
Foundations of Logic-Based Trust Management

Moritz Y. Becker
Microsoft Research

Cambridge, UK

Alessandra Russo
Department of Computing

Imperial College, London, UK

Nik Sultana
Computer Laboratory

University of Cambridge, UK

Abstract—Over the last 15 years, many policy languages have
been developed for specifying policies and credentials under the
trust management paradigm. What has been missing is a formal
semantics – in particular, one that would capture the inherently
dynamic nature of trust management, where access decisions are
based on the local policy in conjunction with varying sets of
dynamically submitted credentials. The goal of this paper is to
rest trust management on a solid formal foundation. To this end,
we present a model theory that is based on Kripke structures for
counterfactual logic. The semantics enjoys compositionality and
full abstraction with respect to a natural notion of observational
equivalence between trust management policies. Furthermore, we
present a corresponding Hilbert-style axiomatization that is ex-
pressive enough for reasoning about a system’s observables on the
object level. We describe an implementation of a mechanization
of the proof theory, which can be used to prove non-trivial meta-
theorems about trust management systems, as well as analyze
probing attacks on such systems. Our benchmark results show
that this logic-based approach performs significantly better than
the only previously available, ad-hoc analysis method for probing
attacks.

I. INTRODUCTION

Trust management [12] is an access control paradigm for

decentralized systems that has attracted a lot of attention over

the last 15 years. Research so far has focussed on concrete

architectures and policy languages for trust management, and

on policy analysis. This paper attempts to shed light on some

of the more foundational aspects of trust management.

A. Trust Management

Trust management can be succinctly characterized by two

distinctive features:

1) The access policy of the relying party is specified in a

high-level policy language (e.g. [11], [45], [26], [37],

[34], [39], [38], [23], [10], [9], [31], [6]).

2) Access decisions do not depend solely on the local policy,

but also on digitally signed credentials that are submitted

to the relying party together with the access request.

Access is granted only if a proof of compliance can be

constructed, showing that the requested permission Q is

provable from the policy P combined with the set of

credentials C.

The first feature effectively decouples the policy from the

implementation of the enforcement mechanism, improving

maintainability and flexibility in a context of quickly evolving

access control requirements.

The second feature is necessitated by the fact that, in large

decentralized systems, the relying party generally does not

know the identity of the users requesting access in advance.

Therefore, authorization has to be based on attributes rather

than identity. Authority over these attributes may be delegated

to trusted third parties, who may then issue credentials that

assert these attributes or re-delegate authority to yet another

party. The credentials that are used in trust management may

thus be quite expressive, containing attributes, constraints and

conditions, and delegation assertions. For this reason, the

language for specifying credential assertions is typically the

same as the one for specifying the local policy.

B. Trust Management Semantics

Given a derivability relation � between sets of assertions

and permissions, the basic mechanics of a trust management

system can be specified as follows: a user’s request Q is

granted iff P ∪ C � Q, where P is the relying party’s local

policy and C is the set of supporting credentials submitted

by the user. All policy languages mentioned above can be

specified in terms of such a derivability relation �; in the

common case of Datalog-based policy languages, the relation

� is simply the standard Datalog entailment relation [20].

Hence we arrive at a natural notion of observational equiv-

alence on policies that captures the essential aspects of trust

management: two policies P and P ′ are equivalent iff for all

sets C of credentials and all requests Q,

P ∪ C � Q⇐⇒ P ′ ∪ C � Q.

The fundamental question we are concerned with in this

paper is whether an adequate model-theoretic semantics of

trust management exists, i.e., one that matches this notion

of observational equivalence. Neither the standard model-

theoretic Datalog semantics based on minimal Herbrand mod-

els (for Datalog-based languages) nor the Kripke semantics

for authorization logics related to ABLP [2] are adequate in

this sense. While these semantics are sufficient for determining

which permissions are granted by a fixed policy P and a fixed
set C of supporting credentials, they do not provide any insight

into questions that are particular to trust management, such as:

(a) Given the semantics of a policy P , which permissions Q
are granted when P is combined with credential set C?

(b) Given the semantics of two policies P1 and P2, what is

the semantics of their composition P1 ∪ P2?

(c) What can an external user infer about an unknown policy

merely by successively submitting requests together with

varying sets of credentials and observing the relying

party’s responses?

C. Technical Contributions

We present the first formal trust management semantics

that accurately captures the action of dynamically submitting

2012 IEEE Symposium on Security and Privacy

© 2012, Moritz Y. Becker. Under license to IEEE.
DOI 10.1109/SP.2012.20

161

varying sets of credentials. It is compositional with respect to

policy union and provides full abstraction [43] with respect

to observational equivalence. These two properties together

enable it to answer the questions (a) and (b) above.

Furthermore, we develop an axiomatization that is sound and

complete with respect to the model-theoretic semantics, and

provides inferentially complete object-level reasoning about a

trust management system’s observables. For example, judge-

ments such as “if a policy grants access to Q1 when combined
with set C1, and denies access to Q2 when combined with set
C2, then it must grant access to Q3 when combined with C3”

can be expressed as a formula in the logic, and be proved (or

disproved) within it. It is this expressive power that enables

the logic to directly answer questions such as (c) above, and

thus to analyze probing attacks, a recently identified class of

attacks in which the attacker infers confidential information

by submitting credentials and observing the trust management

system’s reactions [31], [4], [8]. Perhaps even more strikingly,

it is expressive enough to prove general meta-theorems about

trust management systems, e.g. “if a policy satisfies some

negation-free property, then this property will still hold when

the policy is combined with an arbitrary credential set”.

A language-independent semantics would be too abstract

to provide any interesting insights. Our trust management

semantics is specific to Datalog, and thus applicable to the

wide range of Datalog-based policy languages. Datalog has

arguably been the most popular logical basis for languages

in this context; examples include Delegation Logic [37], SD3

[34], RT [39], [38], Binder [23], Cassandra [10], [9], and

SecPAL [6].

The remainder of the paper is structured as follows. We

introduce in Section II a simple language for reasoning about

Datalog-based trust management policies, defined by a re-

lation �, that captures the intuitive operational meaning of

policies and credential submissions. This relation itself is

straightforward, but, as we argue in Section III, universal

truths (that hold for all policies) are both useful and highly

non-trivial. This justifies the need for a logic with a for-

mal semantics with a notion of validity that coincides with

the intuitive notion of universal truths in trust management

systems (Section IV). The corresponding axiomatization is

presented in Section V. Section VI describes our implemen-

tation of a theorem prover for the logic. Applications and

performance results are discussed in Section VII. We review

related work in Section VIII and conclude with Section IX.

The proofs of our theorems are lengthy; we relegate them

to a technical report [?]. Our implementation is available at

http://research.microsoft.com/counterdog.

II. A SIMPLE TRUST MANAGEMENT LANGUAGE

We fix a countable set At of propositional variables called

atoms.1 A Datalog clause is either an atom p or of the form

1In practice, first-order predicates are used as atoms instead of propositional
letters, but if the domain is finite, as is usually the case, the first-order
case reduces to the propositional one. We choose the latter presentation for
simplicity.

p : – p1, ..., pn, where p, p1, ..., pn ∈ At. A policy γ is a finite

set of clauses. We write Γ to denote the set of all policies.

Atoms correspond to atomic facts that are relevant to access

control, e.g. “Alice can execute run.exe” or “Bob is a part-

time student” or “the system is in state Red”. From the point

of view of the Datalog engine, the atoms have no inherent

meaning beyond the logical dependencies specified within the

policy (and the submitted credentials). It is the responsibility

of the reference monitor, which acts as an interface between

requesters and resources, to query the policy in a meaningful

way. For instance, if Alice attempts to execute run.exe, the

reference monitor would check if the corresponding atom

CanExec(Alice, run.exe) is derivable from the policy in

union with Alice’s submitted credentials.

To specify when an atomic query p ∈ At is derivable from

a policy γ, we introduce the relation symbol �:

γ � p iff p ∈ γ or (1)

∃�p ⊆fin At : (p : – �p) ∈ γ ∧ ∀p′ ∈ �p. γ � p′.

We can straightforwardly extend � to Boolean compound

formulas ϕ, and the trivially true query:

γ �
. (2)

γ � ¬ϕ iff γ �� ϕ.

γ � ϕ ∧ ϕ′ iff γ � ϕ and γ � ϕ′.

The relation γ � ϕ may be read as “ϕ holds in γ”.

It is the negated case where Datalog differs from classical

logic: in the latter, ¬p is entailed by a set of formulas γ only if

p is false in all models of γ. In Datalog, on the other hand, only

the minimal model of γ is considered. This fits in well with the

decentralized security model, where knowledge is generally

incomplete, and thus the absence of information should lead

to fewer permissions.

The purpose of our language is not just to specify concrete

policies, but to speak and reason about policy behaviors in a

trust management context. In particular, recall that the outcome

of queries is not just dependent on the service’s policy alone,

but also on the submitted credentials, which are also Datalog

clauses. To express statements about such interactions, we

introduce the notation �γϕ, which informally means “if the

set of credentials γ were submitted to the policy, then ϕ would

be true”. The policy is evaluated in union with the credentials,

so we define

γ � �γ′ϕ iff γ ∪ γ′ � ϕ. (3)

The full syntax of formulas in our trust management reason-

ing language is thus summarized by the following grammar:

ϕ ::=
 | p | ¬ϕ | ϕ ∧ ϕ | �γϕ

We write Φ to denote the set of all formulas.

As usual, we define ϕ ∨ ϕ′ as ¬(¬ϕ ∧ ¬ϕ′), ϕ → ϕ′ as

¬ϕ ∨ ϕ′, and ϕ ←→ ϕ′ as (ϕ → ϕ′) ∧ (ϕ′ → ϕ). The unary

operators � and ¬ bind more tightly than the binary ones,

and ∧ and ∨ more tightly than → and ←→. Implication (→)

is right-associative, so we write ϕ1 → ϕ2 → ϕ3 for ϕ1 →
(ϕ2 → ϕ3).

162

Example II.1. Let γ0 be the Datalog policy

{p : – q, r; p : – s; q : – p, t; q : – u} (we use the semicolon

as separator in clause sets, to avoid the ambiguity with the

comma).

