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Abstract—Programmers should never fix the same bug twice.
Unfortunately this often happens when patches to buggy code
are not propagated to all code clones. Unpatched code clones
represent latent bugs, and for security-critical problems, latent
vulnerabilities, thus are important to detect quickly.

In this paper we present ReDeBug, a system for quickly
finding unpatched code clones in OS-distribution scale code
bases. While there has been previous work on code clone
detection, ReDeBug represents a unique design point that uses
a quick, syntax-based approach that scales to OS distribution-
sized code bases that include code written in many different
languages. Compared to previous approaches, ReDeBug may
find fewer code clones, but gains scale, speed, reduces the
false detection rate, and is language agnostic. We evaluated
ReDeBug by checking all code from all packages in the Debian
Lenny/Squeeze, Ubuntu Maverick/Oneiric, all SourceForge C
and C++ projects, and the Linux kernel for unpatched code
clones. ReDeBug processed over 2.1 billion lines of code at
700,000 LoC/min to build a source code database, then found
15,546 unpatched copies of known vulnerable code in currently
deployed code by checking 376 Debian/Ubuntu security-related
patches in 8 minutes on a commodity desktop machine. We
show the real world impact of ReDeBug by confirming 145
real bugs in the latest version of Debian Squeeze packages.
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I. INTRODUCTION

Patches to buggy code are often not propagated to code

clones in real OS distributions. For example, the following

patch was issued for Expat, a widely used XML parser to

fix a bounds checking bug in August 2009.

const char *end,
POSITION *pos)

{
- while (ptr != end) {
+ while (ptr < end) {

switch (BYTE_TYPE(enc, ptr)) {
#define LEAD_CASE(n) \

case BT_LEAD ## n: \

Listing 1: CVE-2009-3720

This bug, when exploited, causes a denial of service

to the victim [14]. While the above patch fixed Expat in

2009, an additional 386 locations across various Debian,

Ubuntu, and SourceForge packages currently have clones

of the exact same buggy code, all of which are also likely

to be vulnerable. We call such bugs unpatched code clones.

In this paper we present ReDeBug, a lightweight syntax-

based code clone detection system that identifies unpatched

code clones at scale. We have used ReDeBug to analyze

entire OS distributions to understand the current situation of

unpatched code clones: 1) how much (potentially) vulnerable

code can an attacker identify when a patch is released, 2)

how responsive is the new version of an OS to known secu-

rity vulnerabilities, and 3) how many persisting unpatched

code clones are from the previous version of an OS to the

latest version of an OS.

Existing research has focused on methods for improving

the number of code clones detected, e.g., [21, 23–25]. While

advancements in finding more code clones is important,

current algorithms make several trade-offs:

• Scalability: To give a sense of the scale necessary to

find all unpatched code clones, consider that Debian

Lenny currently contains over 210 million lines of non-

empty, non-comment lines of C code alone. Current

approaches focus on finding as many code clones as

possible, not scale. For example, Deckard [23] was

applied to the Linux kernel and JDK, but could not

scale to the entire Debian Lenny code base, and started

consuming more than 20GB of memory in less than 2

minutes. In big development houses one can use clus-

ters of computers to make the approaches scale [21].

However, solutions that can find a competitive number

of code clones without requiring clusters are relevant

because they are cheaper to run (thus can be run more

often) and are applicable to the wider number of de-

velopers who don’t readily have distributed computing

resources.

• Lack of support for many different languages: Since

OS distributions include programs written in a variety

of languages such as C/C++, Java, Shell, Python, Perl,

Ruby, and PHP, we want techniques that are language

agnostic. Current research such as Deckard [23], CP-

Miner [25], CCFinder [24], and Deja Vu [21] first parse

the program and use a variety of matching heuristics

based upon high-level code representations such as

CFGs and parse trees. However, implementing robust

parsers for many different languages is a very difficult

problem [7].
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• High false detection rate: The advanced heuristics

used to find more code clones introduce a high false

detection rate, i.e., a large number of false code clones

are reported. For example, Deja Vu boasts the highest

accuracy we are aware of at 26-34%, meaning 66-74%

are false code clones. That’s 2 out of every 3 reports.

A considerable amount of resources would be wasted

to inspect all the reported cases.

ReDeBug tackles a new point in the design space where

we trade more expensive, yet thorough, pattern matching

algorithms for speed, scalability, and a language-agnostic

property:

• Scalability: ReDeBug uses a syntax-based pattern

matching approach that can be implemented using

extremely efficient data structures which allow fast

querying for code clones when given a patch. ReDeBug

processed source code into a database at about 700,000

LoC/min on a commodity desktop. This database of

over 2.1 billion lines of code can then be queried in less

than 8 minutes. Therefore, ReDeBug can also be used

as part of the normal development and patch process

on hardware available to an average developer or user,

e.g., an average desktop.

• Language agnostic: Roughly speaking, ReDeBug per-

forms simple normalization where all whitespace is

removed and all characters are transformed to their

lower-case equivalent. Such simple normalization al-

lows ReDeBug to identify a variety of latent security

vulnerabilities in programs written in many different

languages. Interestingly, in our evaluation, Deckard –

a tree-based code clone detection technique – missed
6x more code clones than ReDeBug, not counting

languages handled by ReDeBug but not supported by

Deckard (§ IV-A).

• Lower false detection rate: ReDeBug focuses on de-

creasing false detection rate by using a close-to-exact

matching instead of fuzzier matching employed by pre-

vious code clone work. This means we may find fewer

unpatched code clones, but that we will also have fewer

false positives due to mis-matches. ReDeBug has false

positives when vulnerable code is not detected as dead

code by the underlying compiler, and when a previously

identified vulnerable code segment is used in a way

that makes it non-exploitable. Deja Vu and similar

approaches have similar sources of false detection, plus
errors in the matching algorithms themselves [21, 23–

25]. As a result, Deja Vu had a false detection rate

of 66-74%, which is on the better end of similar code

clone detection mechanisms [21, 23–25]. ReDeBug has

zero errors due to matching, thus does not suffer from

the major source of false positives found in previous

work.

We have used ReDeBug to check for unpatched code

clones in Debian 6.0 Squeeze (348,754,939 LoC 1), De-

bian 5.0 Lenny (257,796,235 LoC), Ubuntu 11.10 Oneiric

(397,399,865 LoC), Ubuntu 10.10 Maverick (245,237,215

LoC), Linux Kernel (8,968,871 LoC), and all C/C++

projects at SourceForge (922,424,743 LoC). So far, Re-

DeBug has found 15,546 unpatched code clones in the

total 2,180,581,868 LoC by checking 376 Debian/Ubuntu

security-related patches. The patches address a variety of

issues ranging from buffer overflows, to information dis-

closure vulnerabilities, to denial of service vulnerabilities.

Our measurements indicate that even though ReDeBug is

simpler, it actually finds a comparable number of code clones

to existing approaches (§ IV-A).

