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Abstract—In this paper, we present new insights into central
properties of voting systems, namely verifiability, privacy, and
coercion-resistance. We demonstrate that the combination of the
two forms of verifiability considered in the literature—individual
and universal verifiability—are, unlike commonly believed, insuf-
ficient to guarantee overall verifiability. We also demonstrate that
the relationship between coercion-resistance and privacy is more
subtle than suggested in the literature.

Our findings are partly based on a case study of prominent
voting systems, ThreeBallot and VAV, for which, among others,
we show that, unlike commonly believed, they do not provide
any reasonable level of verifiability, even though they satisfy
individual and universal verifiability. Also, we show that the
original variants of ThreeBallot and VAV provide a better level
of coercion-resistance than of privacy.
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I. INTRODUCTION

Verifiability, privacy, and coercion-resistance are central

security requirements for modern voting systems. Privacy is

the most basic security requirement, which says that the way

a particular voter voted is not revealed to anybody, see, e.g.,

[2], [4]. Intuitively, verifiability means that voters have a way

of checking that their votes were actually counted and that

the published result of the election is correct. In the litera-

ture, traditionally two forms of verifiability are considered:

individual and universal verifiability [14], [1], [24], [12]. As

stated, e.g., in [14], individual verifiability means that a voter

can check that her own ballot appears on the bulletin board.

Universal verifiability requires that anyone can check that the

election outcome corresponds to the ballots published on the

bulletin board. In addition, it is explicitly or implicitly required

that each vote in the election outcome was cast by an eligible

voter and that there is at most one vote per voter, a fact that

in some voting protocols can be verified as well. To achieve

(individual) verifiability, a voter typically obtains some kind of

receipt which, together with additional data published in the

election, she can use to check that her vote was counted. This,

however, potentially opens up the possibility for vote buying

and voter coercion. Besides verifiability, voting systems should

therefore also provide so-called coercion-resistance [2], [13],

[23].

In this paper, we present new insights into these central

security properties. Our findings are partly based on a case

study for prominent voting protocols, ThreeBallot and VAV

[25]. More precisely, the contribution of this paper is as

follows.

Contribution of this Paper. We demonstrate, using Three-

Ballot and VAV as examples, that the combination of the two

mentioned forms of verifiability considered in the literature—

individual and universal verifiability—are, unlike commonly

believed, insufficient to guarantee overall verifiability. More

precisely, based on a definition of verifiability proposed in

[19], we precisely measure the level of verifiability Three-

Ballot and VAV provide. It turns out that, while ThreeBallot

and VAV satisfy individual and universal verifiability, there is

an attack on the verifiability of these protocols, which results

in an insufficient level of verifiability. Our attack allows a

dishonest bulletin board (or the scanner), collaborating with

m dishonest voters, to turn m votes of honest voters for A into

m votes for B. This goes unnoticed even if all honest voters

check whether their receipts appear on the bulletin board and

even if they check that the published result corresponds to the

ballots shown on the bulletin board.

As for privacy and coercion-resistance, we first provide

a game-based definition of privacy, along the lines of a

game-based definition of coercion-resistance proposed in [18],

since, as to the best of our knowledge, such a definition

does not exist. There are, however, definitions of coercion-

resistance in simulation-based settings (see, e.g., [21]) and in

an abstract, Dolev-Yao style model [9]. We note that both our

definition of privacy and the definition of coercion-resistance

from [18] allow to measure the level of privacy/coercion-

resistance a protocol provides: for privacy, it is measured

how well external observers can distinguish whether an honest

voter voted for candidate j or j′; for coercion-resistance,

the ability of coercers to distinguish whether coerced voters

followed the coercer’s instructions or not is measured. This

is important in order to make meaningful statements about

protocols, as many voting protocols, in particular many paper-

based protocols (e.g., ThreeBallot and VAV [25], Prêt à Voter

[6], and Split-Ballot [22]), do not provide the ideal level of

privacy/coercion-resistance. As discussed in [18], simulation-

based security definitions, e.g., the one by Moran and Naor

[21] provide a yes/no-answer, rather than measuring the level

of privacy/coercion-resistance. Also, they are more demand-

ing than game-based definitions and deem many reasonable

protocols insecure.

One would expect that privacy and coercion-resistance are
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closely related: If the level of privacy is low, i.e., there is a

good chance of correctly determining how a voter voted, then

this should give the coercer leverage to coerce a voter. Some

works in the literature indeed suggest a close connection. For

example, the definition of coercion-resistance by Moran and

Naor [21], being simulation-based, has privacy “built in”.

However, our case study, in which we precisely mea-

sured the level of privacy and coercion-resistance of different

variants of ThreeBallot and VAV proposed in the litera-

ture,1 demonstrates that the relationship between privacy and

coercion-resistance is more subtle than what can be gathered

from existing work.

Among others, it turns out that improving the level of

privacy of a protocol in a natural way (e.g., by changing the

way honest voters fill out ballots) can lead to a lower level

of coercion-resistance. This is the case when going from the

original variant of ThreeBallot to a “privacy enhanced” variant

proposed by de Marneffe et al. [8]. Clearly, in general, one

does not expect privacy to imply coercion-resistance. Still the

effect is quite surprising.

A maybe even more important and unexpected finding that

comes out of our case study is that the level of privacy of a pro-

tocol can be much lower than its level of coercion-resistance;

this is the case for the original variant of ThreeBallot [25] and

a natural variant of VAV. The reason behind this phenomenon

is basically that it may happen that the counter-strategy a

coerced voter may run to defend against coercion hides the

behavior of the coerced voter, including her vote, better than

the honest voting program.

To complete the picture, we also study the case in which

the counter-strategy does not “outperform” the honest voting

program in the above sense. For this case, we are able to

prove a general theorem that states that if a voting system

provides a certain level of coercion-resistance, it provides at

least the same level of privacy. As discussed in Section VI-E,

this theorem is applicable to many voting protocols.

Structure of this Paper. We first introduce some basic

terminology and introduce the notion of a voting protocol. In

Sections III and IV we recall (the variants of) ThreeBallot and

VAV, respectively. Our findings on verifiability are presented

in Section V and those for privacy and coercion-resistance in

Section VI. We conclude in Section VII. Some more details

are provided in the appendix. Further details and proofs can

be find in the full version of this paper [20].

II. PRELIMINARIES AND PROTOCOLS

In this section, we introduce some basic terminology and

the notion of a voting protocol.

Preliminaries. As usual, a function f from the natural num-

bers to the real numbers is negligible, if for every c > 0 there

exists �0 such that f (�) ≤ 1
�c for all � > �0. The function f

is overwhelming, if the function 1− f (�) is negligible. Let

δ ∈ [0,1]. The function f is δ -bounded if f is bounded by δ

1We note that coercion-resistance of one of the variants of ThreeBallot
considered in this paper has already been studied in [18].

plus a negligible function, i.e., for every c > 0 there exists �0

such that f (�)≤ δ + 1
�c for all � > �0.

We use systems of probabilistic polynomial-time interactive

Turing machines (ITMs) as our computational model (see,

e.g., [15]). In a system of ITMs, also called a process, ITMs

can communicate with other ITMs via input/output tapes,

also called (external) input/output channels. If π and π ′ are

processes (each with a set of external input/output tapes), then

we write π ‖ π ′ for the concurrent composition of π and π ′. A

process defines a family of probability distributions over runs,

indexed by the security parameter.