1) Without supporting credentials, no atom holds in γ0:

γ0 � ¬v, for all v ∈ At.

2) If u and r were submitted as supporting credentials, then

p would hold in γ0:

γ0 � �{u; r}p.

3) If credential s were submitted, and then t were submitted,

then q would hold in γ0:

γ0 � �{s}�{t}q.

This is, of course, equivalent to submitting both at the

same time: γ0 � �{s; t}q.

4) Submitted credentials may include non-atomic clauses:

γ0 � �{s :– q; u}p.

When are two policies (observationally) equivalent? Intu-

itively, they are equivalent if they both make the same set

of statements true, under every set of submitted credentials.

This notion can be formalized using the standard Datalog

containment relation �, as follows:

Definition II.2 (Containment, equivalence). Let γ1, γ2 ∈ Γ.

Then γ1 is contained in γ2 (γ1 � γ2) iff for all finite �p ⊆ At
and p ∈ At:

γ1 ∪ �p � p⇒ γ2 ∪ �p � p.

Two policies γ1 and γ2 are equivalent (x ≡ y) iff γ1 � γ2 and

γ2 � γ1.

This definition may seem a bit narrow at first, but the

following proposition shows that it actually coincides with the

intuitive notion that exactly the same set of formulas (including

�-formulas!) holds in two equivalent policies.

Proposition II.3. Let γ1, γ2 ∈ Γ.

γ1 ≡ γ2 iff ∀ϕ ∈ Φ. γ1 � ϕ⇔ γ2 � ϕ

Example II.4.
1) ∅ � γ, for all γ ∈ Γ.

2) {a} � {a; b} � {a; b; c}
3) {a : – b, c} � {a : – b} � {a}
4) {a : – d; d : – b} ≡ {a : – b, c; a : – d; d : – b}.

III. UNIVERSAL TRUTHS

The relation � from Section II is a straightforward specifi-

cation of what a policy engine in a trust management system

does. It is merely the standard Datalog evaluation relation

extended with the �-operator for expressing the action of sub-

mitting supporting credentials. The relation is easy to evaluate

(for a given γ and ϕ), and it directly reflects the intuition of

the operational workings of a trust management system. So

why should we bother developing a formal semantics that, as

we shall see, is much more complex?

There are three compelling reasons:

• A model-theoretic semantics lets us interpret and ma-

nipulate policies as mathematical objects in a syntax-

independent way. It also provides additional insights into,

and intuitions about, trust management systems.

• To prove that a formula is not a theorem, it is often easier

to construct a counter-model (or in our case, a counter-

world) than to work directly in the proof theory.

• The relation � actually does not even provide a proof

theory for formulas ϕ: it is of no help in answering the

more interesting (but much harder) question if ϕ is valid,

i.e., if holds in all policies γ. A formal semantics is the

first step towards a corresponding proof theory.

The first two answers also apply to the question on the

benefits of having a model-theoretic semantics for any logic.

The third point is perhaps the most important from a practical

perspective: in policy analysis, we are not mainly interested

in the consequences of concrete policies and concrete sets of

submitted credentials, but in universal truths ϕ that hold in all
policies (or all policies that satisfy some properties).

Definition III.1. We write � ϕ iff ϕ holds in all policies, i.e.,

∀γ ∈ Γ. γ � ϕ.

The following examples illustrate that the reasoning tech-

niques required in proving universal truths ϕ are beyond those

directly provided by the definition of �.

Example III.2. If p is true in some policy when credential

q : – r is submitted, then p would also be true in the same

policy if credential q were submitted:

� �{q :– r}p→ �{q}p
Intuitively, q is “more informative” than q : – r (more formally,

{q : – r} � {q}), and providing more information can only lead

to more (positive) truths, as Datalog is monotonic.

Example III.3. If submitting a and b individually is not

sufficient for making c hold in some policy, but submitting

both of them together is sufficient, then a cannot possibly hold

in the policy:

� ¬�{a}c ∧ ¬�{b}c ∧�{a; b}c→ ¬a
For suppose a were true in the policy. Then submitting both

a and b would be equivalent to submitting just b, but this

contradicts the observation that submitting solely b does not

make c true.

Example III.4. If a does not hold in some policy, and

submitting d is not sufficient for making e hold, but submitting

both credentials b : – a and d : – c is sufficient, then c must hold

in that policy, and furthermore, a would hold if credential d
were submitted:

� ¬a ∧�{d}¬e ∧�{b :– a; d :– c}e→ c ∧�{d}a.
This small example is already too complex to explain suc-

cinctly by informal arguments, but it illustrates that reasoning

about universal truths is far from trivial. We later present a

formal proof of this statement in Example V.4.

163

A. Probing Attacks

There is a class of attacks on trust management systems

called probing attacks [31], [4], [8], in which the attacker gains

knowledge of secrets about the policy by submitting a series

of access requests together with sets of supporting credentials,

and by observing the system’s reactions. Checking if a probing

attack allows the attacker to infer a secret can be very complex,

but it turns out that we can express probing attacks succinctly

and directly as universal truths in our language.

Here is a simple (and naı̈ve) example of a probing attack.

A service S has a policy γ that includes the publicly readable

rule

S.canRegister(x) : – x.hasConsented(S). (4)

Informally, this should mean “S says that x can register with

the service if x says (or has issued a credential saying) that he

or she consents with S’s terms and conditions”. The service

also exposes the query S.canRegister(x) to any user x.

Suppose the user (and attacker) A self-issues a conditional

credential

A.hasConsented(S) : –A.isRegistered(B), (5)

which informally means “A says that A consents to S’s terms

and conditions, if A says that B is registered”. A then submits

this credential together with the query S.canRegister(A),
and observes that the answer is ‘no’. From this single

observation, she learns that neither A.hasConsented nor

A.isRegistered(B) hold in γ – or else the query would have

yielded the answer “yes”. This is not very interesting so far,

as she has only learnt about the falsity of statements made by

herself.

But suppose she can also issue delegation credentials of the

form A.p : –D.p. Such credentials are usually used to express

delegation of authority; for example, to delegate authority over

who is a student to university U , A would issue the credential

A.isStudent(x) : –U.isStudent(x). But here A abuses this

mechanism by issuing the delegation credential

A.isRegistered(B) : – S.isRegistered(B). (6)

Now she submits this credential together with the first condi-

tional credential, and evaluates the same query. By observing

the service’s reaction to this second probe, and combining this

with her previous observation, she then learns whether B is

registered (according to S!) or not: the service’s answer is

“yes” iff γ � S.isRegistered(B). She has thus detected a fact

in γ that had nothing to do with the original query, and may

well be confidential. Moreover, it is generally not possible to

protect against probing attacks without crippling the intended

policy using simple syntactic input sanitization or by enforcing

strict non-interference (see [4] for details).

We now show how this attack can be expressed as a

universal truth. Let c1 and c2 be the credentials 5 and 6,

respectively. A’s knowledge about the public clause (4) in the

policy translates into

ϕ1 = �{A.hasConsented(S)}S.canRegister(A).

Her first observation is translated into

ϕ2 = �{c1}¬S.canRegister(A),
and the second observation into

ϕ3 = �{c1,c2}S.canRegister(A) or

ϕ′3 = �{c1,c2}¬S.canRegister(A),
depending on the service’s reaction. Then the following holds:

� ϕ1 ∧ ϕ2 ∧ ϕ3 → S.isRegistered(B)

� ϕ1 ∧ ϕ2 ∧ ϕ′3 → ¬S.isRegistered(B)
We will later present a logic that can prove such statements,

and thus can also be used to reason about probing attacks (see

Example V.5).

Note that Examples III.3 and III.4 can also be interpreted as

probing attacks. For instance, in Example III.4, let us assume

that e is the only query publicly exposed by the service, and

the attacker initially only knows that a does not hold in the

service’s policy. The attacker possesses three authenticated

credentials: d and b : – a and d : – c. By submitting first d
together with the query e, and after that {b : – a; d : – c}
together with the same query, and by observing the service’s

reactions to these two probes, the attacker detects (provided

she is sufficiently clever) that c ∧ �{d}a holds in the policy.

Depending on the circumstances, this may constitute a breach

of secrecy.

We can succinctly define the notions of probes, probing

attack, detectability and opacity from [4], [8] in our language.

Definition III.5. A probe π is a formula of the form �γψ,

where γ ∈ Γ is called the probe credential set and ψ is a

�-free formula from Φ called the probe query.

An observation of a probe π under a policy γ0 is either π
if γ0 � π, and otherwise ¬π.

A probing attack on γ0 consisting of probes {π1, ..., πn} is

the conjunction of the observations of πi ∈ {π1, ..., πn} under

γ0.

Clearly, by the above definition, if ϕ is a probing attack on

γ0, then γ0 � ϕ. But there may be other policies γ that also

have the property that ϕ holds in them. In the absence of other

additional knowledge, the attacker cannot distinguish between

γ0 and any such γ. To put it positively, the attacker learns from

the probing attack ϕ precisely that γ0 is in the equivalence

class of policies in which ϕ holds. We denote this equivalence

class induced by probing attack ϕ by |ϕ| = {γ | γ � ϕ}.
Now if in all these policies, some property ϕ′ holds, then

the attacker knows with absolute certainty that ϕ′ holds in

γ0 in particular, in which case we say that ϕ′ is detectable.

Conversely, if there exists some policy within |ϕ| in which ϕ′

does not hold, the attacker cannot be certain that ϕ′ holds in

γ0, in which case we say that ϕ′ is opaque.

Definition III.6 (Detectability, opacity). A formula ϕ′ ∈ Φ is

detectable in a probing attack ϕ on a policy γ0 iff

∀γ ∈ |ϕ|. γ � ϕ′.

164

A formula ϕ′ is opaque in a probing attack ϕ iff it is not

detectable in ϕ, or equivalently,

∃γ ∈ |ϕ|. γ �� ϕ′.

Theorem III.7 (Probing attacks). A formula ϕ′ is detectable

in a probing attack ϕ iff � ϕ→ ϕ′.

This theorem again underlines the importance of being able

to reason about universal truths.