Previous work has shown that once a patch is released, an

attacker can use the patch to reverse engineer the bug and

automatically create an exploit in only a few minutes [10].

Our experiments indicate one security implication of ReDe-

Bug is an attacker, using a single laptop, could potentially

find thousands of vulnerable applications among billions of

lines of code in only a few minutes once a patch is released,

assuming he has already preprocessed the code.

In addition to finding unpatched code clones, we have

conducted the first study of the amount of code cloning in

the entire Debian Lenny source base. By performing pair-

wise comparison among functions, ReDeBug provides the

distribution of function pairs based upon their similarity (see

§ III-H)

Overall, our main contributions are:

• We analyze entire OS distributions to comprehend the

current trends of unpatched code clones. To the best

of our knowledge, ReDeBug is the first tool to explore

over 2.1 billion lines of entire OS distributions to under-

stand unpatched code clone problems. We show that un-

patched code clones are a recurring problem in modern

distributions, and find 15,546 unpatched code clones

from Debian Lenny/Squeeze, Ubuntu Maverick/Oneiric

distributions, the Linux kernel, and SourceForge. So far,

ReDeBug has confirmed 145 real bugs.

• We describe ReDeBug, which suggests a new design

space for code clone detection in terms of scalability,

speed, and false detection rate. In particular, the design

point makes ReDeBug realistic for use by typical de-

velopers in everyday environments in order to improve

the security of their code by quickly querying known

vulnerabilities.

• We provide the first empirical measurement of the

total amount of copied code in OS distributions. This

suggests that in the future, unpatched code clones will

continue to be important and relevant.

1We always count non-empty, non-comment lines.
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II. REDEBUG

A. The Core System

Finding all unpatched code clones is tricky and involves

numerous considerations. For example, how many lines of

code need to be similar for a case to be reported? Is one

copied line enough, or are we only interested in multiple

line matches? Should whitespace matter? Should the order

of statements matter, and if so, should we only consider

some syntactic classes? Do we consider the syntactic text,

tokens, or the parse of files? For example, in C the order

of declarations likely does not matter, but the order of

computation may. What if two segments are equivalent up

to variable naming? What about semantic equivalence, e.g.,

one code sequence multiples by 2 while the other performs

a logical left shift. Are these similar or different?

These questions all involve trade-offs between accuracy,

efficiency, and how easy it is to implement a robust algo-

rithm. For example, consider code that is the same up to

variable names and variable declaration order. A straight

string match of the files may find virtually no commonality.

We could certainly address these problems by normalizing

declaration order, and parse code to determine variable name

equivalence (so-called α-equivalence) [11]. However, run-

ning such algorithms require we implement parsing engines

(which can be fragile) and run additional algorithms that

cost time, thus reducing overall throughput. If we are not

careful we may end up subtly analyzing a model of the

original program that is not right, e.g., declaration order

matters when looking for buggy code clones of incorrect

shadow variable declarations.

ReDeBug’s choices are motivated by the design space

goals of: (1) focusing on unpatched code clones, (2) scaling

to large and diverse code bases such as OS distributions, (3)

minimizing false detection, (4) being modular when possible

and offer a user choice of parameters, and (5) be language-

agnostic as much as possible so that we work with the wealth

of languages found within an OS distribution code base. The

core of the ReDeBug system accomplishes these goals using

the following steps:

1) ReDeBug normalizes each file. By default ReDeBug

removes typical language comments, removes all non-

ASCII characters, removes redundant whitespace ex-

cept new lines, and converts all characters to lower

case. We also ignore curly braces if the file is C, C++,

Java, or Perl (as identified by extension or the UNIX

file command).

Normalization is modularized so that the exact nor-

malization steps can easily be changed.

2) The normalized file is tokenized based upon new lines

and regex substrings.

3) ReDeBug slides a window of length n over the token

stream. Each n tokens are considered a unit of code

to compare.

4) Given two sets fa and fb of n-tokens, we compute the

amount of code in common. When finding unpatched

code clones, if fa is the original buggy code snippet

we calculate

CONTAINTMENT(fa, fb) =
|fa ∩ fb|

|fa| (1)

When we want to measure the total amount of sim-

ilarity between files, we calculate the percentage of

tokens in common (i.e., the Jaccard index):

SIMILARITY(fa, fb) =
|fa ∩ fb|
|fa ∪ fb| (2)

With either calculation it is common to only con-

sider cases where the similarity or containment is

greater than or equal to some pre-determined threshold

θ. In our implementation, we also perform obvious

optimizations such as when θ = 1 only verifying

fa ⊆ fb instead of calculating an actual ratio for

CONTAINMENT.

5) ReDeBug performs an exact match test on the iden-

tified unpatched code clones to remove Bloom filter

errors. ReDeBug also uses the compiler to identify

when a code clone is dead code when possible.

For example, suppose we have two files A = t1t2t3t4
and B = t1t3t4t2 where each ti is a token (note to-

kens are written in the order that they appear in the

file). The tokenization is then A = {t1, t2, t3, t4} and

B = {t1, t3, t4, t2}. When n = 2, there are 3 2-token

strings in each set: fA = {(t1, t2), (t2, t3), (t3, t4)} and

fB = {(t1, t3), (t3, t4), (t4, t2)}. The similarity is 1/5 since

1 out of 5 2-token sets are shared, (t3, t4), even though the

shared token sequence appears at different places in the file.

As a result, ReDeBug works with reordering, insertions, and

deletions of up to n-tokens.

ReDeBug is parametrized in two ways: the number of

consecutive tokens to consider together, n, and the threshold,

θ. n determines the sensitivity for statement reordering,

e.g., if n = 1 then statement order does not matter at all,

n = 2 looks at statement pairs, and so on. θ acts as a

knob to tell us what is a significant amount of copying.

When θ = 1, two files must have exactly the same n-tokens

(after normalization). When θ = 0, any match is considered

significant. Values in between represent thresholds for the

amount of similarity of interest. There is no “right” value

for these parameters. In our experiments we show typical

values that produce meaningful results. For example, n = 4
works well with existing patches.

Design point comparison: Our approach is in stark contrast

with current research trends in code clone detection, such as

Deckard [23], CP-Miner [25], Deja Vu [21], and others [1,

24], that focus on minimizing missed code clones at the

expense of other factors. These approaches also normalize

the code, but then perform additional steps such as parsing
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// Original buggy code
char buf[8];
strcpy(buf, input);

// Possible patch 1
char buf[8];

- strcpy(buf, input);
+ strncpy(buf, input, 8);

// Possible patch 2
char buf[8];

+ if(strlen(input) < 8)
strcpy(buf, input);

Figure 1: Buggy code example and two possible patches

the code into high-level representations like parse trees and

control flow graphs. They then employ advanced fuzzy

matching algorithms on the abstractions to find additional

code clones that we may miss. On the other hand, they

may report more false code clones, which require significant

human effort to inspect all the reported cases. Furthermore,

it is known to be very hard to implement good parsers [7].