Voting Protocols. A voting protocol P specifies the programs

of the honest voters and authorities in a voting process. More

precisely, let k be the number of candidates and q be the

number of voters. Then, P specifies:

• A set {a1, . . . ,al} of voting authorities and a program

π̂a, for every voting authority a. The specification of π̂a

includes the specification of the interface of a to the rest

of the voting process, i.e., the channels via which a is

connected to other parties.

• A program (formally a process) π̂v, for every voter

v ∈ {v1, . . . ,vq}. The specification of π̂v includes the

specification of the interface of v to the rest of the voting

process. The program π̂v takes a choice j ∈ {0, . . . ,k},
where j = 0 stands for abstention from voting, as param-

eter, indicating which candidate v votes for (if any).

In the following, we will consider a probability distribution

�p = p0, . . . , pk on the possible choices honest voters have, i.e.,

p0, . . . , pk ∈ [0,1] and ∑k
i=0 pi = 1, where p0 is the probability

that a voter abstains from voting and pi, i ∈ {1, . . . ,k}, is the

probability that a voter votes for candidate i. We define π̂v(�p)
to be the process which first chooses j ∈ {0, . . . ,k} according

to �p and then runs π̂v( j). We sometimes simply write π̂v

instead of π̂v(�p), if the distribution �p is clear from the context.

Because, as we will see, the level of privacy, coercion-

resistance, and verifiability of a protocol P depends on several

parameters, we consider protocol instantiations P∗ of P, for

which these parameters are fixed. The parameters are the

following:

(i) the set AH ⊆{a1, . . . ,al} of honest voting authorities AH ,

(ii) the total number q of voters and the set VH ⊆{v1, . . . ,vq}
of honest voters (static corruption),

(iii) the number k of candidates, and

(iv) the probability distribution �p, as described above.

Such a protocol instantiation will be denoted by P∗ =
P(AH ,q,VH ,k,�p). We note that in our theorems, only the

number of honest (and dishonest) voters will matter, not the

specific set VH of honest voters. Therefore, we often simply

write P(AH ,q,n,k,�p) with n = |VH |.
III. THE THREEBALLOT VOTING SCHEME

In ThreeBallot [25], a voter is given a multi-ballot consisting

of three simple ballots. On every simple ballot the candidates

are printed in the same fixed order. In the secrecy of a voting

booth, the voter is supposed to fill out all three simple ballots
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(a) A: o
B: x

A: o
B: x

A: x
B: o (b) A: x

B: x
A: o
B: o

A: o
B: x

Fig. 1. Two ways of voting for the second candidate (candidate B) in the
ThreeBallot protocol, where x represents a marked position and o represents
an unmarked position. All the other possibilities of voting for B can be
obtained as permutations of these two.

in the following way: She marks the candidate of her choice

on exactly two simple ballots and every other candidate on

exactly one simple ballot; Figure 1 shows two ways of voting

for candidate B. After this, she feeds all three simple ballots

to a voting machine (some kind of scanner) and indicates

the simple ballot she wants to get as a receipt. The machine

checks the well-formedness of the multi-ballot, prints secretly

random numbers on each simple ballot, where length of these

numbers is the length of the security parameter and where

numbers on different simple ballots are chosen independently,

and gives the voter a copy of the chosen simple ballot, with

the random number printed on it. Note that the voter does not

get to see the random numbers of the remaining two simple

ballots. The scanner keeps all simple ballots (now separated)

in a ballot box. We assume that clerks guarantee that only

registered voters can vote and that every voter votes at most

once.

In the tallying phase, the voting machine posts on the

bulletin board (electronic copies of) all the cast simple ballots

in a random order. From the ballots shown on the bulletin

board the result can easily be computed: The number of votes

for the i-th candidate is the number of simple ballots with the

i-th position marked minus the total number of votes, which

is the total number of simple ballots on the bulletin board

divided by three.

Intuitively, the system is coercion-resistant (at least to some

extent), as every simple ballot that a voter can take as a receipt

can be part of a multi-ballot that forms a valid vote for any

candidate. Also, ThreeBallot was meant to provide (some level

of) verifiability. For this, a crucial assumption, already made in

the original paper [25], is that neither the scanner, the voting

authority, nor the bulletin board knows which simple ballots

have been taken as receipts by honest voters before all ballots

were published. Now, as each voter may check whether the

simple ballot she has taken as a receipt appears on the bulletin

board, it should be risky for any party to remove or alter simple

ballots in order to manipulate the result since the probability

that the modification of k simple ballots goes undetected is

merely ( 2
3 )

k. Unfortunately, as we will see in Section V-B,

this argument, found in the literature, is flawed.

As mentioned in the introduction, there are two variants of

ThreeBallot which differ in the way an honest voter fills out

the ballot: the original variant by Rivest [25] and a variant by

de Marneffe et al. [8].

The original variant. In this variant of the protocol a voter

first, for each candidate, randomly chooses a simple ballot

on which she then marks the position corresponding to this

candidate. Then, she randomly picks a simple ballot for which

the position corresponding to the candidate of her choice is not

yet marked, and she marks this position. Finally, she randomly

chooses one ballot as a receipt.

The variant of de Marneffe et al. In this variant of the

protocol a voter first, for each candidate, marks the position

corresponding to this candidate on a randomly chosen simple

ballot. Then, she randomly chooses one simple ballot to be

taken as a receipt. Finally, she marks the position correspond-

ing to the candidate of her choice on a randomly chosen simple

ballot on which this position has not yet been marked and

which is not the ballot chosen as a receipt; we remark that in

some cases there will be only one such simple ballot.

The advantage of this procedure is that the receipt an honest

voter gets is stochastically independent of the candidate the

voter votes for, which in turn should give better privacy. We

note that in [8], ThreeBallot was analyzed in a simulation-

based setting, focusing on privacy. The analysis was based

on the (only informally stated) assumption that the adversary,

given a receipt, is not able to reconstruct the exact way

the corresponding multi-ballot was filled out. However, this

assumption is unjustified: Runs for which an adversary can

reconstruct the multi-ballots occur with non-negligible proba-

bility, as illustrated by the following example:

It may happen (with non-negligible probability, depending

only on the probability distribution �p and the number of voters)

that each voter marks both positions on the first simple ballot,

no position on the second one, exactly one position on the

third ballot, and then take the last ballot as her receipt, as

shown in Figure 1, (b) for the case that the voter votes for

B. In this case, a receipt directly indicates the choice of the

voter, which completely breaks privacy.

In what follows, we denote by (xo,
x
x,

o
o), (ox,

x
x,

x
o) etc. multi-

ballots filled out by voters, where the underlined simple ballots

(xo and o
x , respectively) represent those simple ballots picked as

receipts by the voters; we refer to these objects as patterns. A

pattern does not fix the order of simple ballots, e.g., (ox,
x
x,

o
o)

is considered to be the same pattern as (xx,
o
x,

o
o).