IV. SEMANTICS

The model-theoretic semantics we are looking for has to

satisfy four requirements:

1) Capturing trust management: given ϕ and the semantics

of γ, it is possible to check if γ � ϕ.

2) Supporting a notion of validity: ϕ is valid (in the model

theory) iff � ϕ.

3) Full abstraction [43]: two policies are equivalent (≡) iff

their respective semantics are equal.

4) Compositionality: the semantics of γ1 ∪ γ2 can be com-

puted from the individual semantics of γ1 and γ2.

A. Naı̈ve Approaches

We first consider some simple approaches to developing a

formal semantics that may immediately come to mind, and

show why they fail.

The standard model-theoretic interpretation of a set of

Datalog clauses is its minimal Herbrand model, i.e., the set

of atoms that hold in it. But in this approach, the policy

γ0 from Example II.1 would have the same semantics as

the empty policy ∅, namely the empty model, even though

the two policies are clearly not equivalent (Def. II.2). Hence

such a semantics would not be fully abstract. This semantics

is not compositional either: from the semantics of {p : – q}
(which is again empty) and of {q}, we cannot construct the

semantics of their union. Therefore, this semantics is clearly

unsuitable in a trust management context, where it is common

to temporarily extend the clause set with a set of credentials.

In fact, this semantics fails on all four accounts regarding our

requirements.

We could also attempt to interpret a Datalog clause

p : – p1, ..., pn as an implication p1 ∧ ... ∧ pn → p in classical

(or intuitionistic) logic, and a policy γ as the conjunction

of its clauses: [[γ]] =
∧

c∈γ [[c]]. As shown by Gaifman and

Shapiro ([27]), this semantics would indeed be both compo-

sitional and fully abstract. However, this interpretation does

not correctly capture the trust management relation �, as

we show now. First of all, we would need to translate �-

formulas into logic. The obvious way of doing this would be

to interpret �γϕ as the implication [[γ]] → [[ϕ]]. Then, for

instance, we have {p : – q} � �qp, and correspondingly also

[[{p : – q}]] |= [[�qp]], since [[{p : – q}]] = [[�qp]] = q → p. Thus

we might be led to conjecture

γ � ϕ
?⇐⇒ [[γ]] |= [[ϕ]].

Unfortunately, this correspondence does not hold in general.

Consider the formula ϕ = ¬q ∧ �qp. From this we can

conclude that [[ϕ]] = ¬q ∧ (q → p). But {p : – q} � ϕ,

whereas [[{p : – q}]] �|= [[ϕ]]. We could try to fix this by

only considering the minimal model of the semantics, since

minMod([[{p : – q}]]) |= ¬q. But we can break this again:

∅ �� ϕ, whereas minMod([[∅]]) |= [[ϕ]].

B. A counterfactual Kripke semantics

The crucial observation that leads to an adequate semantics

is that both Datalog clauses and the trust management specific

�-actions are counterfactual, rather than implicational, in

nature. For instance, p : – �p can be interpreted as the coun-

terfactual “if �p were added to the policy, then p would hold”.

Similarly, �γϕ can be read as “if γ were added to the policy,

then ϕ would hold”. (Note that the counterfactual conditional

“if A were true then B would hold” is strictly stronger than

the material implication “A → B”, which vacuously holds

whenever A is not true.)

Therefore, we can unify the notations and write ��pp instead

of p : – �p. Moreover, instead of writing a policy γ as a set,

we can just as well write it as a conjunction of clauses. We

can thus rewrite the syntax for policies and formulas from

Section II in the following, equivalent, form:

Policies γ ::=
 | p | �∧
�pp | γ ∧ γ

Formulas ϕ ::=γ | ¬ϕ | ϕ ∧ ϕ | �γϕ

As before, we write Γ and Φ to denote the set of all policies

and formulas, respectively. The relation � is also defined as

before, with the obvious adaptations to the new syntax.

Notation IV.1. Henceforth, we treat �ϕ as syntactic sugar for∧
�ϕ, and p : – �p for ��pp.

Interpreting �-formulas as counterfactuals, we can now give

it a multi-modal Kripke semantics in the spirit of Lewis and

Stalnaker [36], [49]: the counterfactual �γϕ holds in a possible

world w if in those γ-satisfying worlds w′ that are closest to

w, ϕ holds. We will express the closeness relation using a

ternary accessibility relation R, and later apply rather strong

conditions on R in order to make it match the intended trust

management context.

Definition IV.2 (Model, entailment). A model M is a triple

〈W,R, V 〉, where W is a set, R ⊆ ℘(W) × W × W , and

V : At→ ℘(W).
Given a model M , we inductively define the model-theoretic

entailment relation �M ⊆ W ×Φ as follows. For all w ∈W :

w �M

w �M p iff w ∈ V (p)
w �M ¬ϕ iff w �M ϕ

w �M ϕ1 ∧ ϕ2 iff w �M ϕ1 and w �M ϕ2

w �M �γϕ iff ∀w′. R|γ|M (w,w′)⇒ w′ �M ϕ,

where |γ|M = {w ∈W | w �M γ}. Similarly, we write |w|M
to denote the set {γ ∈ Γ | w �M γ}.

Intuitively, a world w ∈ W corresponds to a policy; more

precisely, to the �-maximal policy in |w|M . Vice versa, a

165

policy γ corresponds to a world, namely the �M -minimal

world in |γ|M , where �M is an ordering on worlds that reflects

the containment relation � on policies (Def. IV.3). (Actually,

in Def. IV.4, we associate γ simply with the entire cone |γ|M .)

Definition IV.3 (World containment). Given a model M =
〈W,R, V 〉 and x, y ∈W ,

x �M y iff ∀γ ∈ Γ : x �M γ implies y �M γ.

Definition IV.4 (Semantics). The semantics of γ (with respect

to M) is |γ|M .

As it is, this definition keeps the meaning of R completely

abstract, but we can already prove that the semantics is

compositional, irrespective of R:

Theorem IV.5 (Compositionality). For all models M , and

γ1, γ2 ∈ Γ:

|γ1 ∧ γ2|M = |γ1|M ∩ |γ2|M .
In order to satisfy the remaining three requirements from

Section II, we have to put some restrictions on the models, and

in particular on the accessibility relation R. We call models

that satisfy these constraints TM models (Def. IV.7). Intuitively,

R|γ|M (w,w
′) should hold if w′ is a world that is closest to

w of those worlds in which γ holds. But what do we mean

by ‘closest’? If we interpret worlds as policies, then w′ is the

policy that results from adding γ, and nothing more but γ, to

w. So we have to consider all worlds that are larger than w
(since we are adding to w) and also satisfy γ, and of these

worlds we take the �M -minimal ones (since we are adding

nothing more but γ) (Def. IV.7(1)).
The other two constraints (Def. IV.7(2) and IV.7(3)) ensure

that there is a one-to-one correspondence between policies and

worlds.

Definition IV.6. If (X,≤) is a pre-ordered set (≤ is a reflexive

transitive relation on X) and Y a finite subset of X , then

min≤(Y) = {y ∈ Y | ∀y′ ∈ Y : y′ �< y}, and max≤(Y) =
{y ∈ Y | ∀y′ ∈ Y : y′ �> y}.
Definition IV.7 (Trust management model). A model M =
〈W,R, V 〉 is a TM model iff

1) ∀γ ∈ Γ, x, y ∈W.
R|γ|M (x, y) iff y ∈ min�M

{w | w �M x ∧ w ∈ |γ|M},
2) ∀γ ∈ Γ, ∃w ∈W. γ ∈ max�|w|M , and
3) ∀w ∈W, ∃γ ∈ Γ. γ ∈ max�|w|M .

To gain a better intuition for TM models, it is useful to

consider the following, particular TM model: imagine a labeled

directed graph with a vertex for each γ ∈ Γ (these are the

worlds W). There is an edge from γ1 to γ2, labeled with

γ, whenever γ2 = γ1 ∪ γ (corresponding to the accessibility

relation R|γ|).
So a TM model models all possible policies and all possible

trust management interactions (submitting a set of credentials

γ for the duration of a query) with these policies. The

following theorem shows that TM models indeed precisely

capture the trust management relation �, and Theorem IV.9

states that the semantics is fully abstract.

Theorem IV.8 (Capturing trust management). Let M =
〈W,R, V 〉 be a TM model, γ ∈ Γ and ϕ ∈ Φ.

γ � ϕ iff ∀w ∈ min�M
|γ|M . w �M ϕ

Theorem IV.9 (Full abstraction). For all TM models M , and

γ1, γ2 ∈ Γ:

γ1 ≡ γ2 iff |γ1|M = |γ2|M .

The property that is hardest to satisfy (and to prove) is the

requirement that the model theory should support a notion

of validity that coincides with judgements of the form � ϕ,

i.e., universal truths about trust management policies. This is

formalized in Theorem IV.11.

Definition IV.10 (Trust management validity). ϕ is TM-valid
(we write �TM ϕ) iff for all TM models M = 〈W,R, V 〉 and

w ∈W : w �M ϕ.

Theorem IV.11 (Supporting validity).

�TM ϕ iff � ϕ.

Example IV.12. Consider the following (false) statement: “in

all policies in which p → q holds, �pq also holds.” By the

contrapositive of Theorem IV.11, we can prove that this is not

true, i.e., �� (p → q) → �pq, by identifying a counter-world

w in a TM model M such that w �M (p → q) ∧ ¬�pq. By

Def. IV.2, this is equivalent to

w �M ¬p ∧ ¬�pq or w �M q ∧ ¬�pq.

Let w be a �M -minimal world in all of W . By minimality,

w �M γ only if γ is universally true. Neither p nor �pq
(assuming p �= q) are universally true, hence w �M ¬p and

w �M ¬�pq, as required.

In this section, we developed an adequate model-theoretic

semantics for trust management. We started by interpreting

both Datalog clauses and trust management interactions as

counterfactuals, and taking a generic counterfactual model

theory as the basis. We then customized the theory by adding

constraints on the models of interest to arrive at TM models.

The resulting semantics satisfies all four requirements from

Section II, and it provides an intuition of a trust management

service as a vertex in a labeled directed graph, where the

reachable vertices represent the clause sets resulting from

combining the service’s policy with the submitted credential

set (the edge label) to the service.

