes to the top 200 websites. Fig. 13(a) compares these

latencies with those obtained when using WSP without AS-

awareness and when using the default Tor client. We see that

the pruning of paths to avoid snooping ASes results in a

slight increase in latency. Fig. 13(b) shows that this increase

in latency is due to an increase in the length of the chosen

path when using WSP informed by AS sets. In future work,

we plan to pursue a reduction in false positives to further

improve latencies when using WSP with AS-awareness.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F
 o

f (
sr

c,
 d

st
)

pa
irs

Latency (sec)

WSP
WSP+AS sets

Default

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f (
sr

c,
 d

st
)

pa
irs

Normalized distance

WSP
WSP+AS sets

(b)

Fig. 13. Comparison of (a) latencies and (b) normalized geographical
distance along paths chosen with WSP (α = 0) with and without AS-
awareness.

VI. IMPLEMENTATION

We implement all of the algorithms developed thus far—

to improve path latency, to make path selection tunable,

and to incorporate AS-awareness into path selection—in the

LASTor Tor client. In this section, we summarize LASTor’s

path selection algorithm and provide an overview of our

implementation.

A. Client in action

In the default Tor client, the client sets up a few circuits on

startup and thereafter, when the user chooses to communicate

with a particular destination via Tor, the client routes the user’s

traffic over one of the established circuits [24]. LASTor mimics

the default Tor client in this respect. In addition, once LASTor

learns the destination that the user wishes to communicate

with, it quickly selects a path using AS-aware WSP, sets up

a new circuit along the chosen path, and then transitions the

user’s traffic to the destination to this new circuit. Thus, the

486

latency obtained with LASTor matches that of the default Tor

client in the case when the user’s communication with the

destination is short. In the case when the user’s interaction

with the destination is prolonged, e.g., when the user visits

several web pages on a website, LASTor significantly improves

latencies for most of the user’s interaction, i.e., once LASTor

switches the user’s traffic to the circuit chosen with WSP.

To select a path to the specified destination, LASTor executes

the tunable AS-aware WSP algorithm with the following

sequence of steps.

• Upon initialization, the LASTor client clusters all available

relays, and using the value for α specified in its input

configuration, it chooses three entry guards at random from

the (20 + α · 80)% closest relay clusters to the client.

• When required to select a path to a destination, LASTor

resolves the destination’s hostname on a distributed set of

nodes that service requests to perform DNS lookups. These

requests are submitted via one of the circuits established

upon initialization of the client.

• LASTor estimates the AS sets for the paths from the client to

the entry guards and from all exit relays to the destination,

mapping every candidate exit relay to the closest among the

IP addresses obtained for the destination.

• LASTor then computes the end-to-end distance on every

candidate path through three clusters that satisfy the check

of the AS sets for the entry and exit segments being disjoint.

One cluster-level path is then selected with the probability

of a path being chosen dependent on the end-to-end distance

on it and the input value of α.

• The circuit to the destination is then established via one

relay selected at random from each of the clusters on the

chosen cluster-level path.

B. Modification of default Tor client

We implement LASTor by building upon the default Tor

client. We have implemented a Java application which con-

nects to the default Tor client on its control port. This control

port is a port on the Tor client which can be used to manage

and monitor the Tor client based on a standard protocol [37].

By issuing commands to the control port, our Java application

can either obtain information such as the description of all

available relays, or manage the Tor client by establishing or

closing a circuit, attaching streams to a circuit, and clearing

Tor’s DNS cache. To setup a circuit, our program first fetches

relevant information through the Tor control port and provides

this as input to our tunable path selection algorithm. It then

issues commands to the Tor client, again via the control port,

to build desired circuits. We implement LASTor to take as

part of its input configuration 1) a value of α to guide path

selection, and 2) a file with a list of nodes that provide the

DNS lookup service.

