
Poster: Modelling Distributed Systems Security by Labelled Mobile Ambients

N.V.Narendra Kumar
Doctoral Candidate

Tata Institute of Fundamental Research
Mumbai 4000005, India

naren@tifr.res.in

R.K. Shyamasundar
School of Tech. and Computer Science
Tata Institute of Fundamental Research

Mumbai 4000005, India
shyam@tifr.res.in

I. INTRODUCTION

DIFC proposed by Andrew Myers and Barbara Liskov
[2], allows users to share information with a distrusted
component yet control how that component propagates the
shared information to others and provides an end-to-end
security guarantees and several real-life implementations
exist. The model extends the lattice-based information flow
models by allowing users to declassify information in a
decentralized way, and improves support for fine-grained
data sharing. DIFC became very popular as it provides end-
to-end security guarantees and there exist several implemen-
tations and applications both at the programming language
level and at the level of operating systems. Language-based
DIFC systems [3], [4] augment the type system to include
secrecy and integrity constraints enforced by the bytecode
generator. Mobile ambients [1], has been proposed to capture
all aspects of mobility) within a single framework that
encompasses mobile agents, interaction of ambients and
their mobility.

In this paper, we propose a variant of Mobile ambients
called Labelled Mobile Ambients (LMA) model and show
that it forms a succinct basis for DIFC in a language
independent manner and subsumes concepts of declassifi-
cation and endorsement. We define the semantics of LMA
and show that it realizes DIFC. This is realized by an
appropriate interpretation of in, out and open actions in
terms of the standard read and write operations, with
additional constraints based on the labels of the ambients
involved in the action to succeed. Further, we show that
LMA (i) enhances the security of distributed computations
by integrating well known security models, enabling a wide
range of applications like safe execution of untrusted com-
ponents downloaded from the internet etc., (ii) succinctly
demonstrates multilevel security properties, (iii) realizes de-
classification and endorsement, and (iv) provides obligations
to be discharged by a programming language to realize
multi-level security (MLS). The model enables derivation
of necessary and sufficient conditions needed for realizing
MLS properties in a LMA. Further, static analysis techniques
can be used to certify proper information flow in such a
model and avoid run-time information flow checks as much

n Names
P,Q ::= Processes

(νn)P restriction
| 0 inactivity
| P | Q composition
| !P replication
| n[P] ambient
| M.P action

M ::= Capabilities
in n.P can enter n

| out n.P can exit n
| open n.P can open n

Figure 1. Mobile Ambients Syntax

as possible; such an analysis can be used to validate whether
a given implementation of an application satisfies the desired
security properties and arrive at frameworks for realizing a
given security policy.

In the sequel, we shall highlight some of the crucial
features of LMA only due to limited space.

II. A LABELLED MOBILE AMBIENT MODEL

In this section, we propose an advanced mobile ambient
model referred to as Labelled Mobile Ambients (LMA).
LMA model is the same as mobile ambients (syntax is shown
in Fig. 1) except that

• ambients are labelled (labels assigned to an ambient are
static, i.e. they do not change at run time) and that we
have a function label that takes the name of an ambient
as input and returns its label as output. Labels of the
ambients come from the lattice L = (L,6,⊕)

• the semantics of the operations in, out and open have
to be redefined taking the labels associated with the
ambients (that get affected by the execution of the
operation) into account

Given a process of the form n[opr m.P | Q], we say that
subject n intends to perform operation opr on object m. We
now present the semantics of in, out and open primitives
in LMA and discuss the interpretation of modelling the
environment. The latter is important from the perspective
of secrecy/integrity as one needs to define “trust”.

Semantics of “in”
n1[n2[P] | n3[in n2.Q] | R] | S → n1[n2[P | n3[Q]] | R] | S

The subject of the operation in n2 in the above process is
n3 and the object is n2(although, indirectly n1 is also affected
by it). If we look at the changes after the reduction, we deduce
that the contents of n1 and that of n2 have been modified. So,
we consider this as a write operation by n3. We interpret the
above reduction as follows: (i) n3 writes n2 and (ii) n3 writes n1.
This would mean that information flows (i) from n3 to n2 and
(ii) from n3 to n1. Under the constraints of the lattice model of
information flow, for these information flows to succeed we need
that label(n3) 6 label(n2) and label(n3) 6 label(n1).

Semantics of “out”
n1[n2[n3[out n2.P] | Q] | R] | S → n1[n2[P] | n3[Q] | R] | S

The subject of the operation out n2 in the above process is
n3 and the object is n2(although, indirectly n1 is also affected
by it). If we look at the changes after the reduction, we deduce
that the contents of n1 and that of n2 have been modified. So,
we consider this as a write operation by n3. We interpret the
above reduction as follows: (i) n3 writes n2 and (ii) n3 writes n1.
This would mean that information flows (i) from n3 to n2 and
(ii) from n3 to n1. Under the constraints of the lattice model of
information flow, for these information flows to succeed we need
that label(n3) 6 label(n2) and label(n3) 6 label(n1).