However, this semantics still does not give us much insight

into proving judgements of the form � ϕ (or, equivalently,

�TM ϕ). For this purpose, we equip the model theory with a

corresponding proof theory in the following section.

V. AXIOMATIZATION

In standard modal logic, it is usually straightforward to

derive an axiom in the proof theory from each frame condition

in the model theory, i.e., a restriction on the accessibility

relation R. (For example, reflexivity of R corresponds to the

166

axiom �ϕ→ ϕ.) This constructive method can also be applied

to counterfactual multi-modal logic, if the frame conditions are

relatively simple [48]. In our case, however, the restriction on

R (Def. IV.7(1)) is too complex to be simply ‘translated’ into

an axiom. The axiomatization presented below was actually

conceived by guessing the axioms and rules, and adjusting

them until the system was provably sound and complete with

respect to the model theory.

Definition V.1. In the proof system below, let ϕ,ϕ′, ϕ′′ ∈ Φ,

γ, γ′ ∈ Γ, p ∈ At and �p ⊆ At. The proof system consists of

the following axiom schemas:

� ϕ→ ϕ′ → ϕ (Cl1)

� (ϕ→ ϕ′ → ϕ′′)→ (ϕ→ ϕ′)→ ϕ→ ϕ′′ (Cl2)

� (¬ϕ→ ¬ϕ′)→ ϕ′ → ϕ (Cl3)

� �γ(ϕ→ ϕ′)→ �γϕ→ �γϕ
′ (K)

� �γγ (C1)

� �γϕ→ γ → ϕ (C2)

� �(p :– �p) ϕ→ (�p→ p)→ ϕ (Dlog)

provided ϕ is �-free

� �γ¬ϕ←→ ¬�γϕ (Fun)

� �γ∧γ′ϕ←→ �γ�γ′ϕ (Perm)

Additionally, there are three proof rules:

If � ϕ and � ϕ→ ϕ′ then � ϕ′. (MP)

If � ϕ then � �γϕ. (N)

If � γ → γ′ and ϕ is ¬-free (Mon)

then � �γ′ϕ→ �γϕ

Axioms (Cl1)–(Cl3) and Modus Ponens (MP) are from the

Hilbert-style axiomatization of classical propositional logic

[47]. It is easy to see that they are sound, irrespective of

R, since the Boolean operators
, ∧ and ¬ are defined

classically for �M . Axiom (K) is the multi-modal version of

the basic Distribution Axiom that is part of every modal logic

(�(ϕ→ ϕ′)→ �ϕ→ �ϕ′). Similarly, Rule (N) is the multi-

modal version of the basic Necessitation Rule (if � ϕ then

� �ϕ).

Axioms (C1) and (C2) are also standard in counterfactual

logic [48]. The former is the trivial statement that if γ
were the case, then γ would hold. The latter axiom states

that the counterfactual conditional is stronger than material

implication.

At first sight, Axiom (Dlog) may look similar to Ax-

iom (C2), but the two are actually mutually independent. In

fact, while the latter is standard, Axiom (Dlog) is deeply

linked with the intuition that the possible worlds correspond

to Datalog policies. Recall that, intuitively, the left hand side

means “ϕ would hold in the policy if the credential p : – �p
were submitted”. Now we expand the right hand side of the

implication to

(�p ∧ ¬p) ∨ ϕ.

So the axiom tells us that the left hand side holds only if it is

the case that

• either ϕ holds in the policy anyway, even without sub-

mitting p : – �p,

• or the action of submitting the credential must be crucial

for making ϕ true, but this is only possible if the

conditions �p of the credential are all satisfied in the policy,

and furthermore p does not already hold in the policy (or

else the credential could not possibly be crucial).

But the axiom only holds for �-free ϕ. To see why, consider

the following instance of Axiom (Dlog), ignoring the side

condition: �q :– p�pq → (p → q) → �pq. The left hand side

is an instance of Axiom (C1), since q : – p is just syntactic

sugar for �pq, so the formula simplifies to (p → q) → �pq,
which is not TM valid, as shown in Example IV.12.

The following lemma is a useful bidirectional variant of

Ax. (Dlog):

Lemma V.2. Let p, q ∈ At and �p ⊆ At.

� �(p :– �p)q ←→ q ∨ (¬p ∧ �p ∧�pq),

Axiom (Fun) is also remarkable in that it is rather non-

standard in modal logic. It is also the reason it is not useful to

define a dual ♦-operator (i.e., ♦γϕ = ¬�γ¬ϕ) in our logic,

since � and ♦ would be equivalent. The axiom is equivalent

to the property that the accessibility relation R in a TM model

M = 〈W,R, V 〉 is essentially functional, i.e., for all w ∈ W ,

and γ ∈ Γ:

• ∃w′. R|γ|M (w,w′), and

• ∀w1, w2. R|γ|M (w,w1) ∧R|γ|M (w,w2)⇒
w1 �M w2 ∧ w2 �M w1.

On the intuitive Datalog level, Axiom (Fun) can easily be

seen to be sound, since the statement “ϕ would not hold if

γ were submitted” is equivalent to “it is not the case that ϕ
would hold if γ were submitted”.

Axiom (Perm) also corresponds to a property of R, namely

that it is transitive (that’s the ‘if’ direction) and dense (the

‘only if’ direction). It captures the intuition that submitting

two credential sets in sequence is equivalent to just submitting

their union.

Rule (Mon) expresses a monotonicity property on the sub-

scripts of �, and can be reduced to a monotonicity property

of TM models and ¬-free ϕ:

∀w,w′ ∈W. w �M ϕ ∧ w′ �M w ⇒ w′ �M ϕ.

The intuition here is that submitting more or stronger creden-

tials can only make more (positive) facts true. It is easy to

see that this does not hold in general for negated statements:

suppose p does not hold in a policy (with no submitted

credentials); then the negated fact ¬p holds. But ¬p may cease

to hold when credentials are submitted, in particular, when p
is submitted. In other words, even though p →
 is valid,

��¬p→ �p¬p is not.

The main result of this section is that the axiomatization

is sound and complete with respect to the model theory

(Theorem V.3).

167

Theorem V.3 (Soundness and Completeness).

�TM ϕ iff � ϕ

The proof of soundness (� ϕ implies �TM ϕ) formalizes the

intuitions given above and proceeds, as usual, by structural

induction on ϕ. The proof of completeness (�TM ϕ implies

� ϕ) is less standard, and can be roughly outlined thus:

1) We will prove the equivalent statement that if ϕ consistent

(with respect to �), then there exists a TM model M =
〈W,R, V 〉 and w ∈W such that w �M ϕ.

2) From Lemma V.2, it can be shown that every ϕ is equiva-

lent to a formula ϕ′ that only consists of conjunctions and

negations of policies in Γ (i.e., one that does not contain

vertically nested boxes).

3) Based on the property of TM models that every world

corresponds to some policy in Γ, it is then possible to

identify w ∈ W such that w �M ϕ′, whenever M is a

TM model.

4) By soundness, this implies that w �M ϕ. Furthermore,

we can show that at least one TM model exists, and hence

we arrive at the required existential conclusion.

Together with Theorem IV.11, we have the result

� ϕ ⇐⇒ �TM ϕ ⇐⇒ � ϕ.
We can thus use the axiomatization to prove universal truths

about trust management systems.

Example V.4. We sketch a formal proof of the formula from

Example III.4.

� ¬a ∧�d¬e ∧�b :– a∧d :– ce→ c ∧�da

Proof: We first show that d is equivalent to ��d. The

direction � ��d→ d follows directly from Axiom (C2). The

same axiom also yields � ��¬d→ ¬d, the contrapositive of

which is � d → ��d, together with Axiom (Fun). Therefore

� d←→ ��d.

Since � c →
, we have � ��d → �cd, according to

Rule (Mon), and hence equivalently � d→ d : – c. Taking this

as the premise of Rule (Mon), we get � �d :– ce → �de,
the contrapositive of which is � �d¬e → �d :– c¬e, by

Axiom (Fun).

Therefore, the assumption �d¬e from the antecedent of the

formula implies �d :– c¬e. Conjoining this with the assump-

tion �b :– a∧d :– ce, which is equivalent to �d :– c�b :– ae, by

Axiom (Perm), we get

�d :– c(¬e ∧�b :– ae) (7)

(as it can be easily shown that �d :– c distributes over ∧).

By Axiom (Dlog), � �b :– ae → e ∨ (a ∧ ¬b). Therefore,

formula (7) implies

�d :– c(a ∧ ¬b), (8)

since Axiom (K) allows us to apply Modus Ponens under

�d :– c. We have thus shown that the antecedent of the original

formula implies �d :– ca. Furthermore, as we have shown,

� d → d : – c, and hence by Rule (Mon), � �d :– ca → �da.

Modus Ponens yields one of the consequents of the original

formula, �da.

For the other consequent, c, we apply Axiom (Dlog) to

formula (8), which yields (a ∧ ¬b) ∨ (c ∧ ¬d). Combining

this with the antecedent ¬a, we can then conclude c.

Example V.5. We sketch a formal proof of the probing attack

result from Section III-A. For brevity, we introduce abbreviated

names for the atoms:

as = A.hasConsented(S)

sa = S.canRegister(A)

ab = A.isRegistered(B)

secret = S.isRegistered(B)

The statement that the attacker can detect secret in the probing

attack can then be expressed as

� �assa ∧�as :– ab¬sa ∧�as :– ab∧ab :– secretsa→ secret.

Proof: Assume the left hand side of the formula that we

want to prove. From the previous proof, we have seen that sa is

equivalent to ��sa. Since as : – ab→
, we thus have sa→
�as :– absa, by Rule (Mon). Combining the contrapositive of

this with the assumption, we get ¬sa. From the assumption

and Ax. (C2), we get as→ sa, which together with ¬sa gives

¬as.
Using Lemma (V.2), we can prove that �as :– absa is equiv-

alent to sa ∨ (ab ∧ ¬as ∧�assa).
Since the assumption �as :– ab¬sa is equivalent to

¬�as :– absa (by Ax. (Fun)), it is therefore also equivalent to

¬sa ∧ (¬ab ∨ as ∨ ¬�assa).