Overall, the main difference is by employing simpler

techniques that is language agnostic, we can focus on ef-

ficient data structures and algorithms and ultimately scale to

much larger code bases written in many different languages.

Our techniques may miss some clones, but minimize false

clone detection rate. This is important for at least two

reasons. First, by checking all code in a distribution quickly

we can make basic guarantees that at least syntactically

similar unpatched code clones do not exist. Second, we

can conservatively estimate the amount of code cloning in

existing large code bases. The more advanced algorithms in

the above work have not demonstrated they can make either

claim.

B. Unpatched Code Clone Detection

At a high level, there are two approaches to find unpatched

code clones in OS distributions: (1) first find all code clones

among the source and then check if a patch applies to copies,

or (2) check for clones of only the patched code. Previous

work has focused on techniques for finding all clones such

as in (1). This makes sense when doing bug finding on

whole code bases is cheaper to do on unique code snippets.

ReDeBug takes approach (2) because we only want to find

clones of the original unpatched buggy code.

ReDeBug looks for unpatched code clones where patches

are in UNIX unified diff format. Unified diffs are pop-

ular among open source kernel developers, OS distribution

maintainers, and are well-integrated into popular revision

control systems like Subversion [12].

A unified diff patch consists of a sequence of diff hunks.

Each hunk contains the changed filename, and a sequence of

additions and deletions. Added source code lines are prefixed

by a “+” symbol, and deletions are prefixed by a “-” symbol.

Line changes are represented as deleting the original line and

adding back the changed lines.

The original buggy code includes all code deleted by

the patch. However, simply looking for the lines that were

changed (by being deleted) is insufficient: we must also

consider the surrounding context of the patch.

Consider the buggy code and two possible patch scenarios

shown in Figure 1. Patch 1 signifies that strcpy is buggy

by deleting the line of code. The code is replaced with the

safe strncpy version. We can go looking for the deleted

line of code, and flag it as buggy everywhere we see it.

However, patch 2 simply adds a check. Looking for the

missing check is not straightforward since we cannot directly

look for missing lines of code. Our approach is to look for

copies of the surrounding context tokens, c, for each changed

line and report clones of the context.

The overall steps used by ReDeBug to detect buggy code

clones, shown in Figure 2, are:

• Step 1: Pre-process the source. A user obtains all

source files used in their distribution. For Debian, this is

done using the apt tool. ReDeBug then automatically:

1) Performs normalization and tokenization as de-

scribed in the core system in § II-A.

2) Moves an n-length window over the token stream.

For each window, the resulting n-tokens are

hashed into a Bloom filter.

3) Stores the Bloom filter for each source file in

a raw data format. ReDeBug compresses Bloom

filters before storing to disk to save space and to

reduce the amount of disk access at query time.

While initially the above steps would be performed over

the entire distribution, day-to-day use would only run

the steps on modified files, e.g., as part of a revision

control check-in. In our experiments and implemen-

tation, we also concatenate per-file Bloom filters for

a project into a single bitmap before saving to disk.

This is purely an optimization; loading the single large

Bloom filter is much quicker than loading a bunch of

small Bloom filters on our machines.

• Step 2: Check for unpatched code copies. A user

obtains a unified diff software patch. ReDeBug then

automatically:

1) Extracts the original code snippet and the c tokens

of context information from the pre-patch source.

The mechanics for the code snippet are simple:

we extract lines prefixed by a “-” symbol in the

patch (lines prefixed with a “+” symbol are added

and thus not present in the original buggy code). If

context information is given in the patch, we use
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Figure 2: The ReDeBug workflow.

that, else we obtain it from the original source

files.

2) Normalizes and tokenizes the extracted original

buggy code snippets. The normalization process is

the same as described in Step 1. For C, C++, Java,

and Python we remove any partial comments in

the c context lines since those languages support

multi-line comments and c context lines may have

only the head or tail part of multi-line comments.

3) Hashes the n-token window into a set of hashes

fp.

4) Performs a Bloom filter set membership test

on each hashed n-token window. We report an

unpatched code clone with file f if CONTAIN-

MENT(fp, f) ≥ θ.

• Step 3: Post-process the reported clones. Given re-

ported unpatched code clones, ReDeBug automatically:

1) Performs an exact-matching test to remove Bloom

filter errors.

2) Excludes dead code which is not included at

build time. For C we add assert statements

to the buggy code region, and compile with -g
option which allows us to check the presence

of assert statements using objdump -S. For

non-compiled languages this step is omitted.

3) ReDeBug reports only non-dead code to the user.

We use Bloom filters [8] because they are a space efficient

randomized data structure used for set membership tests.

Suppose there is a data set S, i.e., in our setting a set of

n-tokens. A Bloom filter represents set S as a vector of m

bits initially all set to 0. To add an element x ∈ S to the

Bloom filter we first apply k independent hash functions of

range {1..m}. For each hash h(x) = i, we set the i’th bit

of the bit vector to 1. In a Bloom filter, to test if an element

of y ∈ S, we again apply the k hash functions and check

if all the bits are 1. If at least one of the hashed bits is 0,

then we return y /∈ S. If all bits are set to 1, then we return

y ∈ S.

Bloom filters have one-sided error for set membership

tests. A false positive occurs when the set membership test

returns x ∈ S when x is not really in S. False positives occur

because of collisions in hash functions. The false positive

rate of the Bloom filter depends on the size of the bit array

(m), the number of hash functions (k), and the number of

elements in S (N ). The probability of a false positive can be

made negligible by an appropriate choice of parameters [9].

Bloom filters have no false negatives. In our setting, the

one-sided error means we may mistakenly say that an n-

token is present in the set when it is not. The probability of

this happening can be made arbitrarily low with appropriate

parameter selection, e.g., it is 0.3% in our implementation.

In our evaluation, we only report an unpatched code

clone if a file contains all context and all original n-tokens

as described above, i.e., θ = 1. This is a conservative

configuration.

C. Code Similarity Detection

ReDeBug can also be used to measure the amount of code

clones. In this mode ReDeBug uses the SIMILARITY metric

between code pairs. The main issue when performing simi-

larity measurements is the cost of the pairwise comparisons.
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A standard approach for comparing all N files requires that

we compare file 1 to file 2 through N , file 2 to file 3 through

N , and so on with a total of
N(N−1)

2 comparisons.

In order to make pairwise comparisons cheap, we need

to implement the Jaccard SIMILARITY set-wise similarity

comparisons efficiently. Most standard libraries implement

the Jaccard index directly as a set operation on set data con-

tainer classes, e.g., as done in SimMetrics [4]. The problem

is that set data structures are L1/L2 cache inefficient.