C. Input datasets

To run the tunable AS-aware WSP path selection algorithm,

our Java program needs several datasets as input. First, it

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
D

F
 o

f
re

la
y
s

Bandwidth (KB/s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F
 o

f
(s

rc
,

d
st

)
p

a
ir
s

Latency (secs)

BW >= 100KBps
All Relays

(a) (b)

Fig. 14. (a) Distribution of bandwidth across Tor relays, and (b)
comparison of end-to-end latencies with and without taking relay
bandwidth into account; median latency across 5 paths are shown.

fetches a IP geolocation database that maps IP addresses to

locations from MaxMind [19]. Second, the first time it is

executed, the program downloads 1) a AS-level representation

of the Internet topology, 2) the set of AS three-tuples used

to determine policy-compliant paths, and 3) a snapshot of AS

path lengths for paths in either direction between all Tor relays

and all end-hosts, grouped at the granularity of BGP atoms.

We put together the first two datasets by aggregating AS paths

from various sources [27], [28], [12], [34]. To estimate AS path

lengths, we issue queries to iPlane [38]. We find that iPlane

can process roughly 1000 queries per second, and so, we can

re-query iPlane every day for all 60 million IP pairs (600 BGP

atoms with Tor relays × 50K BGP atoms comprising all end-

hosts, in either direction) for which we need AS path length

information. As mentioned before, all three datasets can be

stored in less than 13 MB in size. Since these datasets are

the same across all clients and the information of a client

having downloaded this data does not hamper its anonymity,

clients can download this data from each other via a peer-

to-peer file distribution system such as BitTorrent, so as to

not overwhelm the bandwidth requirements of any central

server. Bandwidth-constrained clients can however download

relevant subsets of this data from the central server, e.g., only

AS path length information necessary for communication with

popular websites. Lastly, every week, the client downloads a

roughly 1.5 MB update for AS path length information, and

more infrequently, fetches updates for the set of inter-AS links

and AS three-tuples. These updates are fetched from a central

server since the update depends on the version of the data

already on the client. For all datasets required by LASTor, we

can enable clients to verify integrity of the data they download

using an approach similar to that used to guarantee integrity

of the default Tor client—by posting a cryptographic hash of

the dataset on the Tor website.

VII. DISCUSSION

In this section, we discuss the extensions to Tor necessary

to further reduce latencies and the impact on load balancing

if LASTor is widely adopted.

487

 0

 0.2

 0.4

 0.6

 0.8

 1

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

C
D

F
 o

f m
ea

su
re

m
en

ts

Relative difference in latency

Fig. 15. Variation across time of latencies on paths spanning similar
end-to-end geographical distances.

A. Accounting for dynamic load

Though we showed that WSP can significantly reduce

latencies for communication on Tor, there remains a significant

overhead compared to communication over the default Internet

path. Therefore, to reduce latencies further, other than reducing

propagation delays with the use of the WSP path selection

algorithm, it is necessary to minimize queueing delays by

taking into account the load at each relay at the time of path

selection. Here, we present some preliminary results from our

efforts to do so.

First, we observe that access link bandwidths of Tor relays

are spread over a wide range, as shown in Figure 14(a).

Therefore, we investigate the potential for reducing queueing

delays by restricting the choice of relays among those with

high bandwidth. To study this, we measure path latencies on

the Tor network when visiting the top 200 websites from 50

PlanetLab nodes in two cases. We measure latencies first when

choosing relays at random from those which have bandwidth

greater than 100 KBps, and then repeat the same choosing

from all Tor relays. To keep propagation delay similar in

both settings, for every path that we pick from relays with

bandwidth greater than 100 KBps, we pick a corresponding

path with the entry, middle, and exit nodes in the same

locations, but with no restriction on relay bandwidth. For either

path selection strategy, we measure latencies between every

(client, destination) pair on five different paths. The lines “All

Relays” and “BW ≥ 100 KBps” in Fig. 14(b) show that the

distribution of median latency (across the 5 chosen paths) is

identical whether we account for relay bandwidth or not. In

this case, we use the “Estimated” bandwidth estimate for each

relay—the value used by the default Tor client to perform path

selection—but we found the results to be similar when using

other estimates of relay access link bandwidth provided by the

Tor directory.