We have already proved ¬as, and �assa is in the antecedent.

Therefore, we can conclude ¬ab.
Now consider �as :– ab¬sa ∧ �as :– ab∧ab :– secretsa in the

assumption. By Ax. (Fun) and (Perm) and distributivity of

�, this is equivalent to �as :– ab(¬sa ∧ �ab :– secretsa). By

Ax. (K), we can apply Ax. (Dlog) on the inner box under the

outer box to get

�as :– ab(¬sa ∧ (sa ∨ (secret ∧ ¬ab))),
which implies �as :– absecret. Again applying Ax. (Dlog)

yields secret ∨ (ab ∧ ¬as). But since we have proved ¬ab
above, we can conclude that secret follows from the assump-

tions.

VI. MECHANIZING THE LOGIC

Hilbert-style axiomatizations are notoriously difficult to use

directly for building proofs, and they are also difficult to

mechanize directly, because they are not goal-directed. In this

section, we describe how a goal formula ϕ can be transformed

into an equivalent formula in classical propositional logic

that can be verified by a standard SAT solver. We have

implemented a tool based on the contents of this section; some

uses of the tool are described in Section VII.

168

Our axiomatization has certain characteristics that enables

such a transformation. Firstly, Lemma V.2 shows that ϕ can

be transformed into a formula in which all subscripts of boxes

are �-free, and Ax. (Fun) and (Perm) allow us to distribute

boxes through conjunctions, disjunctions and negations. This

forms the basis of a normalization transform.

Secondly, for a given ϕ, it is sufficient to encode just a finite

number of axiom instantiations in classical propositional logic

in order to characterize the non-classical properties of �. This

process is called saturation.

In this section, we use literal to mean a (possibly negated)

atom, and �-literal to mean a (possibly negated) atom with

some prefix of boxes, e.g. ��rp∧pq and p are both �-literals

(p is logically equivalent to ��p), whereas p is also a literal

but �qp is not.

The reasoning process is described in more detail next.

Normalization and expansion. Following parsing, the goal

formula is simplified through the elimination of subsumed

subformulas; e.g., �a :– bc ∧�ac is simplified to �a :– bc. The

formula is then normalized by computing a negation normal

form and distributing all boxes, such that boxes are only

applied to literals, and negation is only applied to �-literals.

We also use Ax. (Perm) to collect strings of boxes into a single

box. Normalization takes care of Ax. (K), (Fun), and (Perm).

Next, the goal formula is expanded by applying Lemma V.2

exhaustively until all subscripts of �-literals are �-free. Ex-

pansion is a very productive process – it can cause the goal

formula’s size to increase exponentially. This step takes care

of Ax. (Dlog) and Rule (N).

The resulting formula is negated and added to the clause
set. The clause set collects formulas which will ultimately be

passed to a SAT solver.

Saturation. Saturation generates propositional formulas that

faithfully characterize the �-literals occurring in the clause set.

1) Let β = �∧n
i=1(qi:−�qi)p be a �-literal occurring in the

clause set. If � ∧n
i=1(�qi → qi) → p holds (which is

checked by the underlying SAT solver), we replace all

occurrences of β by
. This step is a generalization of

Ax. (C1).

2) For each �-literal �γp (where γ �=
) occurring in the

clause set, we add the formulas p → �γp and �γp →
γ → p.

3) For each pair of �-literals �γ1p, �γ2p (where γ1 �= γ2)

occurring in the clause set, we add the formula

�γ1γ2 ∧�γ2p −→ �γ1p.

Intuitively, this formula encodes the transitivity of coun-

terfactuals. Steps (2) and (3) together cover Ax. (C2) and

Rule (Mon).

Since the second step may create new �-literals, the process

is repeated until a fixed point is reached.

Propositionalization and SAT solving. After saturation com-

pletes, all �-literals in the clause set are uniformly substituted

by fresh propositional literals. The resulting formulas are then

Figure 1. Comparison of timings for the TC3-based test series on a double
logarithmic scale. BK is the tool from [7], Cd is our tool Counterdog.

checked by a standard SAT solver. Our implementation offers

the choice between using the in-memory API of Z32 [22] and

producing output in the DIMACS [24] format used by many

SAT solvers such as MiniSAT [25].

The classical axioms (Cl1)–(Cl3) and Rule (MP) are covered

by the SAT solver. We have therefore covered all axioms and

rules, and thus the goal formula is valid iff the SAT solver

reports unsatisfiability (since we negated the goal).

VII. APPLICATIONS AND PERFORMANCE

A. Probing attacks

As an example of how the axiomatization can be used

for security analysis, and to compare the performance of

our implementation, we conducted a small case study on

analyzing probing attacks, based on the benchmark test cases

described by Becker and Koleini [8], [7]. Their benchmark

was set up to test the performance of their tool (henceforth

referred to as BK) for verifying opacity and detectability

in probing attacks. BK’s algorithm attempts to construct a

policy that is observationally equivalent to all probes but

makes the fact to be detected false. The fact is opaque if BK

manages to construct such a policy, and detectable otherwise.

In contrast, Counterdog is a general theorem prover for our

logic. By Theorems III.7, IV.11, and V.3, Counterdog can

be used to check opacity and detectability by constructing a

formula corresponding to a probing attack and then proving it

mechanically.

To keep this paper self-contained, we briefly describe the

tested scenarios, and refer the reader to [7] for a more detailed

explanation.

The compute cluster Clstr under attack has the following

policy γClstr:

canExe(Clstr, x, j) : –

mem(Clstr, x), owns(Clstr, x, j), canRd(Data, Clstr, j).

owns(Clstr, x, j) : – owns(y, x, j), isTTP(Clstr, y).

mem(Clstr, x, j) : –mem(y, x, j), isTTP(Clstr, y).

canRd(Data, x, j) : – canRd(y, x, j), owns(Data, y, j).

owns(Data, x, j) : – owns(y, x, j), isTTP(Data, y).

isTTP(Clstr, CA).

isTTP(Data, CA).

Here, x and y range over a set of users, and j ranges

over a set of compute job identifiers. The first parameter

of each predicate should be interpreted as the principal who

2Z3 is an SMT solver, but we only use its SAT solving capabilities.

169

says, or vouches for, the predicate. The policy stipulates that,

according to Clstr, members who own a job can execute it,

if Clstr can read the data associated with it according to data

center Data. Clstr delegates authority over job ownership

and membership to trusted third parties (TTP). Data delegates

authority over read permissions to job data to data owners.

Data also delegates authority over job data ownership to

TTPs. Furthermore, both Clstr and Data say that certificate

authority CA is a TTP.

TC1. In the basic test case (TC1), the attacker Eve possesses

four credentials γEve:

owns(CA, Eve, Job).

mem(CA, Eve).

canRd(Eve, Clstr, Job).

canRd(Eve, Clstr, Job) : –mem(Clstr, Bob).

Clstr exports only one query to Eve:

ϕEve = canExe(Clstr, Eve, Job).

With her four credentials and the query, Eve can form

24 = 16 probes (cf. Def. III.5) of the form �γϕEve, for each

γ ⊆ γEve. These result in 16 observations under γClstr: the

observation corresponding to probe π is just π if γClstr � π,

and otherwise it is ¬π. The resulting probing attack ϕa under

γClstr is then the conjunction of all 16 observations.

In TC1, Eve wishes to find out if Bob is not a member of

Clstr – in other words, if ¬mem(Clstr, Bob) is detectable.

By Theorems III.7, IV.11, and V.3, this is equivalent to

checking

� ϕa → ¬mem(Clstr, Bob).

This is provable, and therefore Eve can detect that Bob is not

a member.

TC2. The atomic clause mem(Clstr, Bob) is added to γClstr,

and the fact to be detected is changed to mem(Clstr, Bob).
The corresponding formula is not provable, and hence

mem(Clstr, Bob) is opaque.

TC3. Based on TC1, three irrelevant atomic clauses p1, p2,

p3 are added to γEve, increasing the number of probes to 27 =
128. The fact to be detected remains the same, and is indeed

detectable.

TC4. This test case was omitted as it only tests a specific

switch in Becker and Koleini’s tool which is not relevant in

our case.

TC5. Based on TC1, the probe query is changed to ϕEve =
canExe(Clstr, Eve, Job)∧¬isBanned(Clstr, Eve). The fact

remains detectable.

TC6. Based on TC5, the probe set is manually pruned to

a minimal set that is sufficient to prove detectability. This

reduces the number of probes from 16 down to only 3.

To get comparable performance numbers, we ran Becker and

Koleini’s probing attack analyzing tool (henceforth referred

to as BK) and Counterdog on these test cases. For our

experiments we used an Intel Xeon E5630 2.53 GHz with

6 GB RAM. The table below summarizes the timings for all

test cases, comparing BK with Counterdog.

Timing (ms)
Test Case # Probes BK Counterdog

1 16 28 10
2 16 28 10
3 128 218 44
5 16 3954 119
6 3 16 13

Counterdog outperforms BK in all test cases. The perfor-

mance gain is most notable in the more expensive test cases.

To test if this is generally the case, we performed a test series,

based on TC3, adding an extra irrelevant clause to the probe

credential set γEve one by one. This doubles the number of

probes (and thus the size of the formula to be proved) at each

step.

Figure 1 compares the performance of both tools for this

test series. Counterdog’s performance gain over BK increases

exponentially with each added credential in γEve. A probe

credential of size 14 (resulting in 16,384 probes) was the

maximum that BK could handle before running out of memory,

taking 408 s (compared to 7 s with Counterdog). We tested

Counterdog with up to 18 credentials (resulting in 262,144

probes), which took 179 s. A simple extrapolation suggests

that Counterdog can check a probing attack based on TC3

extended to 108 probes within less than three hours.

B. Proving Meta-Theorems

As we have seen, the axiomatization of the semantics

together with our implementation enables us to mechanically

prove universal truths about trust management systems – that

is, statements that are implicitly quantified over all policies: a

theorem � ϕ is equivalent to � ϕ, by Theorems IV.11 and V.3,

which can be interpreted as “all policies γ satisfy the property

ϕ”.

