
Secure Nested Transactions

Dominic Duggan
Dept of Computer Science

Stevens Institute of Technology
Hoboken, NJ 07030.

Email: dduggan@stevens.edu

Ye Wu∗

Dept of Computer Science
Stevens Institute of Technology

Hoboken, NJ 07030
Email: ywu1@cs.stevens.edu

In the realm of multilevel databases, confidentiality was
defined in terms of noninterference for transactional exe-
cution at least twenty years ago. Consider for example the
following program, that contains a high transaction T1 and
a low transaction T2:

intLow X, Y, Z;

T High
1 : lock(X); while (1) ;

T Low
2 : (lock(X); Z=0;) ‖ (lock(Y); Z=1)

Preventing the writing of sensitive information to a “low”
database variable is insufficient, since the use of locks
to synchronize accesses to the database provide a covert
channel. In this example, T1 signals to T2 by locking X
but not Y. In multilevel databases, this leak is prevented
by allowing the low transaction to implicitly pre-empt the
high transaction when the latter holds a resource that former
requires [1].

More recently information flow control has been investi-
gated in the realm of language-based security, as an end-
to-end security property of software systems that can be
to some extent checked by compilers [2]. The key insight
in this work is that noninterference can be related to the
control flow in a program, so that indirect leaks through
the control flow may be prevented via a type-based control
flow analysis. For example, in the following program, there
is an apparent information leak due to the writing to “low”
variable Y after reading “high” variable X:

intHigh X; intLow Y;
if (X==0) Y=0; else Y=1;

The fact that 0 or 1 is written to the “low” variable Y depends
on whether the value of the “high” variable X is 0 or 1. The
leak is prevented by the type system, which only allows
writes to “high” variables in a local context where “high”
variables have been tested.

Ensuring noninterference in concurrent and distributed
systems is still a challenge. For example, termination leaks
in multi-threaded systems allow simulation of the leak
prevented by the type system in the sequential example
above:

intHigh X, Y; intLow Z;
(X=0; Y=1;)
‖ (while (X==0); Z=0;) ‖ (while (Y==0); Z=1;)

∗ Current affiliation: Tencent, Kejizhongyi Avenue, Hi-tech Park, Nan-
shan District, Shenzhen, China.

Figure 1. Information Leak with High Child Transaction

Extensions of earlier type systems to prevent such in-
formation leaks in multithreaded environments have been
proposed, but these extensions miss the point: busy-waiting
is one form of synchronization between threads, and it is not
clear how to prevent information leaks once synchronization
is allowed between threads of different security levels.

Nested transactions were introduced [3] to provide a
transactional underpinning to remote procedure call chains.
We propose a model for allowing high and low processes
to coordinate their activities in multilevel secure systems,
without leaking information. This model is based on ex-
tending the nested transaction model to support transactional
coordination between high and low transactions, while en-
suring a noninterference property for their interactions. The
semantics of nested transactions is extended with retroactive
abort in order to support this extension.

Although low transactions must necessarily be able to pre-
emptively abort high transactions, it is equally important that
high transactions not be able to abort low transactions. We
must assume that the abort of low transactions is observable
by low processes. This has implications for the design of the
transaction system. Assume that threads and transactions are
orthogonal, so that a thread may spawn new threads within
the transaction within which it is currently executing. Let the



“level” of a thread reflect the level of the variables that it
has examined in its context. If a thread has tested the value
of a high variable, then its level must be high, preventing it
from writing to low-level variables. If we have a transaction
that contains both low and high threads, and a high thread
acquires a lock, then a low thread (outside that transaction)
accquiring that lock can implicitly abort the transaction, and
in the process abort any low threads within that transaction.
Therefore we cannot have low and high threads within the
same transaction. Therefore we refer to transactions as being
high or low, reflecting that all threads within a transaction
must have the same level. This demonstrates that in the flat
transactional model, there can be no intermixing of low and
high computations in the single transaction, as in the case of
scenarios considered for type systems inspired by Volpano
and Smith. This is part of our motivation for considering
nested transactions.