Next, we studied the variation in latencies over time on

a given path. We selected 20 (client, destination) pairs at

random, and for each of them, we considered two different

disjoint paths with the same end-to-end geographical distance;

either path traversed three Tor relays. For each (client, destina-

tion) pair, we measured latencies once every half hour on either

path selected for it and noted the relative difference between

latencies measured on the first and second path; we randomly

order the two paths chosen for every (client, destination) pair

and fix that ordering across all measurement rounds. Fig. 15

shows the variation of this difference in measured latencies

across the period of a day. We see that, though the pair of

paths selected for every (client, destination) pair span identical

geographical distances, the path that provides better latencies

significantly varies over time.

Therefore, these results seem to indicate that we can reduce

queueing delays only by modifying relays—either by having

them track and report load at finer granularities of time

or by introducing a new queue management algorithm at

relays—which is outside the scope of our goal of enabling

immediate latency improvements for Tor clients. Given the

current implementation of Tor relays, biasing relay selection

based on their bandwidth may help improve throughput, but

this will not improve latencies for interactive transfers.

B. Load balancing

When choosing a path, the default Tor client currently

selects relays with a probability proportional to their access

link bandwidth. As a result, the fraction of all of Tor’s traffic

that traverses any particular relay is roughly proportional to

that relay’s access link bandwidth, thus balancing the load

across relays.

In contrast, load across Tor relays could be significantly

skewed if LASTor were widely used. If most users choose

to use LASTor with a value close to 0 for α, paths chosen

by each client will be biased towards traversing relays that

result in lower end-to-end distances to the destinations with

which the client communicates. On the other hand, even if

all users use LASTor with a value of 1 for α, the consequent

selection of relays at random will result in an equal distribution

of load across relays, which is undesirable given the significant

skew in access link bandwidths across relays (seen earlier in

Fig. 14(a)).

Though addressing this issue requires further investigation

outside the scope of this work, we present two recommen-

dations that we speculate would enable widespread use of

LASTor without harming the balance of load across Tor relays.

First, we recommend that Tor users who use the network for

bulk transfers, such as BitTorrent, should continue to use the

default Tor client. Since bulk transfers account for a majority

of the traffic on Tor [1], the use of the default Tor client for

such traffic will ensure a distribution of load across relays

that is reasonably close to the distribution of their access link

bandwidths. The loss of anonymity due to protocol-specific

path selection requires further investigation. Second, LASTor’s

path selection algorithm itself will need to be modified to take

the access link bandwidths of relays into account. However, to

do so, we will need to discover the distribution of the value of

α used by Tor users who use the LASTor client. Discovering

this distribution should be possible by means of an anonymous

survey across users. LASTor’s path selection algorithm can

then be tweaked to not simply have a preference for paths

with a lower end-to-end distance but to also account for the

access link bandwidths of relays and the distribution of α

across users.

488

VIII. RELATED WORK

We build upon three lines of prior work—1) improving

performance in Tor, 2) improving anonymity with Tor, and 3)

AS path inference. We discuss related efforts in these areas.

Improving performance in Tor. To improve performance

on Tor, Sherr et al. [6], [39] proposed a path selection algo-

rithm based on the concept of link-based relay selection. In this

approach, a client computes a cost for each path by aggregating

values for the chosen metric (e.g., latency, bandwidth) across

segments on the path, and then picks a path with probability

based on this cost. With the aid of simulations, they showed

that their approach offers better performance on each of

the objective functions mentioned above. In order to obtain

these performance benefits, they discuss relays disseminating

information among themselves using, for example, a network

coordinate system. However, modifying relays to build such

a distributed system for performing measurements and then

disseminating this information is not a trivial task. Therefore,

we focus on latency benefits possible without any modification

to relays. Furthermore, to evaluate the anonymity of their

approach, Sherr et al. count the number of traversed ASes

on the path and consider the traversal of a lower number of

ASes to provide better anonymity. Instead, we explicitly detect

common ASes on the entry and exit segments of a path and

avoid such paths.