But we want to go further than that. In this subsection, we

show that we can use our implementation to automate proofs of

meta-theorems about trust management. These are statements

containing universally quantified meta-variables ranging over

atoms, conjunctions of atoms, Γ or Φ. Our axiom schemas

and Lemma V.2 are examples of such meta-theorems, with

meta-variables p, �p, γ, ϕ etc.

In classical logic as well as all normal modal logics, proving

such meta-theorems is trivial: if a propositional formula f is

a theorem, then substituting any arbitrary formula f ′ for all

occurrences of an atom p in f will also yield a theorem. In

fact, the axiomatization of such logics often explicitly include

a uniform substitution rule, and a finite number of axioms

(rather than axiom schemas, as in our case).

Our logic breaks the uniform substitution property, as

some of the axioms and rules have syntactic side conditions

(e.g. Ax. (Dlog), Rule (Mon)). It is thus not a normal modal

logic in the strict sense, but this does not pose any problems,

and is perhaps even to be expected, as many belief-revision

and other non-monotonic logics also break uniform substitu-

tion [41].

170

Φ-hole contexts C ::= [·] |
 | p | ¬C | �γC | C ∧ C
Γ-hole contexts D ::= [·] |
 | p | ¬D | �γD | �[·]D | D ∧ D
At-hole contexts E ::= [·] |
 | p | ¬E | �γE | �[·]E | �p :–[·]E | E ∧ E

Figure 2. Φ-contexts with Φ-holes, Γ-holes and At-holes, respectively. A At-hole context takes as argument an atom or a conjunction of atoms.

The only downside is that proving meta-theorems is non-

trivial, and manual proofs generally require structural induc-

tion over the quantified meta-variables. It is therefore not

obvious if proving meta-theorems can be automated easily.

After all, the range of the quantifiers is huge, and even infinite

if At is infinite. We answer this question in the affirmative

by presenting a number of proof-theoretical theorems on

the provability of meta-theorems (meta-meta theorems, so to

speak), that show that it is sufficient to just consider a small

number of base case instantiations of meta-variables.

We will use contexts to formalize the notion of meta-

theorem. A context is a Φ-formula with a ‘hole’ denoted by [·].
We define three different kinds of contexts in Fig. 2, Φ-hole,

Γ-hole, and At-hole contexts. Intuitively, the holes in a Φ-hole

(Γ-hole, At-hole, respectively) context can be filled with any

ϕ ∈ Φ (γ ∈ Γ, �p ⊆fin At) to form a well-formed Φ-formula.

If A is a Φ-hole (Γ-hole, At-hole, respectively) context and

α ∈ Φ (α ∈ Γ, α ⊆fin At), we write A[α] to denote the

Φ-formula resulting from replacing all holes in A by α.

It is easy to see that every Φ-hole context is also a Γ-hole

context, and every Γ-hole context is also a At-hole context.

Each of the three types of contexts completely cover all of

Φ; in particular, the case �γ∧[·]A (for Γ-hole and At-hole

contexts) is covered because �γ∧[·]A is equivalent to �γ�[·]A.

Theorem VII.1. Let E be a At-hole context, and let p be an

atom that does not occur in E .

� E [p] iff ∀�p ⊆fin At. � E [�p].
Theorem VII.2. Let D be a Γ-hole context, and let p and q
be atoms that do not occur in D.

� D[p] ∧ D[�qp] iff ∀γ ∈ Γ. � D[γ]
Theorem VII.3. Let C be a Φ-hole context, and let p, q and r
be atoms that do not occur in C. Let S = {p; �qp; �q :– rp}.

(∀ϕs ∈ S. � C[ϕs] ∧ C[¬ϕs]) iff ∀ϕ ∈ Φ. � C[ϕ]
These theorems enable us to mechanically prove meta-

theorems about trust management. Essentially, they reduce a

meta-level quantified validity judgement to a small number

of concrete instances. There is only one case to consider

for universally quantified atoms or conjunctions of atoms

(Theorem VII.1), two cases for meta-variables ranging over

policies (Theorem VII.2), and six cases (three of them negated)

for meta-variables ranging over arbitrary formulas (Theo-

rem VII.3).

Consider, for instance, the meta-statement

∀ϕ ∈ Φ. � ϕ←→ ��ϕ.

More formally and equivalently, we could write

∀ϕ ∈ Φ. � C[ϕ], where C = [·]←→ ��[·].
This can then be mechanically proved by proving just the six

basic instances from Theorem VII.3.

It is easy to extend this method further. Meta-theorems with

multiple meta-variables can also be mechanically proved with

this approach by combining the theorems. For example,

∀ϕ,ϕ′ ∈ Φ, γ ∈ Γ. � �γ(ϕ ∧ ϕ′)←→ (�γϕ ∧�γϕ
′)

reduces to 6× 6× 2 = 72 propositional cases: six each for ϕ
and ϕ′, and two for γ.

We can also prove meta-theorems with side-conditions. If

a meta-variable ϕ ranges over negation-free formulas from

Φ, it is sufficient to prove the three positive instances from

Theorem VII.3. Similarly, for meta-variables ranging over �-

free ϕ (as in Axiom Dlog), the number of cases reduces to

two (ϕ �→ p and ϕ �→ ¬p).

In the following, we discuss a number of meta-theorems

that we verified using the tool, based on Theorems VII.1–VII.3

(in addition to proving them manually). These meta-theorems

provide interesting general insights into Datalog-based trust

management systems. Moreover, they have also been essential

in our (manual) proofs of soundness and completeness (The-

orem V.3).

∀ϕ,ϕ′ ∈ Φ, γ ∈ Γ. � �γ(ϕ ∧ ϕ′)←→ (�γϕ ∧�γϕ
′)

As in standard modal logic, the �-operator distributes over

conjunction. The trust management interpretation is equally

obvious: submitting credential set γ to a policy results in a

new policy that satisfies the property ϕ∧ϕ′ iff the new policy

satisfies both ϕ and ϕ′. Proving this theorem took 574 ms.

∀ϕ,ϕ′ ∈ Φ, γ ∈ Γ. � �γ(ϕ ∨ ϕ′)←→ (�γϕ ∨�γϕ
′)

In most modal logics, � does not distribute over ∨. This

theorem holds only because the accessibility relation is func-

tional, or equivalently, because the result of combining a

credential set with a policy is always uniquely defined. But

again, the theorem is obviously true in the trust management

interpretation: submitting credential set γ to a policy results

in a new policy that satisfies the property ϕ ∨ ϕ′ iff the new

policy satisfies either ϕ or ϕ′. (577 ms)

∀ϕ ∈ Φ. � ϕ←→ ��ϕ
Submitting an empty credential set is equivalent to not sub-

mitting anything at all. (3 ms)

∀ϕ ∈ Φ+, γ ∈ Γ. � ϕ→ �γϕ,

where Φ+ denotes the set of ¬-free formulas in Φ. This can

be interpreted as a monotonicity property of the accessibility

171

relation, and also of credential submissions: positive properties

are retained after credential submissions. (95 ms)

∀ϕ ∈ Φ, γ, γ′ ∈ Γ. � �γ�γ′ϕ←→ �γ′�γϕ

This property, corresponding to a commutative accessibility

relation, is also unusual in multi-modal logics. A simple

corollary is that all permutations of arbitrary strings of boxes

are equivalent, or that the order in which credentials are

submitted is irrelevant. (3059 ms)

∀ϕ ∈ Φ, p ∈ At, �p ⊆fin At. � �p→ (�pϕ←→ �p :– �pϕ)

If �p holds in a policy, then submitting the atomic p results in a

policy that is indistinguishable from the policy resulting from

submitting the conditional credential p : – �p. (30 ms)

∀ϕ ∈ Φ+, γ1, γ2 ∈ Γ. � �γ1γ2 ∧�γ2ϕ→ �γ1ϕ

This theorem asserts that credential-based derivations can

be applied transitively. More precisely: if, after submitting

credential set γ1, the credential set γ2 would be derivable from

the combined policy, and if submitting γ2 directly would be

sufficient for making property ϕ true, then γ1 alone would also

be sufficient. This only holds for negation-free ϕ. A simple

counter-example can be constructed from instantiating γ1 = p,

γ2 =
, and ϕ = ¬p. (1078 ms)

∀ϕ ∈ Φ, γ ∈ Γ. � γ → (ϕ←→ �γϕ)

If a policy contains the clauses γ, then submitting γ as

credential set is equivalent to not submitting anything at all.

This holds even for properties ϕ containing negation. (157 ms)

C. Proving one’s own completeness

In Section VI, we gave some informal justifications as to

why the reduction to propositional logic, which our imple-

mentation is based on, is not only sound (which is relatively

easy to prove manually) but also complete with respect to

the axiomatization. We did not prove completeness completely

manually, but instead used the implementation itself to assist in

the proof, thereby letting the implementation effectively prove

its own completeness!

The main reason why this is possible is the ability to

prove meta-theorems mechanically (Theorems VII.1–VII.3).

With this feature in place, we mechanically verified all axiom

schemas. What this proves is that the reduction rules, as

implemented, cover all axioms.

It remained to show that all rules are covered as well. Recall

that there are three rules, Modus Ponens, (Mon), and (N).

Modus Ponens is built into the underlying SAT solver. We

manually proved that Rule (Mon) can be replaced by the axiom

schema � �γ1γ2 ∧ �γ2ϕ → �γ1ϕ, which we mechanically

verified.

To prove coverage of Rule (N), we perform a rule induction

over � ϕ in order to conclude �∗ �γϕ (where �∗ denotes

the proofs performed by the implementation). All the base

cases, i.e., the cases where ϕ is an instance of an axiom, were

proven mechanically, again as meta-theorems (for example,

for Ax. (C1), we prove ∀γ, γ′ ∈ Γ. � �′γ(�γγ)). The two

remaining cases, where � ϕ is a rule application, were easy

to prove manually.

Together, these results prove that � ϕ implies �∗ ϕ, in other

words, that the implementation is complete. The correctness

of the proof rests on a couple of assumptions: the soundness

of the implementation itself, the correctness of the underlying

SAT solver, and the correctness of our manual proofs. We are

confident about the implementation’s soundness, as the reduc-

tion rules it is based on are sound, and it has been extensively

tested. To achieve an even higher level of confidence about

the semi-mechanically proven completeness result, one could

mechanically verify all computer-generated subproofs, since an

automated proof verifier would be much smaller and simpler

than our proof generator.