IV. THE VAV VOTING SCHEME

In this section, we describe the VAV voting scheme [25]. In

VAV, a voter is given a multi-ballot consisting of three simple

ballots. On every simple ballot the candidates are printed in

the same fixed order. On the top of one of those simple

ballots the letter A is printed; on the top of the remaining

two simple ballots the letter V is printed. In the secrecy of

a voting booth, the voter is supposed to fill out her multi-

ballot in the following way: (S1) She marks the position

next to the candidate of her choice on one of the V-ballots

and then (S2) she marks the position next to some randomly

chosen candidate on the two remaining simple ballots (one V-

and one A-ballot). Figure 2 shows all three ways of filling

out the multi-ballot for candidate 1 in an election with three

candidates. After this, she feeds all three simple ballots to

a voting machine (some kind of scanner) and indicates the

simple ballot she wants to get as a receipt. The machine checks
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(a)

V
1 : x
2 : o
3 : o

A
1 : x
2 : o
3 : o

V
1 : x
2 : o
3 : o

(b)

V
1 : x
2 : o
3 : o

A
1 : o
2 : x
3 : o

V
1 : o
2 : x
3 : o

(c)

V
1 : x
2 : o
3 : o

A
1 : o
2 : o
3 : x

V
1 : o
2 : o
3 : x

Fig. 2. Three ways of voting for the candidate 1 in the VAV protocol, where
x represents a marked position and o represents an unmarked position.

the well-formedness of the multi-ballot, prints secretly random

numbers on each simple ballot, where the length of these

numbers is the length of the security parameter and numbers

on different simple ballots are chosen independently, and gives

the voter a copy of the chosen simple ballot, with the random

number printed on it. Note that the voter does not get to see

the random numbers of the remaining two simple ballots. The

scanner keeps all simple ballots (now separated) in a ballot

box.

In the tallying phase, the voting machine posts on the

bulletin board (electronic copies of) all the cast simple ballots

in a random order. From the ballots shown on the bulletin

board the result can easily be computed: All A-ballots and

the corresponding V-ballots (i.e. V-ballots marked at the same

position) are removed. From the remaining V-ballots the

number of votes for each candidate can directly be read off.

Intuitively, as in the case of ThreeBallot, the system is

coercion-resistant (at least to some extent), as every simple

ballot that a voter can take as a receipt can be part of a multi-

ballot that forms a valid vote for any candidate. Similarly

to ThreeBallot, VAV is supposed to provide (some level of)

verifiability as it should be risky for any party to remove or

alter simple ballots in order to manipulate the result.

In the description of VAV in [25] it is not specified how

exactly a voter chooses the receipt. This, however, can heavily

affect the properties we study in this paper. We therefore

investigate two variants of this protocol.

Simple variant. In the simplest case, a voter could choose

one of her three simple ballots with uniform probability as

her receipt. We will call this the simple variant of VAV. For

this variant, however, the receipt is not independent of the

candidate of her choice, which, as we will see, has a significant

negative effect on privacy and coercion-resistance. This is why

we consider also another variant, where privacy is enhanced.

Privacy enhanced variant. In this variant, a voter chooses

one of the two simple ballots not used in step (S1), that is,

one of those ballots where the random candidate has been

marked. By this, the receipt is stochastically independent of

the candidate the voter votes for.

While the privacy enhanced variant significantly improves the

level of privacy and coercion-resistance, it decreases the level

of verifiability: The voting machine is often able to determine

one simple ballot in a multi-ballot that was certainly not taken

as a receipt and consequently it can change this simple ballot

without being detected. For instance, if an honest voter submits

a multi-ballot as shown in Figure 2, (b) or (c), the machine

knows that the left-most ballot cannot be chosen as a receipt.

However, as we will see, the VAV voting scheme suffers

from the same kind of attack the ThreeBallot protocol does,

independently of how the receipts are chosen. Therefore, the

level of verifiability is, in any case, very low.

In what follows, we will use, analogously to the case of

ThreeBallot, the notion of a pattern which specifies how a

multi-ballot is filled out and which simple ballot is taken as a

receipt.

V. VERIFIABILITY

In this section, we first recall the definition of verifiability

from [19], where, however, we use a slightly simplified

definition which is sufficient for our setting. Next, we present

our analysis of verifiability for ThreeBallot and VAV, including

the mentioned attacks. We then conclude with remarks on

the inadequacy of the notions of individual and universal

verifiability demonstrated by our attacks.

A. Definition of Verifiability

The definition of verifiability in [19] assumes a verifier,

also called a judge, who can be an honest regular protocol

participant or an honest external observer. Now, informally

speaking, verifiability says that if in a run of the voting

protocol an important goal is not achieved — typically, the

published result of the election is not correct, i.e., does not

correspond to the votes actually cast by eligible voters —, then

the verifier does not accept the run/the election. Conversely,

if in a run certain parties which are supposed to make sure

that the goal is achieved, such as (a subset of) the voting

authorities, behave honestly, then the verifier accepts the run.

More formally, let P∗ = P(AH ,q,VH ,k,�p) be a protocol

instantiation. Given P∗, for each protocol participant a in P∗,
we consider the set Π(a) of all programs a may run. This

set is defined as follows: If a is assumed to be honest (i.e.

a∈ AH ∪VH ), then Π(a) = {π̂a}, i.e., Π(a) consists only of the

honest program of a as specified by the protocol. Otherwise,

if a is not assumed to be honest, then Π(a) consists of all
processes limited only by a’s network interface, which is the

network interface that π̂a has. Note that in any case π̂a ∈Π(a).
Let Σ = {b1, . . . ,bt} be the set of all protocol participants of

P∗. Then, a process induced by P∗, also called an instance, is

a process of the form π = (πb1
‖ . . . ‖ πbt ), where πbi ∈Π(bi).

Such a process is called an instance with honest B ⊆ Σ if

πbi = π̂bi for all bi ∈ B. A run of P∗ is a run of some instance

of P∗. Such a run is called a run with honest B if it is a run

of an instance of P∗ with honest B.

The definition of verifiability is parameterized by a goal

γ , which, formally, is a set of runs of instances of P∗. In
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the context of voting, γ will typically contain all those runs

in which the published result of the election is correct, i.e.,

corresponds to the votes actually cast by eligible voters.

We say that a party a, playing the role of a verifier, accepts
a run, if in this run a sends the message accept on some

designated channel decisiona. Intuitively, a accepts a run if

she believes that the goal γ has been achieved in this run.

For an instance π of P∗, by Pr[π(1�) 	→ (a : accept)] we

denote the probability that π , running with security parameter

1�, produces a run which is accepted by a. Similarly, by

Pr[π(1�) 	→ ¬γ, (a : accept)] we denote the probability that π ,

running with security parameter 1�, produces a run in which

the goal has not been achieved, i.e., a run that does not belong

to γ , but which nevertheless was accepted by a.

Definition 1 ([19], simplified2). Let P∗ = P(AH ,q,VH ,k,�p)
be a protocol instantiation and let Σ be the set of protocol
participants in P∗. Let δ ∈ [0,1], B⊆ Σ, a ∈ AH ∪VH (playing
the role of the verifier), and γ be a goal of P∗. Then, the goal

γ is guaranteed in P∗ by B and δ -verifiable by a if, for every
instance π of P∗, the following conditions are satisfied:

(i) If π is an instance with honest B, then Pr[π(1�) 	→ (a :

accept)] is overwhelming as a function of the security
parameter.

(ii) Pr[π(1�) 	→ ¬γ, (a : accept)] is δ -bounded as a function
of the security parameter.

Condition (ii) guarantees that the probability that a accepts

a run even though the goal has not been achieved (e.g., the

published result of the election is incorrect) is “small”, i.e.,

bounded by δ . Condition (i) says that the protocol is sound

w.r.t. a set B of agents in the following sense: If the agents in B
are honest, then a accepts runs with overwhelming probability,

which by Condition (ii) implies that in those runs the goal

has indeed been achieved. Typically, the set B includes (a

subset of) voting authorities/machines, i.e., those agents that

suffice to guarantee that the goal is achieved. Note that without

Condition (i) every protocol in which no runs are accepted by

the verifier would be verifiable. Also note that requiring the

probability in (ii) to be negligible, i.e., requiring δ = 0, while

highly desirable, would be too strong for many reasonable

protocols. This is due to the fact that checks (by authorities

and voters) are often imperfect and partial, as illustrated in

subsequent sections. The value of δ determines the level of
verifiability a protocol provides.

