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Abstract—Intrusion analysis, i.e. the process of combing through IDS
alerts and audit logs to identify true successful and attempted attacks,
remains a difficult problem in practical network security defense. The
major root cause of this problem is the large rate of false positives in
the sensors used by IDS systems to detect malicious activities. This work
presents an approach to handling such uncertainty through the Dempster-
Shafer (DS) theory that uses a generalization of probabilities called beliefs
to characterize confidence in evidence in support of a given hypothesis. We
address a number of practical but fundamental issues in applying DS to
intrusion analysis, including how to model sensors’ trustworthiness, where
to obtain such parameters, and how to address the lack of independence
among alerts. We present an efficient algorithm for computing a belief
score for a given hypothesis,e.g. a specific machine is compromised. The
belief strength can be used to prioritize further analysis by a human
analyst of the hypotheses and the associated evidence. We have implemented
our approach for the open-source IDS system Snort and evaluated its
effectiveness on a number of data sets as well as a productionnetwork.
The verification of belief scores showed that it can be effective in taming
the high false positive rate problem in intrusion analysis.

I. I NTRODUCTION

Intrusion analysis is the process of examining real-time events such
as IDS alerts and audit logs to identify and confirm successful attacks
and attack attempts into computer systems. The IDS sensors that we
have to rely on for this purpose often suffer from a large false positive
rate. It then becomes the responsibility of a human monitoring the
IDS system to distinguish the true alarms from the enormous number
of false ones. How to deal with the prevalence of false positives
is the primary challenge in making IDS sensors useful, as pointed
out by Axelsson [1] more than 10 years ago. Due to the lack of
effective techniques to handle the false-positive problem, it has become
a common practice to altogether disable IDS signatures thattend to
trigger large amount of false positive. Turning off IDS signatures
is like turning a blind eye to attack possibilities, which webelieve
is a dilemma due to the lack of effective techniques toprioritize
investigating intrusions from the large amount of IDS alerts and audit
logs.

There have been past attempts [9, 10] at prioritizing IDS alerts based
on their trustworthiness – Bayesian analysis [5] has been the standard
and there have been some approaches using alternative theories such
as Dempster-Shafer theory [7]. However, a number offundamental
issuesin applying these mathematical theories to intrusion analysis
remain to be addressed. For Bayesian analysis, it seems difficult to
establish adequate priors or determine the probability parameters in
a robust manner. For Dempster-Shafer theory, it is not clearhow to
model sensor quality, where to obtain such parameters, and how to
handle non-independent sources of evidence.

Our investigation reveals that Dempster-Shafer theory hasits unique
advantages in handling uncertainty in intrusion analysis,namely, the
lack of need for specifying prior probabilities of all events and the
ability to combine beliefs from multiple sources of evidence [2, 3, 9].
In this work we present an extended Dempster-Shafer model that
addresses the fundamental issues in applying DS in intrusion analysis.
We have implemented our method on top of an existing IDS alert
correlation tool, so that one can calculate a numeric confidence score
for each derived hypothesis and prioritize the results based on the
scores.

II. BACKGROUND ON DEMPSTER-SHAFER THEORY

A common example to illustrate the difference between probability
theory and Dempster-Shafer theory is that if we toss a coin with an

unknown bias, probability will still assign 50% for Head and50%
for Tail by the principle of indifference. Dempster-Shafertheory, on
the other hand, handles this by assigning 0% belief to{Head} and
{Tail} and assigning 100% belief to theset {Head, Tail}, meaning
“either Head or Tail”. More generally, the DS approach allows for
three kinds of answers:Yes, No, or Don’t know, the last option of
allowing ignorance makes a big difference in evidential reasoning [4].
In DS theory, a set of disjoint hypotheses of interest,e.g., {attack,
no-attack}, is called aframe of discernment. The basic probability
assignment(bpa function), distributes the belief over thepower setof
the frame of discernment and is defined as:

mθ : 2θ → [0, 1] (1)

Definition 1. Let θ be a frame of discernment andmθ a bpa function.
The belief function is defined as

For x ⊆ θ Bel(x) =
∑

y⊆x

mθ(y) (2)

The belief function shows how much confidence we have in that
one of the hypotheses contained inx holds (without specifying which).
Dempster-Shafer has a combination method, the goal of whichis to
combine evidence for a hypothesis from multipleindependentsources
and calculate an overall belief for the hypothesis [6]. In general we
have the following rule of combination known as the DempsterRule.

m1,2(h) =
1

1−K
·

∑

h1∩h2=h

m1(h1) ·m2(h2) (3)

K =
∑

h1∩h2={}

m1(h1) ·m2(h2) (4)

III. A PPROACHES

A. Using “unknown” to capture sensor quality

Dempster-Shafer theory allows specifying a weight on “unknown”
rather than specifying precise probabilities for every possible event in
the space. We use this ability to represent lack of knowledgeto capture
the intuitive notion of IDS sensor quality (which usually turns out to
be imprecisely described), without suffering the non-intuitive effects
of aggregation that have been observed by researchers [9].