Semantics of “open”
n1[open n2.P | n2[Q] | R] | S → n1[P | Q | R] | S

The subject of the operation open n2 in the above process
is n1 and the object is n2. If we look at the changes after the
reduction we deduce that n1 now has the access to the contents
of n2. So, we consider this as a read operation by n1. We
interpret the above reduction as n1 reads n2. This would mean
that information flows from n2 to n1. Under the constraints of
the lattice model of information flow, for this information flow to
succeed we need that label(n2) 6 label(n1).

Modelling the Environment
We treat the environment as the “root” (within which all the
activities happen) and we assign it the label ∗ (the highest label)
which stands for all. The properties the environment would then
follow are: (i) the environment cannot write anything (it has no
siblings or ancestors), (ii) no one can read the environment (it
has no parent), (iii) we trust the environment not to read anything
(i.e. not have any open capabilities) and (iv) anyone can write
to the environment (in fact every ambient which wants to cross
administrative boundaries would have to necessarily pass through
the environment).

The LMA model realizes DIFC follows from:
• each ambient specifies an independent flow policy and retains

control over the dissemination of its data
• code in an ambient with the authority of its owner ambient can

modify its flow policy. It can declassify its data part by adding
additional readers (through open operation). This is done on
a per-ambient basis and there is no central declassification
ambient

• each ambient ensures its data flow policy through in, out and
open capabilities

• the environment satisfies the initial flow policy and does not
have any active role in controlling the data flow

III. SECURITY PROPERTIES OF LMA
One of the advantages of the LMA is that using static analysis

techniques, we can derive a set of constraints on the labels of the

ambients that when satisfied guarantee that the process does not
leak information The advantages of such a static analysis are (i) it
eliminates the need for runtime checks and (ii) enables certification
of components (for example generated by a trusted compiler).
Observation:

The label of an ambient must be higher than the label
of any of its child ambients

Rules for constructing the set of constraints: Let
constraintsl(P), where process P is in an ambient labelled l be
the set of constraints to be satisfied by the labels of ambients of
the process so that no possible execution leaks information. It can
be derived using the following rules using structural induction:

1) constraintsl((νn)P) = constraintsl(P)
2) constraintsl(0) = ∅
3) constraintsl(P | Q) =

constraintsl(P) ∪ constraintsl(Q)
4) constraintsl(!P) = constraintsl(P)
5) constraintsl(n[P]) =

constraintslabel(n)(P) ∪ {label(n) 6 l}
6) constraintsl(in n.P) =

constraintsl(P) ∪ {l 6 label(n)}
7) constraintsl(out n.P) = constraintsl(P)
8) constraintsl(open n.P) = constraintsl(P)

The information leak is captured below.
Definition 1: We say that a process P leaks information iff ∃Q

P →∗ Q and ambient n1 is a child of the ambient n2 in Q and
label(n2) < label(n1).

Proposition 1: If P and Q are such that P → Q then the
following hold

1) constraints(P) ⊇ constraints(Q)
2) constraints(P) |= P ⇒ constraints(P) |= Q.
Corollary 1: If P is such that constraints(P) |= P then P

will not leak information.
For several practical applications, strict enforcement of non-

interference is too inflexible. However, it is very sensitive. In
LMA. The process of declassification and endorsement envisaged
in several works by Myers and others, can be realized in LMA
through trusted principals.

IV. DISCUSSIONS

To our knowledge, this is the first attempt that shows an adapta-
tion of ambient calculus to succinctly model DIFC and multi-level
security properties. The LMA model provides a general framework
for multi-level security in a programming language independent
way. While using explicit labels for large systems may not be easy,
we believe that using the notion of trusted principals, it should be
possible to integrate with legacy systems. Further, generalizations
of the model to dynamic labelling are being explored.

REFERENCES

[1] L. Cardelli and A. D. Gordon, “Mobile ambients,” Theoretical
Computer Science, vol. 240, no. 1, pp. 177–213, 2000.

[2] A. C. Myers and B. Liskov, “A decentralized model for
information flow control,” in SOSP ’97. New York, NY, USA:
ACM, 1997, pp. 129–142.

[3] A. C. Myers, “Jflow: Practical mostly-static information flow
control,” in POPL, 1999, pp. 228–241.

[4] V. Simonet and I. Rocquencourt, “Flow caml in a nutshell,” in
Proc.of the 1st APPSEM-II workshop, 2003, pp. 152–165.