B. Verifiability of ThreeBallot and VAV

In this section, we study verifiability of ThreeBallot and

VAV. We precisely measure the level of verifiability of these

systems and show that, unlike commonly believed, these

systems do not provide any reasonable level of verifiability.

We start with the analysis of ThreeBallot.

2Definition 1 is a specific instance of the general definition presented in
[19]. In [19], instead of the set B, we use a more general formalism to specify
sets of protocol participants, namely positive boolean formulas.

ThreeBallot. We first describe the attack on the verifiability

of ThreeBallot and then precisely state the level of verifiability

of this system.

The Attack on the Verifiability of ThreeBallot. As mentioned in

Section III, in the literature the reasoning for the verifiability

of ThreeBallot has so far been that, if voters check whether

their receipt (a simple ballot) appears on the bulletin board, it

should be risky for any party to remove or alter simple ballots

since the probability that the modification of k simple ballots

goes undetected is merely ( 2
3 )

k. However, the following attack

shows that this reasoning is flawed.

Our attack assumes that there are dishonest voters and

that one of the voting authorities, the voting machine or the

bulletin board, is dishonest and collaborates with the dishonest

voters. It is clearly realistic to assume dishonest voters and

a dishonest voting authorities; defending against malicious

authorities is the main point of verifiability. In what follows,

we first consider the case of an election with two candidates

and assume that the bulletin board is dishonest.

As already mentioned in the introduction, the effect of

our attack is that m dishonest voters, collaborating with the

dishonest bulletin board, can effectively vote for candidate B
and, additionally, turn m votes of honest voters voting for

A into votes for B. For instance, with 10 dishonest voters

out of 101 voters, candidate B can win the election, even if

60 honest voters vote for A and only 31 honest voters vote

for B. This goes unnoticed, provided no post-election audit

based on paper ballots is performed, even if all honest voters

check whether their receipts appear on the bulletin board and

even if they check that the published result corresponds to

the ballots shown on the bulletin board. Note that if no voter

complains, then no post-election audit may be carried out.

Moreover, for the post-election audit to be effective, additional

trust assumptions are required.

The attack works as follows. Let us assume that there exists

an honest voter who votes for candidate A and that the bulletin

board, collaborating with some dishonest voter, wants to swap

such a vote. To do so, the dishonest voter casts (xo,
o
x,

o
x) and

sends the serial number on her receipt to the bulletin board.

Then, the bulletin board replaces the simple ballot with this

serial number by o
x . The result of this manipulation is as if the

dishonest voter had cast (ox,
o
x,

o
x). The bulletin board remains

consistent as these three simple ballots together with the multi-

ballot submitted by the honest voter voting for A (which must

be either (xo,
x
x,

o
o) or (xo,

x
o,

o
x)) result in two valid votes for

candidate B. Note that the multi-ballot of the honest voter

remains unchanged, and hence, no voter or external observer

will suspect any fraud.

By this attack, the bulletin board can safely change m votes

of honest voters for one candidate to another candidate, where

m is the number of dishonest voters.

A similar attack works for the case of multiple candidates.

Here the simplest case is that the voting machine is dishonest.

First observe that, given any multi-ballot of an honest voter

voting for candidate i, it is easy to construct three simple
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ballots (which potentially do not form a valid multi-ballot)

such that these simple ballots together with the multi-ballot of

the honest voter form two valid multi-ballots for candidate

j. Hence, for every dishonest voter, a voting machine can

change the simple ballots of this voter in such a way that

they, together with a multi-ballot of an honest voter, result in

two valid votes for the candidate of the machine’s choice. Note

that several side channels are conceivable over which a voter

could reveal himself as dishonest to the voting machine, e.g.,

voting at a specific time, pressing buttons in a specific unusual

order, or in case of many candidates, using a pre-agreed pattern

to fill out the ballot. Note that this attack works even if the

voting machine does not know which simple ballots are taken

as receipts.

The Precise Level of Verifiability of ThreeBallot. We now study

the precise level of verifiability of both the original variant of

ThreeBallot and the variant by de Marneffe et al., showing that

only changing votes beyond the number of dishonest voters

increases the risk of being detected.

In both cases, we assume that there is a protocol participant

ver (a regular protocol participant or an external observer), the

verifier, who does not accept a run iff some voter complains

rightly (i.e. she has a receipt that does not appear correctly

on the bulletin board) or the bulletin board is inconsistent

(e.g., the number of simple ballots is not divisible by three,

two serial numbers occur twice, a candidate got less marks

than the number of voters, etc.). We assume that an honest

voter checks that her receipt occurs on the bulletin board with

probability pcheck—it is realistic to assume that not all voters

check their receipt. Clearly, this probability will affect the level

of verifiability. We also make the following assumptions:

1. Only eligible voters will be allowed to vote, and only once.

Also, the number of voters who actually voted is properly

counted. This is typically guaranteed by clerks. A polling

station should at least have one honest clerk who oversees

the actions of other clerks. This assumption prevents that

the voting machine or the bulletin board can place extra

ballots on the bulletin board.

2. Nobody involved in publishing the result, in particular, the

voting machine and the bulletin board, should get to know

which receipts honest voters chose before all ballots have

been published. This assumption is clearly necessary in

order to achieve any reasonable level of verifiability, as

otherwise the voting machine and the bulletin board could

safely change the ballots that were not taken as receipts,

and hence, fabricate arbitrary outcomes.

3. The verifier ver behaves as described above.

We note that we neither assume the voting machine nor the

bulletin board to be honest.

Let Po
TB and Pp

TB denote the ThreeBallot protocol in

the original variant and the variant by de Marneffe et

al., respectively. Based on the assumptions made above, it

is straightforward to formally define the protocol instan-

tiations So
TB = Po

TB({ver},q,VH ,k,�p) of Po
TB and Sp

TB =
Po
TB({ver},q,VH ,k,�p) of Pp

TB, along with the sets Π(a) for

every protocol participant a as introduced in Section V-A.

Note that AH = {ver} does not include the voting machine or

the bulletin board as they are not assumed to be honest. The

verifier ver could also belong to VH . Clerks are not modeled

explicitly. The interface the voters have to the rest of the

system guarantees assumption 1. above. We define n = |VH |.
We consider the goal γ� which, intuitively, states that at

most � votes of honest voters are changed, i.e., the published

result is correct (1) up to votes of dishonest voters and (2) up

to � votes of honest voters. Note that for dishonest voters not

much can be guaranteed as they might, for example, ignore

the fact that their receipts are not shown or were modified on

the bulletin board. More precisely, γ� is defined as follows: γ�
contains all runs for which there exist choices of the dishonest

voters (where a choice is either to abstain or to vote for one

of the candidates) such that the result obtained together with

the choices made by the honest voters in this run differs only

by � votes from the published result (i.e. the result that can

be computed from the simple ballots on the bulletin board).

The following theorem states the levels of verifiability of the

two variants of ThreeBallot (see Appendix A for the proof),

where q� denotes the probability of the event that in a run

of the protocol there exists a candidate c such that the sum

of all votes of honest voters for all candidates except c is at

least �. Note that if such an event has not occurred, then it is

impossible to violate the goal γ�−1, because, by assumption 1.,

dishonest parties cannot add new ballots to the bulletin board

(as opposed to changing/replacing ballots). However, q� will

typically be quite close to 1.

