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I. OVERVIEW

Information flow analysis is a powerful technique for
reasoning about sensitive information that may be ex-
posed during program execution. One promising approach
is to adopt a program as a communication channel model
and leverage information theoretic metrics (e.g., mutual
information between the sensitive input and the public
output) to quantify such information flows. However,
recent research has shown discrepancies in such infor-
mation theoretic metrics: for example, Smith et. al. [5]
showed examples wherein using the classical Shannon
entropy measure for quantifying information flows may
be counter-intuitive. Smith et. al. [5] proposed a vulnera-
bility measure in an attempt to resolve this problem; this
measure was subsequently enhanced by Hamadou et. al.
[2] into a belief-vulnerability metric (in Oakland 2010).
However, we point out that the vulnerability measure may
also lead to counter-intuitive results on several other pro-
grams. In fact, we show that one can construct infinitely
many programs wherein different information leakage
measures (proposed in past work) are in conflict. This
paper presents the first attempt towards addressing such
conflicts and derives solutions for an optimal conflict-free
comparison of programs over a class of entropy measures
(called Renyi entropy − a well known generalization of
the classical Shannon entropy).

II. QUANTIFYING INFORMATION LEAKAGE

Past work on quantitative information leakage metrics
has explored using several entropy measures to compute
mutual information, including, Shannon entropy, min-
entropy, Guessing entropy (see [2, 3, 5] for more details),
and so on. However, in most past work, the choice of
such entropy measure has been ad hoc (mostly driven by
sample programs) − often leading to counter-intuitive re-
sults. Consider the following two programs (by Smith[5]),
where the secret input A is uniformly distributed 8k-bit
integer with k ≥ 2, & denotes bitwise and operator and
07k−11k+1 denotes a binary constant.

PROG P1
if A ≡ 0 mod 8 then

O = A
else

O = 1
end if

and

PROG P2
O = A & 07k−11k+1

Intuitively, one might argue that PROG P1 leaks more
information leakage than PROG P2 when k is large,
because it reveals complete information about the secret
input with probability 1

8 ; on the other hand, when k is
large, PROG P2 reveals roughly 1

8 of the number of bits
in A. However, applying the Shannon entropy measure
and computing the mutual information I1 between A and
O yields a counter intuitive result:

P1 : I1(A,O) = −7
8

log
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= k + 0.169,

P2 : I1(A,O) = −2k+1 · 27k−1

28k
log

27k−1

28k
= k + 1,

Indeed, from a security standpoint, PROG P1 leaves A
highly vulnerable to being guessed (e.g., when it is a
multiple of 8), while PROG P2 does not (at least for
large k).

Smith et. al. [5] and Hamadou et. al. [2] proposed
a vulnerability measure (a min-entropy measure instead
of classical Shannon entropy measure) in an attempt to
resolve this problem. However, we point out that the
vulnerability measure may lead to counter-intuitive results
on several other programs while, the results based on the
classical Shannon entropy measure matches our intuition.
Consider programs P3 and P4 below.

PROG P3 Password Checker
if A = L then

O = 1
else

O = 0
end if

and

PROG P4 Binary Search
if A ≥ L then

O = 1
else

O = 0



end if
Consider L = |A|/2 is a publicly known program

parameter. The intuition is that PROG P4 leaks much
more information than PROG P3, because when k is
large, the probability of A = L becomes so low that
PROG P3 leaks almost no information. But PROG P4
always leaks 1 bit of information, irrespective of |A|.
Now, consider the mutual information based on Shannon
entropy (I1) and the vulnerability metric (Iv):{

Iv(P3, 2k) = 1, Iv(P4, 2k) = 1
I1(P3, 2k) ≈ 0, I1(P4, 2k) = 1

Hence, the fundamentally challenge is to device an in-
formation leakage metric that is intuitive and conflict-
free. Towards this goal, we investigate a class of entropy
measures called Renyi-entropy [4] − a well known gener-
alization of various entropy measures including, the clas-
sical Shannon entropy, min-entropy and guessing entropy,
one-guess vulnerability measure, etc. More precisely,
Renyi-entropy defines a family of entropy measures based
on a parameter α ∈ (0, ∞) such that α = 1 corresponds to
the classical Shannon entropy, α = ∞ corresponds to the
min-entropy and α = 0 corresponds to the vulnerability
one-guess entropy.

A. Main Results

We informally state our main results below. For de-
tailed claims and proofs please refer our tech-report [6].
Conflicts in Metrics: We show that information flow
metrics proposed by past work are inherently prone to
conflicts, that is, there exists programs P1 and P2 and
Renyi-entropy parameters α, β (α 6= β) such that Iα(P1)
> Iα(P2) and Iβ(P1) < Iβ(P2). In addition, we show
how to construct infinitely many programs wherein dif-
ferent Renyi-entropy based information leakage measures
are in conflict.
A conflict-free Metric: For any program P , the asymp-
tote θ[1](I∞(P )) is a conflict-free.
Examples: It is easy to see using the proposed metric
θ(I∞(P )) one can resolve the conflicts in information
leakage metrics for programs P1-P4. In this example, we
show the application of our metric to PROG P5.

PROG P5 Modulo
O ≡ A mod L

In PROG P5, one can show that the optimal choice of
the low input Li (for the ith program run) is given by:

{L∗1, · · · , L∗i } = arg max
L1,··· ,Li∈L

lcm(L1, · · · , Li)

where lcm(L1, · · · , Li) refers to the least common mul-
tiple [1] of L1, · · · , Li. Using our metric one can show
that the information leakage in P5 for n runs is given by:

Iα(P5, |A|, n) = Σn
i=1 log(L∗i ),∀α ∈ (0,∞)

Fig. 1. Quantifying Information Leakage Across Multiple Program
Runs

Hence, the information leakage metric for PROG P5
grows linearly with n, the number of program runs as
long as L is sufficiently large. However, for finite |L|
information leakage drops to zero after roughly |L|

loge(|L|)
program runs, where loge denotes the natural logarithm.
For example, when L = {1, · · · , 16} then the optimal
choice of Li’s is given by {16, 15, 13, 11, 7, 3}; further
choices of L and subsequent program runs do not offer
more information about the high input to the adversary.
Figure II-A shows the rate of information leakage with
the number of program runs for L = {1, · · · , 16}, {1,
· · · , 32} and {1, · · · , 64}.

III. LIMITATION

The results presented in this paper applies only when
the number of output symbols and the number of program
runs is finite and independent of |A|.
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