The nature ofunknownmatches naturally with how humans interpret
IDS alerts. When an alert is fired, we will have some degree (say 10%)
of belief that an attack is going on. But we do not have 90% belief
that an attack isnot going on. Positively asserting that an attack is not
going on after seeing an alert is counter-intuitive. Adopting the simple
true and false case to capture the information provided by an alert
would require us to know the prior probability of attack, which is hard
if not impossible to obtain. By using DS, we can assign 0.1 belief to
“attack”({true}), 0 belief to “no-attack” ({false}), and the 0.9 goes to
“Don’t know” ({true, false}). Another consequence of this model of
sensor quality is that there will be no conflict among alerts.When we
do not trust an alert, we just say “Don’t know” whether the hypothesis
is true, rather than assert that the hypothesis is false. This will not
contradict the fact that we may trust another alert which derives the
same hypothesis being true.

B. Accounting for lack of independence among alerts

A long-standing assumption in DS theory is that multiple pieces of
evidence are independent, which is a property that is hard toconfirm in



practice. This is especially a problem in IDS alerts since many alerts
are triggered by the same or similar signatures. In combining these
alerts to derive the overall belief on the attack status, it is important
that such non-independence be appropriately accounted forso that the
result is not skewed by over-counting. To the best of our knowledge,
our method is the first in applying sound non-independent DS belief
combination in IDS alerts.

We adopt an idea proposed by Shafer [8] which interprets combined
bpa’s as joint probabilities. Based on this, we develop a setof cus-
tomized combination formulas to correctly account for the dependence
in evidence when combining beliefs in the alert correlationgraph. For
non-independent evidence, multiplication of bpa’s from two sources is
no longer valid [8]. Instead ofm1(h1) ·m2(h2), we useψ[h1, h2] to
denote the joint bpa of the two sources. We obtain the following new
formula for combining possibly non-independent evidence.

m1,2(h) =
∑

h1∩h2=h

ψ[h1, h2] (5)

In our system, the only possiblehi’s are {true} (referred to ast
hereafter) and{true, false} (referred to asθ hereafter). The following
equations calculateψ[h1, h2], whereri is an overlapping factorthat
can be estimated from the sources that support two inferencepaths

ψ[t, t] = r1 ·m1(t) + (1− r1) ·m1(t) ·m2(t) (6)

ψ[t, θ] = (1− r1) ·m1(t) ·m2(θ) (7)

ψ[θ, t] = (1− r2) ·m1(θ) ·m2(t) (8)

ψ[θ, θ] = r1 ·m2(θ) + (1− r1) ·m1(θ) ·m2(θ) (9)

C. Efficient calculation

A direct application of DS formulas can result in exponential (in the
number of hypotheses – in our case, IP addresses) blow-up of belief
combinations. We adopt a “translate-then-combine” approach so that
beliefs are propagated in a correlation graph and only combined at join
points in the graph. This produces an efficient algorithm with worst-
case running time quadratic in the number of IP addresses in the input
alerts.

D. Linking to practical IDS tools

We have implemented our approach on the open-source IDS system
Snort, and evaluated it continuously on our departmental network. Also
we tested our prototype onLincoln Lab DARPA intrusion detection
evaluation(98,99)data sets. The objective of our evaluation is to
examine whether the belief values calculated from our DS algorithm
can help a security analyst to prioritize further investigation. To that
end, we assign to an IDS alert a belief value which is the highest
belief of the hypothesis it supports. Moreover, to show thatit is
indeed the application of customized Dempster-Shafer theory helps in
the prioritization, we compare the performance of our DS algorithm
against alternative methods. These methods are using sensor quality
metrics only, the maximum sensor-quality metric in a correlation graph
as the belief value for all alerts in the graph, and the beliefvalues
calculated from the standard DS rule of combination, instead of from
our customized DS.

We used the truth files included in the datasets to determine which
alerts are true alerts and which are false alerts, and compare this
against the classification provided by the belief values. Our evaluation
suggests that the scores computed from our algorithm provide an
effective ranking for the correlated alerts based on the correlations’
trustworthiness.

1) ROC curve Analysis:The ROC curve for one of the datasets is
shown in figure1. From the curves it is clear that our customized DS
algorithm outperforms the other three alternative methods.

Figure 1. Lincoln Lab 1999 ROC Curves

Figure 2. Prioritizing Effect (Lincoln Lab 1999)

2) Prioritization Effect:Figure2 shows how the precision and recall
change when the threshold decreases from 1 to 0 (note the X axis is
1-Belief). When one starts with alerts with high beliefs, the precision
is high meaning more of the effort is devoted to useful tasks.

3) Sensitivity Analysis:We also did experiments to test how the
variation in the sensor quality metrics, which are input to our algorithm,
affect our algorithm’s performance. We compare the resultsfrom
multiple cases along with the default case in the ROC curves for both
datasets. The results showed that our system is not sensitive for such
changes.
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