Theorem 1. Let B be the set containing the voting machine
and the bulletin board and x ∈ {o, p}. Then, the goal γ� is
guaranteed in Sx

TB by B and δ x
Ver-verifiable by ver, where

δ p
Ver = q�+1 ·

(
1− 1

6
· pcheck

)�+1−min(�+1,m)

and

δ o
Ver = q�+1 ·

(
1− 1

3
· pcheck

)�+1−min(�+1,m)

,

with m being the number of dishonest voters. Moreover, δ x
Ver

is optimial, i.e., there is no δ ′ < δ x
Ver for which the goal γ� is

guaranteed in Sx
TB by B and δ ′-verifiable by a.

Now, note that if �+1≤ m, i.e., the number of votes to be

changed is at most the number of dishonest voters, then δ =
δ p

Ver = δ o
Ver = q�+1. By the definition of δ -verifiability and the

fact that δ is optimal, this means that there exists an attack—

in fact, the one discussed—such that the probability that in a

run more than � votes of honest voters were changed and the

verifier still accepted the run is δ . Note also that for � > m
the original variant of the protocol provides a better level of

verifiability than the variant by de Marneffe et al., since in

this case δ o
Ver < δ p

Ver.

VAV. An attack similar to the one for ThreeBallot also works

for VAV: Let us assume that there exists an honest voter who
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votes for candidate j and that the bulletin board, collaborating

with some dishonest voter, wants to switch such a vote to

a vote for candidate i. To do so, the dishonest voter casts a

multi-ballot where i is marked on all three ballots. Moreover,

the dishonest voter takes the A-ballot as receipt and sends

the serial number on her receipt to the bulletin board. Then,

the bulletin board replaces the simple ballot with this serial

number by an A-ballot where candidate j is marked. The

bulletin board remains consistent, as the three simple ballots

by the dishonest voter, with the A-ballot modified, together

with the multi-ballot submitted by the honest voter voting for

j constitute two valid votes for candidate i.
Hence, VAV too does not provide a reasonable level of

verifiable. The exact (low) level of verifiability VAV achieves

can be found in Appendix B.

C. Inadequacy of Individual and Universal Verifiability

In our analysis of verifiability of ThreeBallot and VAV

above, we used Definition 1 as proposed by Küsters et al.[19].

This definition, applied to voting protocols, captures what is

called global verifiability by Küsters et al. — in short, if the

published result of the election is not correct, the verifier (a

regular protocol participant or an external observer) should not

accept the run, or only with small probability.

However, in the literature (see, e.g., [14], [1], [24], [12]),

verifiability of voting protocols has traditionally been ex-

pressed by two forms of verifiability, as already mentioned

in the introduction: individual verifiability (a voter can check

that her own ballot appears on the bulletin board) and universal
verifiability (anyone can check that the election outcome cor-

responds to the ballots published on the bulletin board). Note

that, unlike global verifiability, these forms of verifiability

assume some particular structure of the voting protocol. Also

note that these forms of verifiability can be captured by

Definition 1 using appropriate goals γ .

In the literature it was widely believed that individual and

universal verifiability together achieve some form of global

verifiability. However, our case study on ThreeBallot and VAV

shows that this is not the case. These protocols achieve both

individual and universal verifiability, but as we proved, their

level of (global) verifiability is completely insufficient: A voter

can check whether her receipt appears on the bulletin board,

which gives her relatively high assurance that all her simple

ballots are unmodified and appear on the bulletin board; hence,

we have individual verifiability. (More precisely, as explained

in Sections III and IV, if fraud would be attempted, even only

on a moderate scale, the probability that at least one voter

would detect a problem with her receipt would be very high.)

We also obviously have universal verifiability as the result

of the election can be computed by everyone based on the

information available on the bulletin board.

In general, what individual and universal verifiability ignore

is that dishonest authorities/voters can break the integrity of

ballots of honest voters by ill-formed ballots. Therefore, we

advocate using global verifiability (see above) which directly

captures the required property.

VI. PRIVACY AND COERCION-RESISTANCE

In this section, we first introduce our definition of privacy.

We also briefly recall the definition of coercion-resistance from

[18]. We then present our analysis of privacy and coercion-

resistance of the variants of ThreeBallot and VAV described in

Sections III and IV. We conclude the section with a discussion

of the relationship between privacy and coercion-resistance.

A. Definition of Privacy

For studying privacy of a protocol P, we assume that,

besides the voting authorities and the voters, there is an

additional party o called an observer. We denote by O the

set of all programs an observer can run, i.e. all probabilistic

polynomial-time ITMs with the following communication in-

terface: An observer can directly connect to the interface of

dishonest voters and authorities; in fact, the observer subsumes

those parties. In addition, observers can observe publicly

available information, such as messages posted by voting

authorities. We also assume that, in a protocol instantiation

P∗ = P(AH ,q,VH ,k,�p), among the q voters, there is a voter

who is under observation.

Now, a protocol instantiation P∗ = P(AH ,q,VH ,k,�p), along

with the set O of observer processes and a program πv of the

voter v under observation, induces a set of processes of the

form (πo ‖ πv ‖ e), where πo ∈O and e denotes the concurrent

composition of the processes π̂v′ , v′ ∈ VH , of the honest

voters and the processes π̂a, a ∈ AH , of the honest authorities;

recall that the dishonest voters and the dishonest authorities

are subsumed by πo. We denote by Pr[(πo ‖ πv ‖ e)(�) 	→ 1]
the probability that πo outputs 1 in a run of the process

(πo ‖ πv ‖ e) with security parameter 1�.

In the following definition, we formalize privacy to be the

inability of the observer πo to distinguish whether the voter v
under observation voted for candidate j or candidate j′, where

v runs her honest voting process π̂v as specified by the voting

protocol.

Definition 2. Let P∗ = P(AH ,q,VH ,k,�p) be a protocol instan-

tiation along with a set O of observer processes and a voter

v under observation. Let δ ∈ [0,1]. We say that P∗ achieves

δ -privacy, if

Pr[(πo ‖ π̂v( j) ‖ e)(�) 	→ 1]−Pr[(πo ‖ π̂v( j′) ‖ e)(�) 	→ 1] (1)

is δ -bounded as a function of the security parameter 1�, for

all j, j′ ∈ {1, . . . ,k} and for all πo ∈ O.

In the above definition we merely require (1) to be δ -

bounded, instead of negligible, because there is always a non-

negligible probability that an observer knows how a voter

voted, e.g., in case all (honest) voters and the voter under

consideration voted for the same candidate. In general, and

as we will see below and in Section VI-C, δ depends on the

distribution �p, the number k of candidates, and the number

n = |VH | of honest voters; the number of dishonest voters is

typically not relevant. By δ , we can precisely measure the

level of privacy a voting protocol offers.
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We note that the above definition does not imply that an

observer cannot distinguish whether or not a voter voted, i.e.,

abstention may be detected by an observer. If abstention should

not be detectable, one can simply let j and j′ range over

{0, . . . ,k} instead of {1, . . . ,k} in the above definition. The

above definition is motivated by the fact that for many voting

protocols, including ThreeBallot and VAV, abstention can be

detected by an observer, since, e.g., the observer is present at

the polling station or the observer can see the receipts of all

voters, and in particular, he can see whether a voter does not

have a receipt.

The above definition could be generalized in the obvious

way by letting the observer observe many voters at the same

time and quantifying over two tuples of votes, instead over just

j and j′. While, for simplicity, in our case study we consider

the version with one observed voter, our findings and theorems

extend to the case with multiple observed voters.

We note that the above (cryptographic) definition of privacy

is close in spirit to a definition in an abstract, Dolev-Yao style

model [9]. Simulation-based definitions (see, e.g., [21]) are

stronger, but often too strong to be applicable (e.g., in case of

ThreeBallot and VAV).