Panchenko et al. [7] propose two algorithms to improve

the performance on Tor. First, to reduce latency, they measure

the latency between every pair of relays and choose a path

with a probability related to the end-to-end latency on that

path. Second, to help throughput-oriented applications, they

perform passive measurements to infer the available bandwidth

on each relay and pick a path based on the expected end-to-

end throughput. However, again, modifications to all Tor relays

are necessary to implement these approaches. Also, since most

connections on Tor correspond to interactive traffic [1], we

focus only on reducing latency and show how to do so with

only client-side modifications.

The authors of [40] studied the influence of geographical

diversity on the performance of Tor and found a tradeoff

between improved performance and anonymity. They found

that though low diversity of relays may lower the latencies in

setting up circuits, greater geographical diversity of nodes is

an important factor to provide strong anonymity guarantees.

We similarly illustrate the loss in anonymity when preferring

low latency paths, but make path selection tunable to enable

latency benefits to be overridden for better anonymity, when

desired.

Snader and Borisov [5] showed how a client can trade off

between performance and anonymity when selecting paths.

However, Snader and Borisov focused on improving through-

put on Tor (their evaluation revolved around the download of

a 1 MB file), while we focus on latency. We showed that the

selection of lower latency paths warrants the need for several

techniques not necessary when optimizing throughput, such as

the careful selection of entry guards and accounting for desti-

nations that are geographically distributed. DefenestraTor [8]

improves latencies in Tor by modifying traffic management in

Tor relays to reduce congestion-related queueing delays. We

pursue a complementary approach that reduces propagation

delays without any modifications necessary to Tor relays.

AS-awareness in path selection. In 2004, Feamster and

Dingledine [9] studied the Tor network to investigate the

problem of an AS eavesdropping both ends of a circuit.

First, they showed that there are Tor relays with different

IP addresses that are in the same AS, and that Tor clients

should avoid selecting two relays from the same AS. Second,

they discovered that the probability of an AS observing both

ends of a circuit varies between 10% and 30% across (client,

destination) pairs. To reduce this probability, they proposed

the passive monitoring of BGP feeds to determine AS paths.

However, they did not elaborate on how clients should fetch

and maintain up-to-date information from BGP routing tables.

Instead, motivated by their observation, we make AS-aware

path selection practical by reducing both time and space

complexity.

Later, in 2009, Edman and Syverson [10] showed that

although the number of Tor relays increased significantly since

Feamster and Dingledine’s analysis, the probability of an AS

being able to observe both ends of a connection did not

decrease much. To protect against occurrences of snooping

ASes, the authors suggest that all Tor server authorities agree

upon a snapshot of ASes based on Routing Information Bases

(RIB). Client can then use AS topology snapshots to select a

path in which AS-level routes from the client to the entry node

and from the exit node to the destination span a disjoint set of

ASes. As we showed in our evaluation, our approach of using

AS sets significantly reduces the rate of missing snooping

ASes compared to that proposed by Edman and Syverson.

AS path inference. Several systems and algorithms have

been developed for inference of AS paths between arbitrary IP

addresses on the Internet. Approaches for this can be broadly

classified into two classes. One set of approaches [12], [32],

[33] enable computationally efficient estimation of AS paths

but use a large corpus of path measurements as input. Such

approaches are ideal for hosting services that can be queried

for AS path inferences, but this is not an option in the case of

Tor since the queries for AS paths can leak client anonymity.

The second set of approaches [11], [13] for AS path inference

require much lesser data as input, e.g., only the Internet’s PoP-

level or AS-level topology, but are computationally prohibitive

in processing queries. The use of such techniques to select

paths that avoid snooping ASes will render the selection of

low latency paths moot. Given these shortcomings of prior

approaches for AS path inference, we develop a new technique

that both has low runtimes and requires compact inputs.

