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I. INTRODUCTION

Timing channels remain a difficult and important problem
for information security. The time at which a computing
system performs some observable action such as sending
a network packet can in principle encode an unbounded
amount of information about what is happening inside the
system. An adversary able to accurately measure this time
may learn confidential information from this side channel
(e.g., [1], [2], [3], [4]); an adversary able to influence
this time may additionally use it as a covert channel to
communicate confidential information (e.g., [5], [6], [7]).

This work presents a practical and general approach that
can mitigate timing channels to asymptotically logarithmic
leakage under reasonable assumptions. Our approach is
based on our recent on predictive mitigation of timing
channels [8]. We generalize predictive mitigation to a larger
and important class of systems: systems that receive input
request from multiple clients and deliver responses. The
new insight is that timing predictions may be a function of
any public information rather than being a function simply
of output events. Based on this insight, a more general
mechanism and theory of predictive mitigation becomes
possible. This results in tight bounds on timing leakage and
enables effective application of predictive mitigation to a
wide range of web applications. With reasonable settings, the
mechanism brings only about 30% latency overhead, while
allowing at most 850 bits for 100,000 requests.

II. SYSTEM MODEL

We consider a class of systems that accept input requests
from a variety of clients and send back responses. Figure 1
illustrates how predictive mitigation works in such a system.
Two central elements in this model are the service and the
timing mitigator. The timing of events produced by the
service is influenced by confidential information, and the
adversary may be able to affect how confidential information
influences timing, to use timing as a covert channel to learn
that information.

The mitigator controls timing channel leakage by delaying
the output events according to a pre-defined schedule. As
long as the events arrive according to (or ahead of) the
schedule, leakage must be low because the only information
leaked is the number of events. We call a period when all
predictions are met an epoch. When the service fails to
behave according to the schedule, the mitigator records the
misprediction and switches into a new schedule. The new
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Figure 1. Predictive mitigation of an interactive system

schedule is chosen in such a way that the number of epochs
grows slowly with time.

III. PREDICTIONS FOR INTERACTIVE SYSTEMS

The more information is available to the mitigator, the
more accurate are its schedules. The main idea of this work
is to utilize public information about input timing, their
request types and thread model to further improve accuracy
of the predictions and the overall performance.

Schedules and predictions. We assume there is a corre-
spondence between public inputs and public outputs; without
loss of generality, we assume one-to-one mapping between
input and output events.

We model the public inputs as a sequence of requests
(inp1, r1) . . . (inpi, ri) . . . , where inpi is the time of re-
quest i, and ri identifies the type of the request. Request
types capture what information about the request is public
and can influence the mitigator. Let Ir be the number of
mispredictions on request type r, and I be the collection of
all such Ir’s. Because I only changes when a misprediction
happens, we use I formally as the epoch that it represents.

Assume that the predictions for epoch I are given by
a function p(I, ri) that returns an expected bound on how
long the it takes to compute an output for request type ri in
epoch I . The schedule for epoch I is as follows: if SI(0) is
the start time of the epoch I , subsequent event i in epoch I
is predicted to occur at time SI(i):

SI(i) = max[inpi, avail(I, i)] + p(I, ri)

The two terms in the above expression correspond to the
predicted start of the computation for event i and the
predicted amount of time it will takes to compute the output,
respectively. To predict the start of the computation for event
i, we take the maximum time between when the input for
that event is available and the time when the system is



predicted to be available to handle request i, denoted here
by term avail(i).

Penalty policies. To show how predictions are defined,
consider the “fast doubling” scheme which predicts compu-
tation time in the form of 2n for some n. The choice of
value of n for every request types determines the trade-off
between performance and leakage.

We define the global index G =
∑

I . A global penalty
function, where n = G for all request types enforces a tight
leakage bound, but the performance can be bad. A local
penalty function n = Ir for type r gives good performance
but leakage is linear to the number of request types.

We introduce a novel policy called grace period which
gives a better trade-off. With an l-level grace period policy,
each request type is given l tokens. Token of type r is
reduced only when r meets a misprediction. When type r’s
token is not used up, r is penalized locally. That is, n = Ir.
Otherwise, r is penalized globally. That is, n = G. Therefore
the request types with regular timing behavior are not hurt
by other “irregular” request types.

Leakage analysis. Now we analyze the leakage of l-level
grace period policy with M inputs, R request types and
elapsed time T . Careful analysis can bound the timing varia-
tion of possible outputs with (M+1)(R−1)·(l+1)+log(T+1)+1.
Taking the logarithm of the variation derived above, we can
get the leakage bound in bits: log(M + 1)× ((R− 1) · (l +
1) + log(T + 1) + 1).

For most interactive systems, we can assume a worst-case
execution time Tw, such as browser’s timeout setting1. Given
this constraint, similar derivation gives the bound of

log(M + 1)× ((R− 1) · (l + 1) + log(Tw + 1) + 1)

Note that this is asymptotically log(M + 1). This is a
reasonably tight leakage bound for interactive systems.

IV. EXPERIMENTS

As a part of our evaluation, we developed a mitigating
HTTP proxy between client browser and real-world web
applications to estimate the overheard of mitigating real-
world applications. Figure 2 shows the average latency of
load time for a selected web page and the associated bounds
on the leakage, when the mitigator is used with 5-level
grace period penalty policy. In this particular experiment,
the selected web page results in 49 different requests to
the server. Our evaluation considers different possibilities
of grouping these requests.

1) TYPE/HOST: all URLs residing on the same host are
treated as one request type.

2) HOST+URLTYPE: different request on the same host
are predicted differently based on the URL type of the

1We used 300 seconds in the experiments, which is the default setting
of Firefox browser v. 3.6.12
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Figure 2. Latency and leakage bound for HTTP web page

request. We distinguish URL types based on the file
types, such JPEG files, CSS files and so on.

3) TYPE/URL: individual URLs are predicted differently
in this case.

With each setting, yet another option is to filter out some
requests that do not leak crucial information. We use filtering
images as another dimension (NP: no pictures) in this part.

Results. The results show that in the most restrictive
TYPE/HOST case, the latency is almost tripled compared
to the unmitigated case. Filtering out images reduces the
latency in this case. HOST+URLTYPE and TYPE/URL op-
tions have similar latency results, with around 30% latency
overhead. Moreover, filtering out images does not improve
latency much for these cases.

From the security point of view, three options have 2, 7
and 49 request types respectively. The information leakage
bound accordingly are shown in Figure 2, calculated by
the leakage formula introduced before. The results show
that HOST+URLTYPE provides a reasonable trade-off for
request types selections: it has only around 30% latency
overhead, while the information leakage in this setting is
kept below 850 bits for 100,000 requests.
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