Privacy of the Ideal Protocol. As we have already mentioned,

the level δ of privacy is bigger than zero for virtually every

voting protocol, as some information is always leaked by the

result of the election, e.g., if one candidate got all votes—

an event with non-negligible probability—, it is clear that

everybody voted for this candidate. In order to have a lower

bound on δ for all voting protocols (where the results are of the

form considered below), we now determine the optimal value

of δ for the ideal voting protocol. An ideal voting protocol
collects the votes of all voters and then correctly publishes

the result, where we assume that a result reveals the number

of votes for every candidate. The argument sketched below

is similar to the one for determining the level of coercion-
resistance of the ideal voting protocol in [18].

As we will see, the level of privacy of the ideal voting

protocol, denoted by δPriv(k,n,�p), depends on the number

k of candidates, on the number n of honest voters, and the

probability distribution �p on the candidates.

To define this function, we need the following terminology.

Since the observer knows the votes of the dishonest voters, he

can simply subtract these votes from the final result and obtain

what we call the pure result �r = (r0, . . . ,rk) of the election,

where ri, i ∈ {1, . . . ,k}, is the number of votes for candidate i
casted by honest voters, and r0 is the number of honest voters

who abstained from voting. Note that r0 + · · ·+ rk = n + 1

(n honest voters plus the observed voter). We denote by Res
the set of all pure results. Let Ai

�r denote the probability that

the choices made by the honest voters yield the pure result

�r, given that the voter under observation votes for the i-th
candidate. (Clearly, Ai

�r depends on �p. However, we omit this

in the notation.) Moreover, let M∗
j, j′ = {�r ∈ Res : A j

�r ≤ A j′
�r }.

Now, the intuition behind the definition of δPriv(k,n,�p) is as

follows: If the observer, given a pure result�r, wants to decide

whether the observed voter voted for candidate j or j′, the best

strategy of the observer is to opt for j′ if �r ∈ M∗
j, j′ , i.e., the

pure result is more likely if the voter voted for candidate j′.
This leads to the following definition:

δPriv(n,k,�p) = max
j, j′∈{1,...,k} ∑

�r∈M∗
j, j′
(A j′

�r −A j
�r).

The following theorem states that δPriv(k,n,�p) is indeed

the optimal level of privacy, where VA denotes the trusted

authority in the ideal voting protocol.

Theorem 2. Let S = Pideal({VA},q,n,k,�p) be an instantiation
of the ideal protocol and δ = δPriv(n,k,�p). Then S achieves
δ -privacy. Moreover, S does not achieve δ ′-privacy for any
δ ′ < δ .

Due to space limitations, we omit the proof in this extended

abstract. Some values for δPriv(n,k,�p) are depicted in Figure 3

(see the values for the ideal protocol).

B. Definition of Coercion-Resistance

We now briefly recall the definition of coercion-resistance

from [18]. Since the overall setting for coercion-resistance

is similar to that of privacy, we highlight the differences to

privacy.

For the definition of coercion-resistance, the voter under

observation considered for privacy is now replaced by a voter
under coercion, also called a coerced voter. Unlike a voter

under observation, a coerced voter does not have to follow the

honest voting procedure but can deviate from it. We denote

by V the set of all programs the coerced voter v can run. This

set includes all probabilistic polynomial-time ITMs where the

communication interface is that of an honest voter plus an

input and output channel for communication with the coercer

(see below). In particular, the set V contains what we call a

dummy strategy dum which simply forwards all the messages

between the coercer and the interface the coerced voter has as

an honest voter.

The observer in the case of privacy is now replaced by the

coercer. We denote by C the set of all programs a coercer

can run, i.e., all probabilistic polynomial-time ITMs with a

communication interface similar to that of observers, where in

addition the coercer can communicate with the coerced voter.

Before recalling the formal definition of coercion-resistance,

we provide some intuition. We imagine that the coercer

demands full control over the voting interface of the coerced

voter, i.e., the coercer wants the coerced voter to run the

dummy strategy dum ∈ V instead of the program an honest

voter would run. If the coerced voter in fact runs dum, the

coercer can effectively vote on behalf of the coerced voter or

decide to abstain from voting. Of course, the coercer is not

bound to follow the specified voting procedure.

Now, informally speaking, a protocol is called coercion-

resistant if the coerced voter, instead of running the dummy

strategy, can run some counter-strategy ṽ ∈ V such that (i)

by running this counter-strategy, the coerced voter achieves

her own goal, e.g., votes for a specific candidate (see below),
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and (ii) the coercer is not able to distinguish whether the

coerced voter followed his instructions (i.e., ran dum) or tried

to achieve her own goal (by running ṽ). If such a counter-

strategy exists, then it indeed does not make sense for the

coercer to try to influence a voter in any way, e.g., by offering

money and/or threatening the voter: Even if the coerced voter

tries to sell her vote by running dum, i.e., by following the

coercer’s instructions, the coercer is not able to tell whether the

coerced voter is actually following the coercer’s instructions

or whether she is just trying to achieve her own goal. For

the same reason, the coerced voter can safely run the counter-

strategy and achieve her own goal, even if she is coerced into

running dum.

The goal of the coerced voter is formalized by a set γ of

runs. For example, if γ is supposed to express that the coerced

voter wants to vote for a certain candidate, then γ would

contain all runs in which the coerced voter (successfully) voted

for this candidate.

In the formal definition of coercion-resistance, we write,

analogously to the case of privacy, Pr[(πc ‖ πv ‖ e)(�) 	→ 1]
for the probability that πc outputs 1 in a run of the process

(πc ‖ πv ‖ e) with security parameter 1�. We write Pr[(πc ‖
πv ‖ e)(�) 	→ γ] for the probability that a run of (πc ‖ πv ‖ e),
with security parameter 1�, belongs to γ .

Definition 3 ([18]). Let P∗ = P(AH ,q,VH ,k,�p) be a protocol

instantiation and let V and C be sets of processes as above. Let

δ ∈ [0,1] and let γ be a goal. Then, P∗ is δ -coercion-resistant
w.r.t. γ , if there exists ṽ∈V such that the following conditions

are satisfied:

(i) Pr[(πc ‖ ṽ ‖ e)(�) 	→ γ] is overwhelming, as a function of

�, for every πc ∈C.

(ii) Pr[(πc ‖ dum ‖ e)(�) 	→ 1]−Pr[(πc ‖ ṽ ‖ e)(�) 	→ 1] is δ -

bounded, as a function of �, for every πc ∈C.

Similar to the case of privacy, in Condition (ii) the difference

is required to be δ -bounded instead of negligible, since there

is always a non-negligible chance for the coercer to know

for sure whether the coerced voter followed his instructions

or not. For example, if one candidate got all votes, but the

coercer told the coerced voter to vote for a different candidate,

then the coercer knows that the coerced voter did not follow

his instructions. In general, as in the case of privacy, δ is

a function of �p, k, and the number n = |VH | of honest voters

(see below and Section VI-D). Clearly, a small δ is preferable.

Let us illustrate the meaning of δ by the following example.

Assume that if πc outputs 1, i.e., the coercer thinks that the

coerced voter is following his instructions, then the coercer

pays $100 to the coerced voter, and otherwise, if πc outputs

0, i.e., the coercer thinks that the coerced voter did not follow

his instructions, he might harm the coerced voter. Now, if

δ = 0.8, then this means that if the coerced voter follows

the instructions of the coercer, the coerced voter increases her

chances of getting payed (not being harmed) by up to 80%.