Other related work. Several measurement studies [41],

[42], [1] of the Tor network have been performed to determine

the location diversity of Tor users and the popularity of

different kinds of traffic such as HTTP, BitTorrent, and E-mail.

These studies have shown that though HTTP transfers account

for a small fraction of the traffic on Tor, they constitute a large

489

majority of connections. Hence, for most Tor users, latency is

more important than throughput. To the best of our knowledge,

we are the first to show how to improve latencies on Tor in a

practical manner with only client-side modifications.

Hopper et al. [21] studied the loss in a client’s anonymity by

knowing the latency on the circuit in use by the client. While

complementary to our effort, this study needs to be revisited

in the light of our tunable AS-aware WSP path selection

algorithm. We speculate that the knowledge that a client is

using WSP to choose paths probably leaks more information

about the client when path latency is known.

IX. CONCLUSIONS AND FUTURE WORK

Though Tor is the most widely used anonymity network to-

day for low latency anonymous communication, poor latencies

on it and the fear of traffic correlation attacks by underlying

ASes are the biggest problems with Tor’s usability today. Prior

proposals have either focused on improving the performance

on Tor in terms of throughput, which does not help interactive

communication, or they mandate significant modifications to

Tor relays, which places the onus on developers and thus are

yet to be deployed.

In this paper, we developed a new Tor client, called LASTor,

to demonstrate that both significant latency gains and pro-

tection against snooping ASes can be obtained on Tor today

without requiring any modifications to Tor relays. Based on

measurements along paths between 10K (client, destination)

pairs, we showed that LASTor can deliver a 25% reduction

in median path latency. To deliver these latency benefits, we

showed that it is important to carefully select entry guards and

account for replicated destinations. We also developed a space-

and time-efficient technique for enabling LASTor to reliably

detect the possible presence of snooping ASes on any path.

Moreover, we have made path selection in LASTor tunable so

that a user can easily choose an appropriate trade-off between

latency and anonymity.

We plan to make LASTor available for public use. We

are also investigating the use of latency estimation ap-

proaches [13], [12] that do not require measurements from

relays to further improve latencies on Tor without necessitating

modifications to relays.

REFERENCES

[1] D. Mccoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker, “Shining
light in dark places: Understanding the Tor network,” in PETS, 2008.

[2] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in USENIX Security Symposium, 2004.

[3] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of
a type III anonymous remailer protocol,” in IEEE S&P, 2003.

[4] U. Moeller, L. Cottrell, P. Palfrader, and L. Sassaman, “IETF
draft: Mixmaster protocol version 2,” http://www.ietf.org/internet-drafts/
draft-sassaman-mixmaster-03.txt, 2005.

[5] R. Snader and N. Borisov, “A tune-up for Tor: Improving security and
performance in the Tor network,” in NDSS, 2008.

[6] M. Sherr, M. Blaze, and B. T. Loo, “Scalable link-based relay selection
for anonymous routing,” in PETS, 2009.

[7] A. Panchenko and J. Renner, “Path selection metrics for performance-
improved onion routing,” in SAINT, 2009.

[8] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy, S. Savage,
and G. M. Voelker, “DefenestraTor: Throwing out windows in Tor,” in
PETS, 2011.

[9] N. Feamster and R. Dingledine, “Location diversity in anonymity
networks,” in WPES, 2004.

[10] M. Edman and P. F. Syverson, “AS-awareness in Tor path selection,” in
CCS, 2009.

[11] Z. M. Mao, L. Qiu, J. Wang, and Y. Zhang, “On AS-level path
inference,” in SIGMETRICS, 2005.

[12] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani, “iPlane: An information plane for
distributed services,” in OSDI, 2006.

[13] H. V. Madhyastha, E. Katz-Bassett, T. Anderson, A. Krishnamurthy,
and A. Venkataramani, “iPlane Nano: Path prediction for peer-to-peer
applications,” in NSDI, 2009.