In some situations, it may be desirable to have high and
low threads to collaborate in a transaction. An example is a
low thread that needs to authenticate in order to perform a
write, but the credentials are high data. We can allow this
cooperation, within some limits, if we adopt the semantics
of nested transactions [3]. Nested transactions allow trees
of transactions, intuitively reflecting call trees in systems of
remote procedure calls. The root of this tree corresponds to
the first procedure call, and in general a child node in the tree
reflects procedure calls that arose from the execution of the
parent node procedure call. One of the interesting aspects
of this semantics is that, for all transactions but the root
transaction in such a tree, commit is a tentative operation.
Even if a child transaction commits, its parent may choose to
abort, and that in turn requires the child transaction tentative
commit to be undone. On the other hand, abort of a child
transaction does not require the parent transaction to be
aborted. Therefore we can allow high and low threads to
co-exist safely in a transaction, provided we isolate them in
subtransactions according to their level.

Fig. 1 illustrates the challenges that may arise. In this
example, the low transactions TL

1 , TL
2 and TL

3 are coop-
erating with the high transaction TH

1.1 in order to create
a covert channel that bypasses the level restrictions on
information flow. TH

1,1 is a child of TL
1 . The high child

transaction TH
1,1 acquires the lock for the variable X, in order

to establish a covert channel to a low transaction. This high
transaction commits, releasing the lock on the variable to
its parent (since its commitment must be tentative). The
low transactions TL

2 and TL
3 attempt to acquire locks on

variables X and Y, respectively. TL
3 acquires the lock on Y,

prints a message to this effect, and commits. Since it is
outside of any other transaction, its effects are now publicly
visible. On the other hand, TL

2 is blocked on attempting
to lock X, which was originally locked by TH

1,1. Were the
latter still active, it would be forced to abort by TL

2 and
the lock released. However the lock is now held by the

parent of the high transaction, TL
1 , even if this low parent

is unaware of the lock it has acquired via the actions of
its child. To fix this problem, we require that the high
child transaction TH

1,1 of TL
1 be retroactively aborted. This is

possible because the effects of any successful transactions
cannot be made visible outside a nested transaction until
the root transaction succeeds, and the low parent of a high
transaction obviously cannot be aware of whether its high
child aborted or committed.

Fig. 1 illustrates two other scenarios related to this.
Suppose another high child transaction of TH

1,3 has inherited
the lock (from its parent TL

1 ) that was originally acquired
by TH

1,1. In this case, TH
1,3 will be aborted when the low

transaction TL
2 attempts to lock X. Suppose on the other

hand that the low child TL
1,4 of TL

1 has acquired the lock
on X that was originally acquired by TH

1,1. If we allow TL
2

to pre-emptively abort TL
1,4, then this is caused indirectly

by TH
1,1, so this is a form of abort dependency from high

to low transactions that we are claiming to avoid. In this
case, we can say that the low transaction TL

1,4 is oblivious
of the fact that the lock has been acquired due to inheritance
and anti-inheritance from a high sibling, and this amounts
to a scenario where a low transaction is blocked due to a
resource being held by another low transaction. In this case,
there is no information leak and the participation of high
transactions in the overall computation is unknown to the
low transaction.

We have formalized a model of secure nested transactions
with retroactive abort. Since the goal is to show an absence
of security leaks due to synchronization between processes,
our model is formulated as a process calculus, an extension
of the pi-calculus with transactions. In this framework, we
are able to use notions of observational equivalence for pro-
cesses to verify noninterference in the context of distributed
processes with synchronization. We are able to formulate
and prove a non-interference result: High transactions are
unable to leak information to low transactions, since the
former are indistinguishable from stopped processes to the
latter. Full details are available in the technical report [4].

REFERENCES

[1] V. Atluri, S. Jajodia, and B. George, Multilevel Secure Trans-
action Processing. Kluwer Academic Publishers, 1999.

[2] A. Sabelfeld and A. C. Myers, “Language-Based Information-
Flow Security,” IEEE Journal on Selected Areas in Communi-
cations, vol. 21, no. 1, 2003.

[3] E. B. Moss, “Nested transactions: An approach to reliable dis-
tributed computing,” Ph.D. dissertation, Massachusetts Institute
of Technology, Cambridge, MA, USA, 1981.

[4] D. Duggan and Y. Wu, “Security correctness for se-
cure nested transactions,” Stevens Institute of Technology,
Tech. Rep. 2011-4, May 2011, http://www.jeddak.org/Results/
Stevens-CS-TR-2011-4/.