VIII. RELATED WORK

Trust Management. Blaze et al. coined the term ‘trust

management’ in their seminal paper [12], referring to a set of

principles for managing security policies, security credentials

and trust relationships in a decentralized system. In their

proposed paradigm, decentralization is facilitated by making

policies depend on submitted credentials and by enabling local

control over trust relationships. Policies, credentials and trust

relationships should be expressed in a common language,

thereby separating policy from the application. Early examples

of trust management languages include PolicyMaker [12],

KeyNote [11], and SPKI/SDSI [45], [26].

Li et al. [40], [39] argue that authorization in decentralized

systems should depend on delegatable attributes rather than

identity, and call systems that support such policies and

credentials attribute-based access control (ABAC) systems. In

essence, their ABAC paradigm is a refinement of trust man-

agement that makes the requirements on the expressiveness of

credentials and policies more explicit: principals may assert

parameterized attributes about other principals; authority over

attributes may be delegated to other principals (that possess

some specified attribute) via trust relationship credentials; and

attributes may be inferred from other attributes. Their proposed

policy language, RT, satisfies all these requirements. Like its

predecessor, Delegation Logic (DL) [37], RT can be translated

into Datalog. (A more expressive variant of RT, RTC [38], can

be translated into Datalog with constraints [33].)

Datalog has also been chosen as the basis of many other

trust management languages. Examples include a language

by Bonatti and Samarati [13], [14], SD3 [34], Binder [23],

Cassandra [10], [9], a language by Wang et al. [53], one by

Giorgini et al. [29], [30] and SecPAL [5], [6].

Apart from their relation to Datalog, what most of these

languages have in common is that attributes are qualified by

a principal who “says” it, and is vouching for the attribute’s

truth. In a credential, this principal coincides with the creden-

tial’s issuer. For example, in Binder, the fact (or condition)

that principal A is a student, according to authority C, could

be expressed as C.isStudent(A); similarly, in SecPAL, one

would write C says A isStudent . This qualifier does not

172

extend Datalog’s expressiveness, as it is easy to translate a

qualified atom C.p(�e) into a normal Datalog atom p(C,�e).

The says operator can be traced back to an authorization

logic by Abadi et al. (ABLP) [2], [35]. Even though it predates

the paper by Blaze et al., ABLP could be seen as a trust

management language. It introduced the says operator – but

in contrast to the simpler Datalog-based languages, ABLP and

related languages such as ICL [28], CCD [1] and DKAL [31],

[32] treat the says (or said, in the case of DKAL) construct as

a proper unary operator in the logic, which cannot be simply

translated into an extra predicate parameter. Our semantics

therefore does not cover these languages.

Previous work on trust management semantics. The

Datalog-based languages inherit their semantics from Datalog.

The most common way to present Datalog’s semantics is as

the minimal fixed point of the immediate consequence operator

Tγ , parameterized on a Datalog program γ [20]. The result

is the set of all atoms p that are true in γ. Our inductive

definition of γ � p coincides with this semantics: γ � p
iff p ∈ Tω

γ (∅). A model-theoretic semantics can be given by

taking the minimal Herbrand model (i.e., the intersection of all

Herbrand models) of γ, and a proof-theoretic semantics can be

defined using resolution strategies [3]. All three flavours of the

standard semantics are equivalent, but, as we have shown in

Section IV, they are not adequate for modeling Datalog-based

trust management policies that are combined with varying sets

of credentials.

Abadi et al. [2] define ABLP axiomatically and then give

it a model-theoretic semantics based on Kripke structures.

However, the axiomatization is not complete with respect to

the semantics. Further work along these lines has been done

by Garg and Abadi [28], who present sound and complete

translations from a minimal logic with a says operator called

ICL, and various extensions of it, into the classical modal

logic S4. Similar, Gurevich and Neeman [32] provide a Kripke

semantics for DKAL2, the successor of the DKAL [31]. These

modal semantics are straightforward compared to the one

presented here, but this is because they have a completely

different focus, namely providing a modal interpretation of the

says (or said) operator. As we have argued above, this operator

is not very interesting in the context of the more practical,

Datalog-based, languages (at least from a foundational point

of view). The focus of our semantics is to give a modal

interpretation of the turnstile operator : – in Datalog policies

and of credential submissions in a trust management context.

Related logics and logic programming. It has been noted

before that the standard Datalog semantics does not enjoy

compositionality and full abstraction relative to program union.

Gaifman and Shapiro [27] propose a semantics for logic

programs that is compositional, fully abstract and preserves

congruence with respect to program union. These properties

are achieved by interpreting logic program clauses as implica-

tional formulas, as a result of which all dependencies between

atoms are preserved. However, this semantics does not give us

the desired behavior (see Section IV). The problem, in essence,

stems from the fact that material implication is inadequate as

an interpretation of conditional if-then statements [46], and

thus also of Datalog clauses (in our context) and credential

submissions: if ¬p holds in a policy, it follows that p → q
also holds, for every q. However, it should not follow that

the clause q : – p is contained in the policy; and similarly, it

is not justified to infer that q would hold if credential p were

submitted and combined with the policy.

One of the main claims of this paper is that clauses and

credential submissions ought to be modeled as counterfactual

statements. The complexity of our semantics, then, stems from

the fact that simple, truth-functional Boolean operators cannot

offer an adequate account of counterfactuals. Stalnaker [49]

and Lewis [36] were the first to propose a Kripke semantics

for counterfactuals, based on a similarity ordering on worlds:

essentially, “if p were true, then q would be true” holds in

a world w if of those worlds in which p is true, the ones

that are most similar to w also make q true. Our semantics

is based on the same basic framework. Our definition of

what “most similar” means is novel, as is our counterfactual

interpretation of Datalog. Therefore, our work could also be

seen as a novel semantics for Datalog in general. However, the

action of dynamically injecting varying sets of clauses into a

Datalog program is a characteristic that is rather specific to

trust management, hence it is more appropriate to frame our

semantics specifically as a trust management semantics.

Much work has been done on axiomatizations of multi-

modal counterfactual logic. A good overview can be found in a

paper by Ryan and Schobbens [48]. Their paper also contains

a comprehensive listing of axioms proposed in the literature

together with the corresponding frame conditions.

At first sight, hypothetical Datalog [15], [16] bears some

resemblance to our logic. Hypothetical Datalog allows clauses

such as p : –(q : add r), meaning “p is derivable provided

that, if r were added to the rule base, q would hold”. In

our logic, this would correspond to (q : – r) → p. But our

logic is significantly more expressive: hypothetical Datalog

cannot express statements that are hypothetical at the top-level

and/or hypothetically add non-atomic clauses, for instance “p
would hold if the conditional (credential) ‘if r were true then

q would hold’ were added”. In our logic, this statement can

be expressed as �q :– rp. Moreover, the work on hypothetical

Datalog (and similar works on hypothetical reasoning) is only

concerned with query evaluation against concrete rule bases,

and not with the harder problem of universal validity.

Probing attacks. We identified the security analysis of

probing attacks as one practical area on which the present

work is likely to have an impact. The problem of probing

attacks has gained attention only rather recently. Gurevich and

Neeman were the first to identify this general vulnerability of

logic-based trust management systems [31]. In [4], probing

attacks are framed in terms of the information flow properties

opacity [42], [18] and its negation, detectability. Becker and

Koleini developed a tool for checking detectability of confiden-

tial facts in Datalog policies, based on constructing a counter-

173

policy, i.e., one that conforms to the given probes but makes the

confidential fact false. The fact is detectable if and only if no

such policy can be found. We use and extend their benchmark

to compare the performance of our logic-based approach in

Section VII-A.

IX. CONCLUDING DISCUSSION

Logics and semantics have long played an important, and

successful, role in security research, especially in the area

of cryptographic protocols [50] . (A prominent example has

been the struggle to find an adequate semantics for BAN

logic [19], see e.g. [21], [17], [51], [52]). The area of trust

management, however, has hitherto not been investigated from

a foundational, semantics-based point of view.

Evaluating a Datalog policy is a straightforward task, and

so is taking the union of two sets of Datalog clauses. At

first sight, then, it may come as an unwelcome surprise that

our semantics, and the axiomatization, of Datalog-based trust

management is so complex. Indeed, if one were only interested

in the results of evaluating access queries against a concrete

policy under a concrete set of submitted credentials, then a

formal semantics would be unnecessary. But if one is interested

in reasoning about the behavior of trust management systems,

it is necessary to formulate universal truths that are quantified

over all policies. Proving such statements is remarkably hard,

even though the base language is so simple. As we have

seen, neither the standard Datalog semantics nor the Kripke

semantics for ABLP and related languages properly captures

Datalog-based trust management. The situation has actually

been worse than that of BAN logic,3 since, prior to the present

work, not even a sound and complete proof system existed, let

alone a formal semantics.

Our formal semantics is defined by the notion of TM models

and the TM validity judgement �TM, and the axiomatization

of TM validity is given by the proof system �. Theorem V.3

shows that the proof system is sound and complete with respect

to the semantics. So what role does the relation �, which

we introduced in Section II, play? We need it, because a

semantics, despite the term’s etymology, does not really convey

the meaning of the logic. As Read [44] puts it,

[f]ormal semantics cannot itself be a theory of mean-

ing. It cannot explain the meaning of the terms in the

logic, for it merely provides a mapping of the syntax

into another formalism, which itself stands in need

of interpretation.

Of course, the relation � is also just “another formalism”,

but it is one that is much closer to the natural language

description of what a trust management system does, and

can therefore more easily be accepted as “obviously” correct.

Without it (and Theorem IV.11 providing the glue), there

3 Cohen and Dam succinctly described the BAN situation thus [21]: “While
a number of semantics have been proposed for BAN and BAN-like logics,
none of them capture accurately the intended meaning of the epistemic
modality in BAN [...]. This situation is unsatisfactory. Without a semantics, it
is unclear what is established by a derivation in the proof system of BAN: A
proof system is merely a definition, and as such it needs further justification.”

would be a big gap between the intuitive meaning of the

language and its formalization.