ReDeBug uses bitvectors in order to speed up pair-wise

comparisons. The idea is that the bitvector operation well-

approximates a true Jaccard based upon the original sets.

However, the Bloom filters we described above are designed

for set membership, not calculating the Jaccard. Jang et al.

noticed that as the number of hash functions used in a Bloom

filter grows, so does the error in the approximation [22]. The

solution is to use a single hash function when creating the

bitvectors for SIMILARITY, not multiple hash functions. A

single hash function approach is called feature hashing. Jang

et al. [22] show that feature hashing well approximates the

true Jaccard in both theory and practice (e.g., within 99.99%

of the true value with proper parameter selection); we adopt

their technique in ReDeBug. A side benefit is that a single

hash is faster than multiple hashes used in typical Bloom

filter operations.

ReDeBug encodes all elements in a bitvector using fea-

ture hashing. ReDeBug then calculates the distance using

SIMILARITYbv instead of Equation 2,

SIMILARITYbv(va, vb) =
S(va ∧ vb)

S(va ∨ vb)

where vi is the bitvector representation of the feature set for

file i and S(·) counts the number of set bits.

The complete system for computing similarity for OS-

distributions becomes:

1) Obtain all source code. For Debian and Ubuntu, this

is done with apt. For SourceForge, we crawled all

Subversion, CVS and Git directories.

2) For each file, normalize and tokenize as described in

§ II-A.

3) For each n-length token sequence i, compute h(i) = d
and set the d’th bit in the respective file bitvector m.

4) Compute SIMILARITYbv between each pair of bitvec-

tors.

The result is a pairwise similarity measurement between

files. In a development environment we would only return

those with a similarity greater than θ.

Similarity at different granularities: The source file level

provides a relatively coarse granularity of measurement

between code bases. ReDeBug can extract functions from

files, and compute similarity based upon functions using

the same algorithm. ReDeBug can also calculate the total

fraction of unique n-tokens. The total fraction of n-tokens

suggests the number of unique code fragments found. In our

evaluation, we measure both for our data sets (§ III-H).

D. Similarity vs. Bug Finding

The algorithm for finding bugs is similar to that for

similarity detection, with a few exceptions. First, we pre-

process the source to build a database. Patches are queried

against the database while every pair of files is compared

when computing similarity. The advantage of this is that the

time to build a database and to query bugs increases only

linearly as we have more files and patches. The time for

similarity detection quadratically goes up with more files

due to N2 comparisons.

The second difference is that we use Bloom filters for un-

patched code clone detection, while we used feature hashing

for similarity detection. We originally wanted a system that

used a single algorithm. While conceptually more elegant,

such a design wasn’t optimal in either scenario. For example,

if we had based our similarity metric on Bloom filters with

multiple hash functions, we would have a larger error rate

than with feature hashing due to extra collisions from the

extra hash functions. If we had used feature hashing instead

of Bloom filters, we would again have lower accuracy when

performing set membership tests. While this may seem like a

subtle difference, previous theoretical and empirical analysis

also back up the difference between feature hashing and

Bloom filters [22, 29].

Luckily, the internals of implementing both feature hash-

ing and Bloom filters is almost identical. In one case we use

a single hash function and have a distance metric interface,

and in the other we use multiple hash functions and export

a set membership interface.

III. IMPLEMENTATION & EVALUATION

A. Implementation

ReDeBug is implemented in about 1000 lines of C

code and 250 lines of Python. Normalization is mod-

ularized within the Python code. We use the QuickLZ

library [3] to perform compression/decompression while

setting QLZ_COMPRESSION_LEVEL to 3 for faster decom-

pression speed.

B. Unpatched Code Clone Detection Experimental Setup

System Environment: We performed all experiments to

find unpatched code clones (both building and querying the

database) on a desktop machine running Linux 2.6.38 (3.4

GHz Intel Core i7 CPU, 8GB memory, 256 GB SSD drive).

We utilized 8 threads to build a DB and to query bugs.

Dataset: We collected our source code dataset twice: early

in 2011 and late in 2011. We first collected our Early 2011

Dataset (Σ1) in January/March 2011: all source packages for

Debian 5.0 Lenny and Ubuntu 10.10 Maverick, as well as

all public SourceForge C/C++ projects using version control

systems such as Subversion, CVS and Git, and the Linux
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Distributions Lines of Code Date
Collected

Early
2011
(Σ1)

Debian Lenny 257,796,235 Jan. 2011

Ubuntu Maverick 245,237,215 Mar. 2011

Linux Kernel 2.6.37.4 8,968,871 Mar. 2011

SourceForge (C/C++) 922,424,743 Mar. 2011
Late
2011
(Σ2)

Debian Squeeze 348,754,939 Nov. 2011

Ubuntu Oneiric 397,399,865 Nov. 2011

Total 2,180,581,868 -

Table I: Source Dataset

Dataset # files # diffs Date Released

Patches before 2011 (δ1) 274 1,079 2001∼2010

Patches in 2011 (δ2) 102 555 2011

Total 376 1,634 -

Table II: Security-related Patch Dataset

kernel v2.6.37.4. In the SourceForge data set we removed

identifiable non-active code branches such as branches
and tags directories. In November 2011, we prepared our

Late 2011 Dataset (Σ2): all source packages for Debian

6.0 Squeeze and Ubuntu 11.10 Oneiric. Table I shows the

detailed breakup of the dataset. The data set consists of a

large number of projects written in a wealth of languages

including C, C++, Java, Shell, Perl, Python, Ruby, and PHP.

In order to find notable bugs, we collected security-related

patches from the Debian/Ubuntu security advisory which

has the links to the corresponding packages and patch-

es/diffs. We performed our experiments on 376 security-

related patches consisting of 1,634 diffs. We only included

the patches whose related CVE numbers are recognizable

by the patch file names. As described in Table II, we

downloaded security-related patches released before 2011

(δ1) which were available at the time of collecting Σ1,

and patches released in 2011 (δ2) which were distributed

between Σ1 and Σ2.

In the original source packages for Debian and

Ubuntu there are a number of existing patches (e.g.,

debian/patches/) that can be applied during a build;

we applied these patches as well. As a result, the packages

were patched current up to security advisories on the down-

load date. Since we downloaded the SourceForge packages

via revision control systems, we assume all patches were

already applied.

