
Poster: Secure Provenance for Cloud Storage
Masoud Valafar (student) and Kevin Butler (faculty)
Department of Computer and Information Science

University of Oregon, Eugene OR 97403
Email: {masoud,butler}@cs.uoregon.edu

I. INTRODUCTION

Organizations are increasingly turning to the cloud for
data processing and storage. Storing data in the cloud is
advantageous for numerous reasons: the elasticity of cloud
environments ensures that only storage used is paid for, while
tasks such as backup, replication, and geographic diversifi-
cation of data are effectively outsourced to cloud storage
providers. However, unfettered access to this environment
and arbitrary migration of data means that determining the
origin of information, or equally importantly, determining
the modifications and chain of custody undergone by this
information before it has assumed its current form, is a
virtually intractable problem given the current tools available
to us. Such a state of the art becomes increasingly worrisome
when issues such as regulatory compliance are brought to bear
on information in the cloud: for example, if information is
under certain regulations, we must ensure that such data does
not automatically migrate to another data center within a cloud
provider operating under stricter regulations.

Data provenance, which provides a full accounting of data
curation from its creation to the present, provides a means
of determining the authenticity of information as well as the
manner in which it has been handled. Provenance systems have
been well-studied in the context of scientific environments[3].
However, securing provenance, particularly within the con-
text of the cloud environment, has received relatively little
attention. Securing provenance is challenging for a number of
reasons, including that it may require a separate security model
from the data it describes[2]. This poster proposes a model
for securing provenance collection, storage and management
for cloud storage systems. We explain challenges of securing
provenance in the cloud that our model addresses, and describe
a prototype implementation.

II. SYSTEM ARCHITECTURE

Figure 1 describes our proposed architecture and its main
components. Three main functionalities provided are: (A)
secure provenance management, (B) organizational policy
enforcement and, (C) scalable access control to provenance
information. We discuss each of these in further detail.

A. Secure Provenance Collection

Clients use the cloud storage to retrieve stored files. To allow
the transaction, the cloud storage checks the access rights of
the client to the stored files. Having retrieved the files, clients

Cloud 
Storage

dRBAC

Authority Prov. 
DB

Collector

Cloud Provenance System

PA
SS

P
ro

v.
 S

ec
u

ri
ty

Auditor

Host Provenance System

Policy DB

Fig. 1. Overview of an architecture for adding secure provenance collection
and enforcement elements to a cloud infrastructure.

process the retrieved data and update the files on the cloud
storage, once the processing is complete.

In the scenario described above, provenance is generated
while the client processes data on the host system. To enable
the cloud provenance system to track provenance generated
at the host, the client must send the provenance of a data
object uploaded to the cloud along with the object itself.
The host system should ensure that (i) all processing of the
data is thoroughly monitored and the associated provenance
is completely recorded and, (ii) the integrity, consistency and
non-repudiability of the provenance information is preserved.
The combination of the host provenance system and the cloud
provenance system provides these services.

To provide the desired functionality, we propose to add a
security module to a conventional provenance system, such as
PASS[6]. The conventional provenance system records prove-
nance information and the security module ensures provenance
integrity. Next, the data and its provenance are sent to cloud
storage, following the protocol described in Table I.

The cloud provenance system, which consists of collector
and authority components, intercepts all queries to the cloud
storage system. The former component extracts provenance
information and the latter is in charge of storing and managing
provenance information. Upon receiving the information query
from the client, the provenance collector strips the provenance
information from the query and checks its integrity. Next, the
collector sends the data and its provenance information to the
cloud storage and the provenance authority, respectively. The
process is aborted if the cloud storage does not recognize the
client’s right to update the file or the authority realizes that the
operation is against that organization policies. Note that the
cloud provenance system and the client need to authenticate
each other by a means such as PKI.

