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Abstract—Intrusion analysis, i.e. the process of combing through IDS
alerts and audit logs to identify true successful and attemfed attacks,
remains a difficult problem in practical network security defense. The
major root cause of this problem is the large rate of false pdsves in
the sensors used by IDS systems to detect malicious actiesi This work
presents an approach to handling such uncertainty through he Dempster-
Shafer (DS) theory that uses a generalization of probabilies called beliefs
to characterize confidence in evidence in support of a givenyipothesis. We
address a number of practical but fundamental issues in apging DS to
intrusion analysis, including how to model sensors’ trustwrthiness, where
to obtain such parameters, and how to address the lack of ingendence
among alerts. We present an efficient algorithm for computiig a belief
score for a given hypothesisge.g. a specific machine is compromised. The
belief strength can be used to prioritize further analysis ly a human
analyst of the hypotheses and the associated evidence. Wevdamplemented
our approach for the open-source IDS system Snort and evalted its
effectiveness on a number of data sets as well as a productioretwork.
The verification of belief scores showed that it can be effeise in taming
the high false positive rate problem in intrusion analysis.

I. INTRODUCTION

Intrusion analysis is the process of examining real-timeney such
as IDS alerts and audit logs to identify and confirm succésgfacks
and attack attempts into computer systems. The IDS senisarsve
have to rely on for this purpose often suffer from a largedfgiesitive
rate. It then becomes the responsibility of a human momigothe
IDS system to distinguish the true alarms from the enormausher
of false ones. How to deal with the prevalence of false paesiti
is the primary challenge in making IDS sensors useful, astedi
out by Axelsson I] more than 10 years ago. Due to the lack of
effective techniques to handle the false-positive probiehms become
a common practice to altogether disable IDS signatures témat to
trigger large amount of false positive. Turning off IDS <sgures
is like turning a blind eye to attack possibilities, which welieve
is a dilemma due to the lack of effective techniques ptioritize
investigating intrusions from the large amount of IDS aexhd audit
logs.

There have been past attem@s10] at prioritizing IDS alerts based
on their trustworthiness — Bayesian analy&isHas been the standard
and there have been some approaches using alternativéetheach
as Dempster-Shafer theory][ However, a number ofundamental
issuesin applying these mathematical theories to intrusion asisly
remain to be addressed. For Bayesian analysis, it seemsuiffo
establish adequate priors or determine the probabilityarpaters in
a robust manner. For Dempster-Shafer theory, it is not dhesr to
model sensor quality, where to obtain such parameters, andtb
handle non-independent sources of evidence.

Our investigation reveals that Dempster-Shafer theoryitsamique
advantages in handling uncertainty in intrusion analysinely, the
lack of need for specifying prior probabilities of all everand the
ability to combine beliefs from multiple sources of evider, 3, 9].

In this work we present an extended Dempster-Shafer modsl th
addresses the fundamental issues in applying DS in intrusialysis.
We have implemented our method on top of an existing IDS ale
correlation tool, so that one can calculate a numeric conéielescore
for each derived hypothesis and prioritize the results dase the
scores.

Il. BACKGROUND ONDEMPSTER SHAFER THEORY
A common example to illustrate the difference between piita
theory and Dempster-Shafer theory is that if we toss a coth am

rt

unknown bias, probability will still assign 50% for Head aB0%
for Tail by the principle of indifference. Dempster-Shafbeory, on
the other hand, handles this by assigning 0% belie{t®ad and
{Tail} and assigning 100% belief to theet {Head Tail}, meaning
“either Head or Tail’. More generally, the DS approach aBofer
three kinds of answersYes, No, or Don’'t knowthe last option of
allowing ignorance makes a big difference in evidentiasoesng H].

In DS theory, a set of disjoint hypotheses of interesy., {attack,
no-attack, is called aframe of discernmentThe basic probability
assignmentbpa function), distributes the belief over thmwer setof

the frame of discernment and is defined as:
me : 2° = [0,1]

()

Definition 1. Let6 be a frame of discernment andy a bpa function.
The belief function is defined as

For x C 0 Bel(z) = Z me(y)

yCx

)

The belief function shows how much confidence we have in that
one of the hypotheses containedrimolds (without specifying which).
Dempster-Shafer has a combination method, the goal of wikic¢b
combine evidence for a hypothesis from multiphelependensources
and calculate an overall belief for the hypothes$ [n general we
have the following rule of combination known as the Demp®&ate.

ml,Q(h) = ﬁ Z mi (hl) . mg(hg) (3)
hiNha=h
K= Z ma(hi) - ma(h2) 4)

hiNho={}
I1l. APPROACHES
A. Using “unknown” to capture sensor quality

Dempster-Shafer theory allows specifying a weight on “wvkn”
rather than specifying precise probabilities for everysids event in
the space. We use this ability to represent lack of knowledgmpture
the intuitive notion of IDS sensor quality (which usuallyrnia out to
be imprecisely described), without suffering the noniite effects
of aggregation that have been observed by researcBers |