The experiments show the number of duplicate buggy

code segments that are still likely vulnerable. We have

verified the presence of all reported unpatched code clones,

i.e., clones of the exact same buggy code, to confirm

the ReDeBug implementation is correct. We discuss this

measurement in § III-F.
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Figure 3: Time to build a database with various sizes of

dataset

Distributions DB Size Projects # Files #

Debian Lenny 6.0GB 10,699 1,155,594

Ubuntu Maverick 5.6GB 11,237 1,067,579

Linux Kernel 2.6.37.4 344MB - 57,653

SourceForge (C/C++) 29GB 30,437 5,574,905

Debian Squeeze 8.2GB 14,977 1,586,325

Ubuntu Oneiric 9.8GB 18,240 1,892,911

Table III: Size of created databases

Default Parameters: The default context in a diff file

is 3 lines of code. Unless otherwise noted, we set n = 4.

n = 4 when the amount of context c = 3 guarantees that

every reported duplicate had at least one changed line along

with surrounding context. In all experiments for unpatched

code clones we set θ = 1, e.g., with the default parameters

all n-tokens from the original buggy code segment needed

to be found in an unpatched copy to report a bug. m is

the size of a Bloom filter and N is the number of n-tokens

to be hashed into a Bloom filter. ReDeBug used 256KB-

sized Bloom filters where the m/N ratio was always at least

greater than 32. ReDeBug took advantage of 3 fast hash

functions: djb2, sdbm, and jenkins [6].

C. Performance

We ran ReDeBug to create the database for each source

code dataset. Figure 3 shows the database build time. The

database build for Ubuntu Maverick and Debian Lenny both

took about 6 hours. The database build for SourceForge took

about 23.3 hours. This is the end-to-end time including the

time to read in files, normalize, tokenize, put into the Bloom

filter, and to store on disk for all source code written in a

variety of languages, e.g., C/C++, Java, Shell, Perl, Python,
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the entire DB

Ruby, and PHP. The experiments suggest that the time to

build a database linearly increases as the size of the source

code increases. Once ReDeBug has built the initial database,

incremental update is quickly done by adding/changing only

the relevant parts of the database.

The resulting database sizes and the number of projects

and files in databases are described in Table III. As a

reference point, Debian Lenny required 282GB to store

1,155,594 files without compression, but only 6.0GB with

compression in ReDeBug. The large compression factor is

due to the sparseness of the Bloom filters.

Figure 4 depicts the time to query 1,634 security-related

patches (δ1 and δ2) to each database. As the size of a

database (the number of files in a database) grew, the time to

query bugs increased linearly. Though there was an overhead

to recover compressed Bloom filters to perform the set

membership test, the querying time was fast, e.g., 0.04

second per bug against about 1 million source files in the

case of Debian Lenny.

Figure 5 shows the time it took to compare a varying

number of bugs against the whole database including Σ1

and Σ2. The query time has a very gentle upward slope.

The results suggest querying even a large number of patches

should take only a few minutes. For example, it took

about 6 minutes 21 seconds to query 15 diffs, and this

time increased only slightly to 7 minutes 46 seconds for

1,634 diffs.

Together these 3 graphs show that ReDeBug is highly

scalable, and it can be applied to find unpatched code copies

in day-to-day development. The time it takes us to perform

all operations increases linearly with the size of the database,

and grows very slowly with the number of diffs.

D. Security-Related Bugs

1) {δ1 & δ2 } → Σ1: When security-related bugs are

fixed in the original projects, all the relevant code clones

should also be corrected. In practice, unfortunately, code

reuse among open source projects is usually ad-hoc, which

makes it difficult to update all relevant projects when the

patch is released. An attacker may be able to easily identify

the same known vulnerabilities (δ1 and δ2) in other projects

(Σ1) that are not patched yet.

We queried δ1 and δ2 to Σ1 to measure how many

unpatched code clones are detected, which approximates

how many (potentially) vulnerable projects an attacker may

be able to spot when a patch becomes available. The total

number of unpatched code clones in Σ1 for δ1 and δ2 was

12,791 using the default parameters of n = 4 and c = 3.

The number of matches to each dataset in Σ1 is shown in

Figure 6. The old stable, but still supported, Debian Lenny

and Ubuntu Maverick have 1,482 and 1,058 unpatched code

clones, respectively.

2) {δ1 & δ2 } → Σ2: We measured how many unpatched

code clones are identified for δ1 and δ2 in Σ2 consisting of

the latest versions of Debian Squeeze and Ubuntu Oneiric.

This evaluation demonstrates roughly how responsive the

new version of an OS is to previously released security-

related patches. Σ2 still has 1,991 unpatched code clones for

δ1; furthermore, 764 unpatched code clones are reported for

δ2, which indicates that unpatched code clones are recurring

in OS distributions.

3) δ1 → Σ1 vs. δ1 → Σ2: We compared 1,838 unpatched

code clones in Σ1 and 1,991 unpatched code clones in Σ2 for

δ1; and we found that 1,379 unpatched code clones have per-

sisted. Table IV shows the number of unpatched code clones

identified from different years’ patches. It is interesting to

note that security vulnerabilities that were patched over a

decade ago (from 2001) still have 21 unpatched code clones

present in Σ1. Even Σ2 still have 496 unpatched code clones

from 2006 patches. This result demonstrates that unpatched

code clones persist in modern distributions.
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Figure 6: The number of unpatched code clones in Σ1 and

Σ2

2001 2006 2007 2008 2009 2010 2011

Lenny 2 109 76 88 565 301 341

Maverick 0 161 35 62 248 191 361

Kernel 0 0 0 0 1 2 0

SrcForge 19 1162 227 746 3845 2712 1537

Squeeze 0 264 46 77 379 282 484

Oneiric 0 232 45 73 341 252 280

Total 21 1928 429 1046 5379 3740 3003

Table IV: Unpatched code clones in each distribution from

different years’ patches

E. The Identified Unpatched Code Clones

Figure 7 depicts the distribution of how often we found

clones for patches. The maximum was 386 unpatched code

clones of the patch shown in Listing 1, with most patches

having less than 50 respective unpatched code clones. This

result demonstrates that there are potentially many vulner-

able code clones for each new patch, motivating the need

to implement unpatched code clone detection as part of the

developer lifecycle.

Table V shows the number of identified unpatched code

clones with various sizes of n. When n increases from 4

to 7, ReDeBug hashes every 7 consecutive tokens and each

match represents an exact matching of 7 sequential tokens.

Overall, this represents a larger number of tokens exactly

matched, which yields a more conservative metric for “real”

bugs (see § IV for a discussion).

As we increased n, the total number of unpatched code

clones ReDeBug found decreased. Note that as n increases,

the total number of diffs we queried decreased. The reason

is that some diffs had fewer than n tokens in total. Overall,
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The size of n n = 4 n = 5 n = 7

# of queried diffs 1,634 1,248 503

Un-
patched
code
clones

Debian Lenny 1,482 1,013 309

Ubuntu Maverick 1,058 736 251

Linux Kernel 2.6.37.4 3 2 0

SourceForge (C/C++) 10,248 6,211 2,130

Debian Squeeze 1,532 1,061 391

Ubuntu Oneiric 1,223 828 293

Total 15,546 9,851 3,374

Table V: Unpatched code clones with various n for δ1 and

δ2

in the most conservative experiment, ReDeBug identified

3,374 unique unpatched code copies that likely constitute

real bugs.