Table I demonstrates the described protocol. At the first two



1. C → PS : nc, Guidc, oid
2. PS → C : nps, PRoid,t−1, Sign[K−

ps, (PRoid,t−1|nc)]

3. C → PS : Sign[K−
c , PRoid,t|nps], PRoid,t, Object

4. PS → C : Sign[K−
ps, PRoid,t]

TABLE I
PROVENANCE COLLECTION PROTOCOL - CLIENT AND THE CLOUD

PROVENANCE SYSTEM ARE REPRESENTED BY C AND PS .

steps, client agent and cloud provenance systems exchange ini-
tialization information. At step 3, the client sends provenance
information with the update query to the collector component.
By sending back the signed operation to the client at step 4,
mutual non-repudiability is ensured. Furthermore, by signing
the provenance information added to the previous one and
creating a hash chain, integrity is ensured. Confidentiality can
be assured by encrypting data in transit (e.g., using SSL).

B. Policy Enforcement

We now describe how provenance can be used to provide
finer grained, attribute-based access control. Upon intercepting
client queries, the cloud provenance collector informs the
authority of the transaction and provenance information. The
authority, then, retrieves the policies of the organization that
the data falls under from the policy database and checks
the client query against them. The authority extract data
attributes from its provenance information and hence, can
provide attribute-based access control.

We extend the language introduced by Ni et al.[7] to enforce
policies. The example dataset consists of data records coming
from various oceanic sensors and its provenance contains
information about sensor attributes. Figure 2 demonstrates a
policy example in XACML. The first condition tag (lines 5,6)
indicates that users with certain roles can not have access to
sensor data with certain attributes. The obligation tag (lines
7-10) restricts data access from certain regions. Upon getting
a query on sensor data, the requester’s region is evaluated and
the operation will be aborted in case the request is coming
from a restricted region.

C. Access Control

The ultimate goal for a provenance system is to enable data
owners to examine sources and evolution of data and audit
how data was produced. However, an access control scheme
that can thoroughly address provenance requirements is yet to
be proposed due to challenges, such as the potential difference
in the access model of the data and its provenance [2].

Fig. 2. An example of policy using XACML

Fig. 3. Performance of cloud storage with and without provenance system.

Beyond the conventional challenges that we briefly men-
tioned above, providing access control for the provenance
information on the cloud has its own unique challenges, such
as scalability. Data owners should be capable of hierarchically
delegating their rights to their clients because it can become
extremely hard to apply a fine-grained access control in a
diverse and distributed environment, such as a cloud.

Based on the challenges posed above and the fact that
the access to provenance information should be determined
based on the auditor’s role, we envision a distributed role-
based access control (dRBAC) scheme, similar to the one
proposed by Freudenthal et al.[4], in our model. As Figure 1
illustrates, auditors can query the provenance database by
using a provenance query language, such as PQL[5]. The
authority evaluates the auditor’s permissions based on the
certificate that they provide. It is possible that the auditor gains
this right through a hierarchical delegation of rights, which
addresses the scalability issues posed above.

III. IMPLEMENTATION AND FUTURE WORKS

We have created a prototype of our proposed model in
Python. The prototype is implemented over Cumulus, the
storage system for the Nimbus open source cloud toolkit[1].
We evaluated the prototype across files with various sizes and
measured the performance with and without the provenance
prototype in place. Figure 3 illustrates the results. This figure
shows that our prototype introduces less than 10% overhead
in overall transaction time.

The prototype currently does not have the access control
and policy enforcement modules. We are planning to hook our
prototype to a real-world provenance system and add policy
enforcement and access control modules.

REFERENCES

[1] Nimbus project. http://www.nimbusproject.org/.
[2] U. Braun, A. Shinnar, and M. Seltzer. Securing Provenance. In USENIX

HotSec, 2008.
[3] J. Freire, D. Koop, and et al. Provenance for computational tasks: A

survey. Computing in Science and Engineering, 10(3), 2008.
[4] E. Freudenthal and T. P. et al. drbac: Distributed role-based access control

for dynamic coalition environments. In ICDCS, 2002.
[5] D. A. Holland and U. B. et al. Choosing a data model and query language

for provenance. In IPAW, 2008.
[6] K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer.

Provenance-aware storage systems. In USENIX ATC, 2006.
[7] Q. Ni, S. Xu, and et al. An Access Control Language for a General

Provenance Model. In Secure Data Management, 2009.

2