The nature ofinknownmatches naturally with how humans interpret
IDS alerts. When an alert is fired, we will have some degreg 1686)
of belief that an attack is going on. But we do not have 90%ebeli
that an attack imot going on. Positively asserting that an attack is not
going on after seeing an alert is counter-intuitive. Adogtthe simple
true and false case to capture the information provided by an alert
would require us to know the prior probability of attack, winiis hard
if not impossible to obtain. By using DS, we can assign 0.1ebéb
“attack”({true}), O belief to “no-attack” {false}), and the 0.9 goes to
“Don’t know” ({true, false}). Another consequence of this model of
sensor quality is that there will be no conflict among aléfthen we
do not trust an alert, we just say “Don’t know” whether the tiyyesis
Is true, rather than assert that the hypothesis is falses Wil not
contradict the fact that we may trust another alert whictivdsrthe
same hypothesis being true.

B. Accounting for lack of independence among alerts

A long-standing assumption in DS theory is that multiplecpi of
evidence are independent, which is a property that is hacdriirm in



practice. This is especially a problem in IDS alerts sincewnalerts
are triggered by the same or similar signatures. In comgitirese
alerts to derive the overall belief on the attack statuss itmiportant
that such non-independence be appropriately accountezbftirat the
result is not skewed by over-counting. To the best of our Kedge,
our method is the first in applying sound non-independent Bigtb
combination in IDS alerts.

We adopt an idea proposed by Shaf@rhich interprets combined
bpa’s as joint probabilities. Based on this, we develop ao$etus-
tomized combination formulas to correctly account for tepehdence
in evidence when combining beliefs in the alert correlatipaph. For
non-independent evidence, multiplication of bpa’s frone sources is
no longer valid 8]. Instead ofmq (hi1) - ma(hs2), we usey[hl, h2] to
denote the joint bpa of the two sources. We obtain the foligwiew
formula for combining possibly non-independent evidence.

> b1, h2]

hiNho=h

ma(h) = ®)
In our system, the only possible;’s are {true} (referred to ast

hereafter) andtrue, false} (referred to a®) hereafter). The following
equations calculate[hq, he], wherer; is an overlapping factorthat

can be estimated from the sources that support two inferpaties

Plt, 1] = r1-ma(t) + (1 —71) - ma(t) - ma(t) (6)
Y[t 0] = (1= r1) - ma(t) - ma(6) @)
Pl0,t] = (1 = r2) - ma(6) - ma(t) ®)
$[0,6] = r1-ma(0) + (1 —r1) - ma(0) - m2(0) ©)

C. Efficient calculation

A direct application of DS formulas can result in expondntiia the
number of hypotheses — in our case, IP addresses) blow-upglief b
combinations. We adopt aranslate-then-combirieapproach so that
beliefs are propagated in a correlation graph and only coeabat join
points in the graph. This produces an efficient algorithmhwibrst-
case running time quadratic in the number of IP addressdwimput
alerts.

D. Linking to practical IDS tools

We have implemented our approach on the open-source ID&ngyst
Snort, and evaluated it continuously on our departmentaVor&. Also
we tested our prototype ohincoln Lab DARPA intrusion detection
evaluation(98,99)data sets. The objective of our evaluation is to
examine whether the belief values calculated from our D®ralgn
can help a security analyst to prioritize further invediiga To that
end, we assign to an IDS alert a belief value which is the highe
belief of the hypothesis it supports. Moreover, to show thats
indeed the application of customized Dempster-Shaferryhielps in
the prioritization, we compare the performance of our DSiadgm
against alternative methods. These methods are usingrsquoatity
metrics only, the maximum sensor-quality metric in a catieh graph
as the belief value for all alerts in the graph, and the belaties
calculated from the standard DS rule of combination, irtste&afrom
our customized DS.

We used the truth files included in the datasets to determiriehw
alerts are true alerts and which are false alerts, and camitas
against the classification provided by the belief values. @aluation
suggests that the scores computed from our algorithm peowid
effective ranking for the correlated alerts based on theetations’
trustworthiness.

1) ROC curve AnalysisThe ROC curve for one of the datasets is
shown in figurel. From the curves it is clear that our customized DS
algorithm outperforms the other three alternative methods
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2) Prioritization Effect: Figure2 shows how the precision and recall
change when the threshold decreases from 1 to 0 (note thesXisxi
1-Belief). When one starts with alerts with high beliefse fbrecision
is high meaning more of the effort is devoted to useful tasks.

3) Sensitivity Analysis:We also did experiments to test how the
variation in the sensor quality metrics, which are inputuo algorithm,
affect our algorithm’s performance. We compare the restribsn
multiple cases along with the default case in the ROC cureeddth
datasets. The results showed that our system is not senfitivsuch
changes.
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