F. Code Clone Detection Errors

A key question is, what is the false detection rate of Re-

DeBug? There are several ways to answer this. One popular

metric is the accuracy of the matching process. In ReDeBug,

this is the Bloom filter tests. The Bloom filter tests have no

false negatives, but may have false positives. We performed

an exact match test on the 15,599 unpatched code clones

initially reported, of which 15,546 were confirmed. Thus,

overall we had a 0.3% false positive rate in the Bloom filters.

Our post-processing system removes this source of errors

from the final output.

In several cases, such as the one shown in Listing 2,

the vulnerability was found in dead code, which is not

included at build time. This vulnerability can lead to an

integer overflow that allows denial of service [15].
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es = -1;
N = 1;
do {

+ if (N >= 2*1024*1024) RETURN(←↩
BZ_DATA_ERROR);

if (nextSym == BZ_RUNA) es = es + (0+1) *←↩
N; else

if (nextSym == BZ_RUNB) es = es + (1+1) *←↩
N;

N = N * 2;

Listing 2: CVE-2010-0405

We matched the above code to libcompress-bzip2-perl. How-

ever, the package maintainers stated that the matched code

was not an actual vulnerability since it was dead code.

At the post-processing step, we eliminated such dead

code which was not included at build time. We measured

the number of code clones in non-dead code for the 1,354

reported unpatched code clones from 149 Debian Squeeze

packages. 831 out of 1,354 (61%) unpatched code clones

are confirmed as non-dead code, which likely represent

real vulnerabilities. Dead code may still be a problem that

should be fixed: the accompanied library code may be used

depending on users’ necessity by flipping compilation flags,

and the vulnerability would still likely exist. Nonetheless, we

now do post-processing to remove dead code for compiled

code from our results.

Note that in the overall system, these errors are ultimately

removed, and would never be shown or affect the end user.

G. Examples of Security-Related Bugs

In order to evaluate the practical impact of ReDeBug, we

reported 1,532 unpatched code clones identified in Debian

Squeeze packages to the Debian security team and develop-

ers. So far 145 real bugs have been confirmed by developers

either in email or by issuing a patch. In this section, we show

several examples of the real bugs we found.

Qemu is a processor emulator that can be used as a hosted

virtual machine monitor. Various bugs, such as the one in

Listing 3, which allows root access on the host machine [13],

have been fixed over the past few years. These include CVE-

2008-0928 and CVE-2010-2784.

int len, i, shift, ret;
QCowHeader header;

- ret = bdrv_file_open(&s->hd, filename, flags)←↩
;

+ ret = bdrv_file_open(&s->hd, filename, flags ←↩
| BDRV_O_AUTOGROW);

if (ret < 0)
return ret;

if (bdrv_pread(s->hd, 0, &header, sizeof(←↩
header)) != sizeof(header))

Listing 3: CVE-2008-0928

These patches were not applied to the derivative package

xen-qemu, the Xen version of Qemu. When contacted,

Debian and upstream developers confirmed the presence of

real bugs and indicated that fixing these bugs was necessary.

The patch in Listing 4 was issued to fix a vulnerability in

rsyslog, a Linux and Unix system logger. This vulnerability

involved sending a specially crafted log message that leads

to denial of service [18].

i = 0;
- while(lenMsg > 0 && *p2parse != ’:’ && *←↩

p2parse != ’ ’ && i < CONF_TAG_MAXSIZE) {
+ while(lenMsg > 0 && *p2parse != ’:’ && *←↩

p2parse != ’ ’ && i < CONF_TAG_MAXSIZE - 2) ←↩
{
bufParseTAG[i++] = *p2parse++;
--lenMsg;

Listing 4: CVE-2011-3200

This patch was not applied to the Debian package rsyslog-

gssapi, a version of rsyslog with plugins that allowed rsyslog

to write and receive GSSAPI encrypted logging messages.

The package maintainers when contacted decided to fix the

vulnerability by issuing an update.

The patch below was issued to fix a heap based buffer

overflow vulnerability in the Paint Shop Pro plugin in GIMP

2.6.11 [17].

- if (code >= max_code)
+ if (code == max_code)

{
- *sp++ = firstcode;
+ if (sp < &(stack[STACK_SIZE]))
+ *sp++ = firstcode;

code = oldcode;
}

- while (code >= clear_code)
+ while (code >= clear_code && sp < &(stack←↩

[STACK_SIZE]))
{

*sp++ = table[1][code];
if (code == table[0][code])

Listing 5: CVE-2011-1782

When contacted, the developers of Deutex, a Debian package

used to manipulate files for various games, indicated that this

was likely a real vulnerability.

The following patch was issued to fix an integer overflow

in PHP before 5.3.6 which could lead to a denial of service

and possibly information leak [16]. This patch was not

employed to the Debian PHP package. After contacted, the

package maintainer issued a patch to fix the bug.

- if (start + count > shmop->size || count < 0) ←↩
{

+ if (count < 0 || start > (INT_MAX - count) || ←↩
start + count > shmop->size) {
php_error_docref(NULL TSRMLS_CC, E_WARNING, ←↩

"count is out of range");
RETURN_FALSE;

Listing 6: CVE-2011-1092
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Listing 7 shows a recent patch for CVE-2011-3145, which

was successfully patched in an Ubuntu Oneiric package,

but not in a Debian Squeeze package. This patch fixed

an incorrect /etc/mtab ownership error in the ecryptfs-

utils package, which might cause to unmount arbitrary

location [27].

if (setreuid(uid, uid) < 0) {
perror("setreuid");

}
+ if (setregid(gid, gid) < 0) {
+ perror("setregid");
+ }

goto fail;
}

} else {

Listing 7: CVE-2011-3145

After we contacted the developers, the same patch applied

to the Ubuntu Oneiric package was issued for the Debian

Squeeze package to fix the vulnerability.

Listing 8 shows a security patch applied to the Ubuntu

Oneiric apache2 package to fix the vulnerability where

remote attackers can send requests to intranet servers with

a well-crafted URI [19]. The same patch was applied to the

Debian Squeeze package to fix the bug after we reported it.

ap_parse_uri(r, uri);

+/* RFC 2616:
+ * Request-URI = "*" | absoluteURI | ←↩

abs_path | authority
+ *
+ * authority is a special case for CONNECT. If←↩

the request is not
+ * using CONNECT, and the parsed URI does not ←↩

have scheme, and
+ * it does not begin with ’/’, and it is not ←↩

’*’, then, fail
+ * and give a 400 response. */
+if (r->method_number != M_CONNECT
+ && !r->parsed_uri.scheme
+ && uri[0] != ’/’
+ && !(uri[0] == ’*’ && uri[1] == ’\0’)) {
+ ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,
+ "invalid request-URI %s", uri);
+ r->args = NULL;
+ r->hostname = NULL;
+ r->status = HTTP_BAD_REQUEST;
+ r->uri = apr_pstrdup(r->pool, uri);
+}
+
if (ll[0]) {
r->assbackwards = 0;
pro = ll;

Listing 8: CVE-2011-3368

In § I, we motivated the need to handle many languages.