Conversely, by following the counter-strategy, the coerced

voter drastically decreases her chances of getting payed and

increases her chances of being harmed. This might be a strong

incentive for the coerced voter to follow the instructions of the

coercer.

While here we concentrated on the case for one coerced

voter, the above definition in fact also applies to the setting of

multiple coerced voters (see [18]).

Coercion-resistance of the Ideal Protocol. Since we will refer

to the level of coercion-resistance of the ideal protocol in this

paper, we recall the optimal level of coercion-resistance estab-

lished in [18]. Similarly to the case of privacy, let Ai
�r denote

the probability that the choices made by the honest voters and

the coerced voter yield the pure result �r = (r0, . . . ,rk), given

that the coerced voter votes for the i-th candidate. Also, let

M∗
i, j = {�r ∈ Res : Ai

�r ≤ A j
�r} and

δ i
min(n,k,�p) = max

j∈{1,...,k} ∑
�r∈M∗

i, j

(A j
�r −Ai

�r).

Let γi be the goal of the coerced voter which is achieved

if the coerced voter votes for candidate i, in case she is

instructed by the coercer to vote (for some candidate). Note

that coercion-resistance w.r.t. this goal does not imply that

forced abstention attacks are prevented: If the coercer wants

the coerced voter to abstain from voting, the coerced voter,

when running her counter-strategy, does not need to vote in

order to fulfil the goal. While for the ideal protocol a stronger

goal which says that the coerced voter in any case votes for

i could be considered, for ThreeBallot and VAV such a goal,

which requires that forced abstention attacks are not possible,

is too strong (see Section VI-D). The following theorem states

that δ i
min(n,k,�p) is optimal for γi:

Theorem 3 ([18]). Let S=Pideal({VA},q,n,k,�p). Then, S is δ -
coercion-resistant w.r.t. γi, where δ = δ i

min(n,k,�p). Moreover,
S is not δ ′-coercion-resistant for any δ ′ < δ .

We note that the level of privacy of the ideal protocol

coincides with the level of coercion-resistance of the ideal

protocol, if the goal of the coerced voter is to vote for the

candidate with the smallest probability according to �p.

C. Privacy of ThreeBallot and VAV

In this section, we analyze the level of privacy provided by

all variants of ThreeBallot and VAV described in Sections III

and IV. In all cases, the presentation of the results follows

the same structure: First, we define what we call an essential
view of the observer, where we abstract away from some parts

of the observer’s full view in a given protocol run. Based on

the notion of an essential view, we define the optimal level of

privacy, δ , and state the result. Due to the similar structure, we

introduce the necessary terminology and present the results “in

parallel” for all protocol variants. We start with our modeling

and security assumptions, which are largely the same for all

variants.

Modeling and Security Assumptions. In our analysis, we

assume that the observer can see whether a voter enters the

voting booth. We also assume that an honest voter may reveal
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her (paper) receipt to the observer, after the voting phase

is finished. However, to measure how much information an

observer gains from the receipts of honest voters, we will also

consider the case that the observer does not get to see the

receipts of honest voters.
Moreover, we assume that the voting machine (the scanner)

is honest; the bulletin board may be dishonest. Note that

this assumption is indeed necessary for privacy: without this

assumption, the observer gets to know how voters vote, as the

voters disclose their votes to the machine. Even though the

machine, at the moment a voter votes, might not know who

the voter is, this information could be reconstructed from the

order in which voters voted.
In our analysis of ThreeBallot, we focus on the case with

two candidates, i.e., a case where the so-called short ballot

assumption is fulfilled. It is well-known that without this

assumption, ThreeBallot does not have a sufficient level of

privacy and coercion-resistance (see, e.g., [26], [11]). The

degradation of the level of coercion-resistance of the variant

of ThreeBallot by Marneffe et al. in the multi-candidate case

was formally studied in [18]. However, in our analysis of VAV

we do not restrict the number of candidates.
By Ps+

VAV and Ps−
VAV we denote the simple variant of the VAV

protocol (modeled as a protocol in the sense of Section II),

where ‘+’ and ‘−’ indicate whether or not the honest voters

reveal their receipts. Similarly, Pp+
VAV and Pp−

VAV denote the

privacy enhanced variant of VAV, with/without receipts being

revealed. As for ThreeBallot, we use Po+
TB and Po−

TB for the

original variant and Pp+
TB and Pp−

TB for the variant by Marneffe

et al.
Following our modeling and security assumptions, we con-

sider instantiations of Ps+
VAV, Ps−

VAV, Pp+
VAV, Pp−

VAV , Po+
TB, Po−

TB,

Pp+
TB and Pp−

TB, where the parameters are chosen as follows:

(i) the set AH = {M} of honest authorities contains the voting

machine M only, (ii) the number q of (honest and dishonest)

voters, (iii) some number n of honest voters, (iv) some number

k of candidates, and (v) some probability distribution �p on

the candidates. In case of ThreeBallot, we assume that k = 2.

For brevity of notation, we, for instance, simply write Ps+
VAV,

instead of Ps+
VAV(AH ,q,n,k,�p).

We denote the set of all the instantiations described above

by S .

Views and essential views. The view of the observer in

a protocol run contains (1) the random coins generated by

the observer, (2) optionally, depending on the case under

consideration, the receipts of the honest voters, after the voting

phase is finished, and (3) all messages received from the

interface of the dishonest parties (which the observer controls).

The latter includes all dishonest voters and the bulletin board,

containing the shuffled simple ballots with serial numbers.

Note that the observer cannot directly see the information the

honest voters obtain or the actions they perform in the voting

booth.
In an essential view of the observer we abstract away

from those parts of his view which are not relevant for

distinguishing how voters vote, e.g., the serial numbers on the

simple ballots, the order of the simple ballots on the bulletin

board or the simple ballots of the dishonest voters (which are

determined by the observer). The crucial part of the proof of

Theorem 4, stated below, is to show that, indeed, the observer

can without loss of generality base his decision solely on such

essential views.
More precisely, if the observer cannot see the receipts of

the voters, the essential view is defined to be the pure result

of the election, as defined in Section VI-A. If the observer can

see the receipts, the definition of an essential view depends on

the system under consideration:

– ThreeBallot: The essential view of the observer consists of

(i) three integers nx
x
, nx

o
, and no

x
indicating the number of the

respective simple ballots on the bulletin board cast by honest

voters, including the observed voter, and (ii) the receipt r
of the voter under observation and (iii) integers rx

x
, rx

o
, and

ro
x
, indicating the number of the respective receipts taken by

the honest voters.

Note that from these numbers the number of o
o-ballots on

the bulletin board and the number of o
o-receipts can easily

be computed.

– Privacy enhanced variant of VAV: The essential view is just

the pure result.

– Simple variant of VAV: The essential view of the observer

consists of (i) integers nA
j , nV

j , for each candidate j, in-

dicating the number of A- and V-ballots, respectively, on

the bulletin board on which candidate j is marked, (ii) the

receipt r of the voter under observation and (iii) integers

rA
j and rV

j , indicating the number of A- and V-ballots,

respectively, taken by the honest voters as receipts on which

candidate j is marked.

By EV S we denote the set of all essential views of the

observer for the instantiation S ∈S .