[14] “The Tor Project, Inc.” http://www.torproject.org.
[15] M. G. Reed, P. F. Syverson, and D. M. Goldschlag, “Anonymous

connections and onion routing,” IEEE JSAC, 1998.
[16] M. Wright, M. Adler, B. N. Levine, and C. Shields, “Defending

anonymous communications against passive logging attacks,” in IEEE

S&P, 2003.
[17] “Quantcast,” http://www.quantcast.com/top-sites-1.
[18] “PlanetLab,” http://www.planet-lab.org.
[19] “MaxMind - GeoLite City,” http://www.maxmind.com/app/geolitecity.
[20] M. Edman and B. Yener, “On anonymity in an electronic society:

A survey of anonymous communication systems,” ACM Computing

Surveys, 2009.
[21] N. Hopper, E. Y. Vasserman, and E. Chan-TIN, “How much anonymity

does network latency leak?” TISSEC, 2010.
[22] N. Mathewson and R. Dingledine, “Practical traffic analysis: Extending

and resisting statistical disclosure,” in PETS, 2004.
[23] S. J. Murdoch and P. Zieliski, “Sampled traffic analysis by internet-

exchange-level adversaries,” in PETS, 2007.
[24] “Tor path specification,” https://gitweb.torproject.org/torspec.git?a=

blob plain;hb=HEAD;f=path-spec.txt, 2011.
[25] A. Broido and kc claffy, “Analysis of RouteViews BGP data: Policy

atoms,” in Network Resource Data Management Workshop, 2001.
[26] “Tor metrics portal: Users,” https://metrics.torproject.org/users.html.
[27] D. Meyer, “RouteViews,” http://www.routeviews.org.
[28] “RIPE Routing Information Service,” http://www.ripe.net/ris/.
[29] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy,

T. Anderson, and J. Gao, “Moving beyond end-to-end path information
to optimize CDN performance,” in IMC, 2009.

[30] P. Mittal, A. Khurshid, J. Juen, M. Caesar, and N. Borisov, “Stealthy traf-
fic analysis of low-latency anonymous communication using throughput
fingerprinting,” in CCS, 2011.

[31] C. Gini, “Measurement of inequality of incomes,” The Economic Jour-

nal, 1921.
[32] D. Lee, K. Jang, C. Lee, G. Iannaccone, and S. Moon, “Scalable

and systematic Internet-wide path and delay estimation from existing
measurements,” Computer Networks, 2011.

[33] J. Qiu and L. Gao, “AS path inference by exploiting known AS paths,”
in GLOBECOM, 2006.

[34] “Archipelago measurement infrastructure,” http://www.caida.org/
projects/ark/.

[35] L. Gao, “On inferring autonomous system relationships in the Internet,”
IEEE/ACM ToN, 2001.

[36] “iPlane: Datasets,” http://iplane.cs.washington.edu/data/data.html.
[37] “The Tor directory protocol,” https://gitweb.torproject.org/torspec.git?a=

blob plain;hb=HEAD;f=dir-spec.txt, 2011.
[38] “iPlane: Measurements and query interface,” http://iplane.cs.washington.

edu/iplane interface.pdf.
[39] M. Sherr, B. Thau, and L. M. Blaze, “Towards application-aware

anonymous routing,” in HotSec, 2007.
[40] A. Panchenko, L. Pimenidis, and J. Renner, “Performance analysis of

anonymous communication channels provided by Tor,” International

Conference on Availability, Reliability and Security, 2008.
[41] S. Le-Blond, P. Manils, C. Abdelberi, M. A. Kâafar, C. Castelluccia,

A. Legout, and W. Dabbous, “One bad apple spoils the bunch: Exploiting
P2P applications to trace and profile tor users,” CoRR, 2011.

[42] K. Loesing, S. J. Murdoch, and R. Dingledine, “A case study on
measuring statistical data in the Tor anonymity network,” in Workshop

on Ethics in Computer Security Research (WECSR), 2010.

490