Here, we show a non-C example in Ruby. Listing 9 shows a

security patch for the puppet package to fix the vulnerability

where an attacker can impersonate a master by exploiting

a non-default certdnsnames option when generating

certificates [20]. After we reported this bug, the package

maintainer fixed the vulnerability by issuing a security patch.

# Sign a given certificate request.
-def sign(hostname, cert_type = :server, ←↩

self_signing_csr = nil)
+def sign(hostname, allow_dns_alt_names = false,←↩

self_signing_csr = nil)
# This is a self-signed certificate
if self_signing_csr

+ # # This is a self-signed certificate, ←↩
which is for the CA. Since this

+ # # forces the certificate to be self-←↩
signed, anyone who manages to trick

+ # # the system into going through this path←↩
gets a certificate they could

+ # # generate anyway. There should be no ←↩
security risk from that.
csr = self_signing_csr

+ cert_type = :ca
issuer = csr.content

else
+ allow_dns_alt_names = true if hostname == ←↩

Puppet[:certname].downcase
unless csr = Puppet::SSL::←↩

CertificateRequest.find(hostname)
raise ArgumentError, "Could not find ←↩

certificate request for #{hostname}"
end

+
+ cert_type = :server

issuer = host.certificate.content
+
+ # Make sure that the CSR conforms to our ←↩

internal signing policies.
+ # This will raise if the CSR doesn’t ←↩

conform, but just in case...
+ check_internal_signing_policies(hostname, ←↩

csr, allow_dns_alt_names) or
+ raise CertificateSigningError.new(←↩

hostname), "CSR had an unknown failure ←↩
checking internal signing policies, will not←↩
sign!"

end

cert = Puppet::SSL::Certificate.new(hostname)
- cert.content = Puppet::SSL::←↩

CertificateFactory.new(cert_type, csr.←↩
content, issuer, next_serial).result

+ cert.content = Puppet::SSL::←↩
CertificateFactory.

+ build(cert_type, csr, issuer, next_serial)
cert.content.sign(host.key.content, OpenSSL::←↩

Digest::SHA1.new)

Listing 9: CVE-2011-3872

H. Copied Similarity Metrics

In order to understand the overall amount of code dupli-

cation, we also ran a large scale experiment to measure the

similarity within the entire Debian Lenny source base. These

experiments required the pairwise computations discussed

in § II-C. We ran these experiments on an SGI UV 1000

cc-NUMA shared-memory system consisting of 256 blades.

Each blade has 2 Intel Xeon X7560 (Nehalem) eight-core

processors and 128 Gbytes of local memory [2].
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Figure 8: Similarity among functions

For non-C/C++ code we normalized as described in § II-C.

For C/C++ code, we also did experiments where we roughly

identified functions within C/C++ files using the following

Perl regular expression:

/ˆ \w+?\s[ˆ;]*? \( [ˆ;]*?\)\s*({ ←↩
(?:[ˆ{}]++|(?1))*})/xgsm

The regex isn’t perfect to recognize all functions since that

would require a complete parser. However, in our experience

it is sufficient and allowed us to provide an estimate of

similarity and code clones at the function level.

We identified 3,230,554 functions containing at least

4 tokens. We split identified functions into two groups

based upon the function size. “The small-sized” group had

3,144,998 functions which had less than 114 tokens. “The

large-sized” group had 85,556 functions. Overall, we mea-

sured pair-wise distance in each group using SIMILARITYbv ,

which required 4,949,164,509,293 pairwise comparisons.

For the small-sized group, we used 32 byte bit vectors.

Total bitvector generation time was 6 min using 32 CPUs.

It took 19 min to compare every pair of the group using

512 CPUs. For the large-sized group, we used 8 KB bit

vectors. Generation time was 14 minutes on 32 CPUs. Pair-

wise comparisons took 5 min 30sec using 512 CPUs.

Figure 8 shows the distribution of function pairs based

upon their similarity. Most of the function pairs had very

low similarity below 0.1, which is natural in that different

packages would be expected to have different functionality.

However, surprisingly, 694,883,223 pairs of functions had

more than 0.5 similarity. Among them, 172,360,750 pairs

were more than 90% similar. This result clearly shows a

significant amount of code copying.

While performing our experiments, we noticed that the

SourceForge dataset had more code clones. With Source-
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Figure 9: Fraction of shared n-grams

Forge projects, we normalized and tokenized each file and

calculated the total fraction of shared n-tokens in each file.

As shown in Figure 9, more than 50% of files shared more

than 90% of n-tokens with other files. Note that 100% of

shared n-tokens in a file does not necessarily mean it is

copied from another file as a whole. This could also happen

when a file consists of small fractions from multiple files.

On the contrary, about 30% of files were almost unique (0-

10% shared tokens) while 50% of the files shared more than

90% of all tokens. This shows that code cloning is active

and alive within the SourceForge community.

IV. DISCUSSION

A. Comparison to Prior Work

ReDeBug improves scalability with decreased false de-

tection rate, but may find fewer code clones than previous

code clone detection work. In order to measure the number

of unpatched code clones that ReDeBug missed, we com-

pared the number of code clones detected by ReDeBug to

the number of code clones reported by Deckard [23]. We

chose Deckard because it claims better code clone detection

performance than CP-Miner [25] and CloneDR [5].

Theoretically, the code clones reported by Deckard should

be the superset of the code clones found by ReDeBug. In

practice, however, Deckard missed more code clones than

ReDeBug. We used Deckard v1.2 2 for our experiments,

and set parameters as follows: minT (minimum number

of tokens required for clones) = 30 and stride (size of

the sliding window) = 2 for their conservative results, and

Similarity = 1 to minimize their false detection. This

was similar to the setup in their paper.

Deckard did not scale to the entire Debian Lenny dis-

tribution (257,796,235 LoC) in our test setup. During pair-

2https://github.com/skyhover/Deckard
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Clone Detection Real Clones False Detection Missed

ReDeBug 180 0 15

Deckard 96 183 99

Table VI: Code clone detection performance

wise comparisons Deckard consumed more than 20 GB of

memory in less than 2 minutes, after which we killed the

process. Instead of the entire OS, we ran Deckard on each

package at a time with 28 randomly selected C code files

which contain security bugs. We report only code clones

which match with the buggy code regions. Deckard took

more than 12 hours to complete the code clone detection

in Debian Lenny, utilizing 8 threads to process 8 packages

at the same time. While Deckard processed only the source

code written in C (Deckard can process one language at

a time), ReDeBug processed a wealth of languages (e.g.,

C/C++, Java, Shell, Python, Perl, Ruby, and PHP) in 6 hours.