What the formal semantics does provide is a number of

alternative, less obvious, interpretations of a trust management

system. TM models are abstract, purely mathematical objects

that are independent of the language’s syntax. They capture

precisely (and only) the essential aspects of a trust manage-

ment system. The easiest interpretation of a TM model is a

graph in which two policies are connected when one is the

result of submitting a set of credentials to the other.

A deeper alternative interpretation is that trust management

logic is a counterfactual logic – a logic that avoids the

paradoxes of material implication. Both policy clauses as well

as statements about credential submissions are counterfactual,

rather than implicational, statements. They state what would
be the case if something else were the case.

As Ryan and Schobbens have noted, counterfactual state-

ments can also be interpreted as hypothetical minimal updates

to a knowledge base [48]. Under this interpretation, a cre-

dential submission �γϕ would be equivalent to saying that

ϕ holds in a policy after it has been minimally updated with

credential set γ. The restrictions on the accessibility relation

(Def. IV.7) can then be seen as a precise specification of what

constitutes a minimal update to a policy.

Hence, from a foundational point of view, our semantics

provides new insights into the nature of trust management.

From a more practical point of view, it led us to an ax-

iomatization that can be mechanized. We showed how our

implementation could be put to good use by applying it to

the analysis of probing attacks. It is the first automated tool

that can feasibly check real-world probing attacks of realistic

size, comprising millions of probes. But our implementation

is a general automated theorem prover for our language, the

expressiveness of which goes far beyond that needed for

probing attacks. In particular, we used the implementation to

prove general meta-theorems about trust management – some

of which are intuitively obvious (but not necessarily easy to

prove), and some of which are decidedly non-trivial (such as

Lemma V.2 or lemmas that help prove the implementation’s

own completeness).

Our logic is decidable, since every formula is equivalent to a

(potentially much larger) propositional formula. However, the

complexity of the logic remains an open question. We also

leave the development of a first-order version of the logic

to future work: in this version, atoms would be predicates

with constant and variable parameters, and clauses would be

implicitly closed under universal quantification.

Acknowledgements Alessandra Russo is funded in part

through the US Army Research laboratory and the UK Min-

istry of Defence under Agreement Number W911NF-06-3-

0001. We thank Mark Ryan and Stephen Muggleton for fruitful

discussions, and Christoph Wintersteiger for his support with

Z3. We are also grateful for the valuable comments from the

anonymous reviewers.

174

REFERENCES

[1] M. Abadi. Access control in a core calculus of dependency. Electronic
Notes in Theoretical Computer Science, 172:5–31, 2007.

[2] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for ac-
cess control in distributed systems. ACM Transactions on Programming
Languages and Systems, 15(4):706–734, 1993.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[4] M. Y. Becker. Information flow in credential systems. In IEEE Computer
Security Foundations Symposium, pages 171–185, 2010.

[5] M. Y. Becker, C. Fournet, and A. D. Gordon. Design and semantics
of a decentralized authorization language. In IEEE Computer Security
Foundations Symposium, pages 3–15, 2007.

[6] M. Y. Becker, C. Fournet, and A. D. Gordon. SecPAL: Design
and semantics of a decentralized authorization language. Journal of
Computer Security, 18(4):619–665, 2010.

[7] M. Y. Becker and M. Koleini. Information leakage in datalog-based trust
management systems. Technical Report MSR-TR-2011-11, Microsoft
Research, 2011.

[8] M. Y. Becker and M. Koleini. Opacity analysis in trust management
systems. Proceedings of the 14th Information Security Conference
(ISC2011), pages 229–245, 2011.

[9] M. Y. Becker and P. Sewell. Cassandra: distributed access control
policies with tunable expressiveness. In IEEE International Workshop
on Policies for Distributed Systems and Networks, pages 159–168, 2004.

[10] M. Y. Becker and P. Sewell. Cassandra: Flexible trust management,
applied to electronic health records. In IEEE Computer Security
Foundations, pages 139–154, 2004.

[11] M. Blaze, J. Feigenbaum, and A. D. Keromytis. The role of trust man-
agement in distributed systems security. In Secure Internet Programming,
pages 185–210, 1999.

[12] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management.
In IEEE Symposium on Security and Privacy, pages 164–173, 1996.

[13] P. Bonatti and P. Samarati. Regulating service access and information
release on the web. In Proceedings of the 7th ACM conference on
Computer and communications security, pages 134–143. ACM, 2000.

[14] P. Bonatti and P. Samarati. A uniform framework for regulating service
access and information release on the web. Journal of Computer
Security, 10(3):241–272, 2002.

[15] A. Bonner. A logic for hypothetical reasoning. In Proceedings of the
Seventh National Conference on Artificial Intelligence, pages 480–484,
1988.

[16] A. Bonner. Hypothetical Datalog: complexity and expressibility. Theo-
retical Computer Science, 76(1):3–51, 1990.

[17] C. Boyd and W. Mao. On a limitation of BAN logic. In Advances in
Cryptology (EUROCRYPT’93), pages 240–247. Springer, 1994.

[18] J. Bryans, M. Koutny, L. Mazaré, and P. Ryan. Opacity generalised
to transition systems. International Journal of Information Security,
7(6):421–435, 2008.

[19] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.
ACM Transactions on Computer Systems, 8:18–36, 1990.

[20] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to
know about Datalog (and never dared to ask). IEEE Transactions on
Knowledge and Data Engineering, 1(1):146–166, 1989.

[21] M. Cohen and M. Dam. A completeness result for BAN logic. Methods
for Modalities, 4, 2005.

[22] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In
C. Ramakrishnan and J. Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 4963 of Lecture Notes in
Computer Science, pages 337–340. Springer Berlin / Heidelberg, 2008.

[23] J. Detreville. Binder, a logic-based security language. In IEEE
Symposium on Security and Privacy, pages 105–113, 2002.

[24] DIMACS Challenge – Satisfiability: Suggested Format.
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability, 1993.

[25] N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia
and A. Tacchella, editors, Theory and Applications of Satisfiability
Testing, volume 2919 of Lecture Notes in Computer Science, pages 333–
336. Springer Berlin / Heidelberg, 2004.

[26] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, and Thomasand. SPKI
certificate theory, RFC 2693, September 1999.

[27] H. Gaifman and E. Shapiro. Fully abstract compositional semantics for
logic programs. In Proceedings of the 16th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages
134–142. ACM, 1989.

[28] D. Garg and M. Abadi. A modal deconstruction of access control
logics. In Foundations of Software Science and Computation Structures
(FOSSACS’08), pages 216–230, 2008.

[29] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Requirements
engineering meets trust management. International Conference on Trust
Management, pages 176–190, 2004.

[30] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Requirements
engineering for trust management: model, methodology, and reasoning.
International Journal of Information Security, 5(4):257–274, 2006.

[31] Y. Gurevich and I. Neeman. DKAL: Distributed-knowledge authoriza-
tion language. In IEEE Computer Security Foundations Symposium
(CSF), pages 149–162, 2008.

[32] Y. Gurevich and I. Neeman. DKAL 2 – a simplified and improved
authorization language. Technical Report MSR-TR-2009-11, Microsoft
Research, 2009.

[33] J. Jaffar and M. J. Maher. Constraint logic programming: a survey.
Journal of Logic Programming, 19/20:503–581, 1994.

[34] T. Jim. SD3: A trust management system with certified evaluation. In
Proceedings of the 2001 IEEE Symposium on Security and Privacy,
pages 106–115, 2001.

[35] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in
distributed systems: theory and practice. ACM Transactions on Computer
Systems, 10(4):265–310, 1992.

[36] D. Lewis. Counterfactuals. Harvard University Press, 1979.
[37] N. Li, B. Grosof, and J. Feigenbaum. A practically implementable and

tractable delegation logic. In IEEE Symposium on Security and Privacy,
pages 27–42, 2000.

[38] N. Li and J. C. Mitchell. Datalog with constraints: A foundation for trust
management languages. In Practical Aspects of Declarative Languages,
pages 58–73, 2003.

[39] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based
trust management framework. In Symposium on Security and Privacy,
pages 114–130, 2002.

[40] N. Li, W. Winsborough, and J. Mitchell. Distributed credential chain
discovery in trust management. In Proceedings of the 8th ACM
Conference on Computer and Communications Security, pages 156–165.
ACM, 2001.

[41] D. Makinson. Ways of doing logic: What was different about AGM
1985? Journal of Logic and Computation, 13(1):3–14, 2003.

[42] L. Mazaré. Using unification for opacity properties. In In Proceedings
of the Workshop on Issues in the Theory of Security (WITS’04, pages
165–176, 2004.

[43] G. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5(3):223–255, 1977.

[44] S. Read. Relevant logic. Blackwell Oxford, 1988.
[45] R. L. Rivest and B. Lampson. SDSI – A simple distributed security

infrastructure, August 1996.
[46] B. Russell. Principles of Mathematics. London: G. Allen & Unwin,

1903.
[47] M. Ryan and M. Sadler. Valuation systems and consequence relations.

In D. G. S. Abramsky and T. Maibaum, editors, Handbook of Logic in
Computer Science, pages 2–74. 1992.

[48] M. Ryan and P. Schobbens. Counterfactuals and updates as inverse
modalities. Journal of Logic, Language and Information, 6(2):123–146,
1997.

[49] R. Stalnaker. A theory of conditionals. Studies in logical theory, 2:98–
112, 1968.

[50] P. Syverson. The use of logic in the analysis of cryptographic protocols.
In IEEE Symposium on Security and Privacy, pages 156–170. IEEE,
1991.

[51] P. Syverson and P. Van Oorschot. On unifying some cryptographic
protocol logics. In IEEE Symposium on Security and Privacy, pages
14–28. IEEE, 1994.

[52] W. Teepe. BAN logic is not ‘sound’, constructing epistemic logics for
security is difficult. Workshop on Formal Approaches to Multi-Agent
Systems, 6:79–91, 2006.

[53] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based framework
for attribute based access control. In Proceedings of the 2004 ACM
workshop on Formal methods in security engineering, pages 45–55.
ACM, 2004.

175