Table VI shows the code clone detection results of

Deckard and ReDeBug. As expected, ReDeBug had no false

detections, and surprisingly, missed 6 times as few code

clones compared to Deckard. The code clones that ReDeBug

missed came from the use of different variable names or

types.

Deckard faired worse than ReDeBug despite using a more

sophisticated strategy. We investigated the causes, and found

that 38 out of 99 of the cases were due to parse failures

in Deckard, with the remainder just being missed due to

the algorithm for detecting code clones. This result lends

support that parsing code is hard and can be a limiting factor

in practice, and that ReDeBug’s relatively simpler approach

can be valuable in such circumstances.

B. Unpatched code clones that are not vulnerable

Since ReDeBug gets rid of Bloom filter errors and dead

code, a metric for false positives is the number of unpatched

code clones that were not vulnerable for some other reason.

We have identified two other causes for this type of false

positive. First, normalization may be too aggressive in some

circumstances and thus the identified code clone is not

really a code clone. Second, we may find real unpatched

code clones, but other code modifications may prevent the

unpatched code from being called in an exploitable context.

Normalization reduces the false negative rate, but may

increase the false positive rate. For example, imagine two

code sequences that are equivalent but one is performed on

an unsigned integer “A” and the other on a signed integer

“a”. If the bug relates to signedness, only the latter code is

vulnerable. However, normalization converts all variables to

lower-case, thus we would mistakenly report the former as

also buggy.

Listing 10 shows an example of an unpatched code clone

that is present but not vulnerable. The patch fixes an integer

signedness bug in various BSD kernels. NetBSD contains the

same vulnerable code, but fixed the problem by changing the

type of crom_buf->len from signed integer to unsigned

integer instead of using the shown patch.

- if (crom_buf->len < len)
+ if (crom_buf->len < len && crom_buf->len > 0)

Listing 10: CVE-2006-6013

An unpatched code clone was detected in the ircd-ratbox

package from the patch shown in Listing 11. The package

maintainer informed us that the vulnerability was fixed in

a different location, i.e., adding a separate error checking

routine if (len<=1) break; ahead of the vulnerable

code.

else
*d++ = *src;

- ++src;
- --len;
+ if (len > 0) {
+ ++src, --len;
+ }

}
*d = ’\0’;
return dest;

Listing 11: CVE-2009-4016

V. RELATED WORK

MOSS [28] is a well-known similarity detection tool

using n-tokens. MOSS is based upon an algorithm called

winnowing [28], a fuzzy hashing technique that selects a

subset of n-tokens to find similar code. The main difference

is that ReDeBug uses feature hashing to encode n-tokens

in a bitvector, which allows ReDeBug to perform similarity

comparison in a cache-efficient way. We swap out winnow-

ing for feature hashing for improved speed. This decision

was based upon the work by Jang et al. [22]. Furthermore,

in order to find unpatched code clones we use the insight

of only looking for code clones of patched bugs to scale to

large OS distributions.

Most recent work in academia has focused on detecting

all code clones (i.e., reducing the number of missed code

clones, but having more false detections of clones). Exam-

ples include Deckard [23], CCFinder [24], CP-Miner [25]

and Deja Vu [21]. Detecting all code clones is a harder

problem than just searching for copies of patched code in

that the former potentially requires comparison of all code

pairs, while the latter is a single sweep over the data set.

This line of research uses a variety of matching heuristics

based upon high-level code representations such as CFGs

and parse trees. For example, CCFinder uses lexing and

then performs transformations based upon rules to determine

whether code is similar [24]. The transformation rules are
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language-dependent. Deckard [23] and Deja Vu [21] build

parse trees for C code, and then reduce part of the parse trees

to a vector. Comparisons are done on the vector. CP-Miner

also parses the program: currently the parser is implemented

only for C and C++. It then hashes these tokens and assigns

a numeric value to each, and runs the CloSpan frequent

subsequence mining algorithm to detect code clones.

Each of the above techniques represent a unique and

different point in the design space. For example, building the

parse tree, CFG, etc. all require implementing a robust parser

for the language. Implementing good parsers is a difficult

problem with which even professional software assurance

companies struggle [7], but once done will give them a

robust level of abstraction not available to ReDeBug. The

highest false positive rate for reported errors among the code

clones was 90% for CP-Miner, and 66-74% for Deja Vu. In

terms of scalability, the largest code base we are aware of is

Deja Vu, which looked at a proprietary code base consisting

of about 75 million lines of C code. They used a cluster

of 5 machines, and integrated the product into the build

cycle. It found 2070-2760 likely bugs. Our experiments are

on code bases upon to billions of lines of code (two orders

of magnitude larger). If their techniques could be scaled

up, they would likely find more unpatched code clones, but

the number of falsely detected clones would also scale up

and the overall system would require more resources than

available to a typical end-developer.

SYDIT [26] is a program transformation tool, which

characterizes edits as AST node modifications and generates

context-aware edit scripts from example edits. It was tested

on an oracle data set of 56 pairs of example edits from

open source projects in Java. SYDIT complements ReDeBug

in that SYDIT looks at abstract, semantic changes while

ReDeBug focuses on syntactic changes at large scale.

Pattern Insight’s Code Assurance [1] (aka Patch Miner)

is advertised as finding unpatched code clones, as with

ReDeBug. Their whitepaper does not contain any technical

information to compare on a usage, algorithmic, perfor-

mance, or accuracy basis, but does mention it performs a

kind of “fuzzy matching”. We have contacted Pattern Insight

to get more details, but they have not made the product

available to us for comparison.

Previous work has also done clustering. Much previous

work, like us, uses the Jaccard distance metric, e.g., Deja Vu.

Deckard and Deja Vu use locality sensitive hashing (LSH)

to speed up the pairwise comparison using Jaccard. We use

feature hashing. Theoretical analysis shows feature hashing

outperforms LSH alone [29], and Jang et al. back this up

with an empirical evaluation for malware clustering [22].

However, a hybrid approach that first uses LSH to find near-

duplicates which are then compared using feature hashing

may be possible. We leave these types of optimizations as

future work.

Brumley et al. have shown once a patch becomes avail-

able, an attacker may be able to use it to reverse engineer the

problem and create an exploit automatically [10]. We leave

exploring the ramification of this problem as future work.

VI. CONCLUSION

In this paper we presented ReDeBug, an architecture

designed for unpatched code clone detection. ReDeBug

was designed for scalability to entire OS distributions, the

ability to handle real code, and minimizing false detec-

tion. ReDeBug found 15,546 unpatched code clones, which

likely represent real vulnerabilities, by analyzing 2.1 billion

lines of code on a commodity desktop. We demonstrate

the practical impact of ReDeBug by confirming 145 real

bugs in the latest version of Debian Squeeze packages. We

believe ReDeBug can be a realistic solution for regular

developers to enhance the security of their code in day-to-

day development.
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