Level of privacy. Let S ∈S . For an essential view ρ ∈ EV S,

and a candidate i, let AS
ρ,i denote the probability that, in a

run of S, the essential view of the observer is ρ , given that

the observed voter votes for i. For i, j ∈ {1, . . . ,k}, let MS
j,i =

{ρ ∈ EV S : AS
ρ, j ≤ AS

ρ,i}. Similar to the case of privacy for the

ideal protocol, the intuition behind the definition of δ , given

below, is the following: If the observer, given an essential

view ρ , wants to decide whether the observed voter voted for

candidate i or j, the best strategy for the observer is to opt

for i, if ρ ∈MS
j,i, i.e. his (essential) view is more likely if the

voter voted for candidate i.
Now, we are ready to express the function representing the

level of privacy in the instantiation S ∈S :

δ S
Priv(n,k,�p) = max

i, j=1,...,k
∑

ρ∈MS
j,i

(
AS

ρ,i−AS
ρ, j

)
.

The following theorem shows that δ S
Priv = δ S

Priv(n,k,�p) indeed

is the optimal level of privacy achieved by the considered

instantiations S of ThreeBallot and VAV.

Theorem 4. Let S ∈ S . The instantiation S achieves δ S
Priv-

privacy. Moreover, S does not achieve δ ′-privacy for any δ ′ <
δ S

Priv.
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Fig. 3. Level of privacy (the smaller δ the higher privacy) for the considered
variants of ThreeBallot with two candidates, p0 = 0.3, p1 = 0.35, p2 = 0.35.

While the representation of δ S
Priv is the same for every

instantiation (except that the definitions of essential views

differ), the proofs of Theorem 4 for the various instantiations

differ significantly. In each case, we first show that the view

of the observer can indeed be reduced to the corresponding

essential view, and then, by combinatorial arguments, we show

that δ S
Priv is optimal. Due to space limitations, we do not

present this proof here.

For every S ∈S , we have developed concrete formulas for

AS
ρ,i, which, in some cases, involved non-trivial combinatorial

reasoning. These formulas allowed us to compute concrete

values for δ S
Priv, as depicted in Figure 3 for the case of two

candidates. Note that election results are often published per

polling station, with just a few hundred voters each.

As can be seen from Figure 3, the variants of the protocols

where the observer does not get to see receipts of voters

provide the ideal level of privacy. The privacy enhanced variant

of VAV with receipts being revealed is ideal too: Intuitively, the

reason for this is that the receipts taken by the honest voters are

picked independently of the chosen candidates. Furthermore,

the bulletin board does not leak any information about how

a given voter voted, except for the bare result—the ballots of

type A and V which cancel out are chosen independently of

the voters’ choices. The variant of ThreeBallot by Marneffe

et al. is close to ideal. However, the level of privacy of the

original variant of ThreeBallot and the simple variant of VAV

is unacceptable. This is due to the receipts which, for these

variants of the protocols, leak a lot of information about a

vote. In case of VAV, for example, it is easy to see that with

probability 1
3 , a voter takes the simple ballot as a receipt which

exactly shows her choice, hence, δ can never drop below 1
3 .

D. Coercion-Resistance of ThreeBallot and VAV

In this section, we analyze the level of coercion-resistance

provided by all variants of ThreeBallot and VAV described

in Sections III and IV. We note that the level of coercion-

resistance of the variant by Marneffe et al. [8] has already

been established in [18]. However, the results for VAV and

the one for the original variant of ThreeBallot are new.

As in the case of privacy, the presentation of the results

follows the same structure for all protocol variants, which

is why we again introduce the necessary terminology and

present the results “in parallel” for all these variants. For

coercion-resistance, we also use the notion of an essential view

(although defined differently). In addition, we have to define

the goal of the coerced voter and the counter-strategy.

Modeling and security assumptions. We make the same

modeling and security assumptions as in the case of privacy

and consider the same set S of concrete instantiations.

The goal of the coerced voter. Our analysis is w.r.t. the

goal γi, for i ∈ {1, . . . ,k}, which is met if the coerced voter

votes for candidate i, in case she is instructed by the coercer

to vote for some candidate. Note that if the coerced voter is

not instructed to vote, she cannot vote, as this fact would be

observed by the coercer, who sees if the voter enters the voting

booth (forced-abstention attack). Recall that for ThreeBallot,

we assume k = 2.

Counter-strategy. We define the counter-strategy of the co-

erced voter for an instance S ∈ S as follows: The counter-

strategy coincides with the dummy strategy dum with one

exception: If the coerced voter is requested to fill out her ballot

and cast it according to a certain pattern Z, then the coerced

voter will, instead, fill out the ballot according to CS(Z, i), as

defined next. (Recall that the goal of the coerced voter is to

vote for i.) We define CS(Z, i) to be Z, if the pattern Z forms a

valid vote for i. Otherwise, the definition of CS(Z, i) depends

on the protocol under consideration:

– ThreeBallot: We define CS(Z, i) in such a way that it yields

the same receipt as Z does. Moreover, it adjusts the two re-

maining ballots in such a way that the resulting multi-ballot

is a valid vote for candidate i. By this requirement, CS(Z, i)
is uniquely determined, except for two cases: CS((xo,

o
x,

o
x),1)

and CS((ox,
x
o,

x
o),2). In the former case, for instance, one can

take (xo,
x
o,

o
x) or (xo,

x
x,

o
o), or randomly pick one of the two,

possibly based on some further information. For these cases,

we define CS(Z, i) to choose one of the possible patterns

uniformly at random.

– VAV: Similarly as in the case for ThreeBallot, CS(Z, i) is

defined in such a way that it yields the same receipt as Z
does. It adjusts the two remaining ballots in such a way

that the resulting multi-ballot is a valid vote for candidate i.
By this requirement, CS(Z, i) is uniquely determined, except

for the case where the coercer demands a V -receipt for

candidate i. In this case, one can mark an arbitrary candidate

on the remaining two ballots. We demand that CS(Z, i) then

marks candidate i also on the remaining ballots.

We use these strategies in the proof of Theorem 5. From the

proof of this theorem it follows that these counter-strategies

achieve the maximal level of coercion-resistance and, in this

sense, are optimal for the coerced voter.

Essential views. The essential view of the coercer is defined

as follows:

– ThreeBallot: If the coercer can see the receipts of honest

voters, the essential view is defined just like the essential
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view of the observer in case of privacy (see Section VI-C),

except that it does not contain the receipt of the coerced

voter (as the coerced voter returns always the receipt

demanded by the coercer). If the coercer cannot see the

receipts, the essential view consists of the integers nx
x
, nx

o
,

and no
x
, representing the numbers of the respective simple

ballots on the bulletin board.

– Privacy enhanced variant of VAV: Regardless of whether

the coercer can see the receipts or not, an essential view

of the coercer consists of two integers nA
j and nV

j for each

candidate j, indicating the number of A- and V-ballots on

the bulletin board, respectively, with candidate j marked.

– Simple variant of VAV: The essential view of the coercer

consists of integers nA
j and nV

j , for each candidate j, as

defined above and, if the coercer can see the receipts,

additionally, two integers rA
j and rV

j , for each candidate

j, indicating the number of A- and V-ballots, respectively,

taken by the honest voters as receipts with candidate j
marked.

By EV S we denote the set of all essential views of the coercer

for the instantiation S ∈S .

Level of coercion-resistance. Let S ∈S and ρ ∈ EV S. We

define AS
ρ,Z to be the probability that, in a run of S, the choices

made by the honest voters and the coerced voter result in

the essential view ρ , given that the coerced voter chooses the

pattern Z. The definition of the level of coercion-resistance,

δ , now follows the same idea as in the case of privacy. We

define MS
Z,i = {ρ ∈ EV S : AS

ρ,C(Z,i) ≤ AS
ρ,Z} to be the set of

those essential views for which the coercer should accept the

run and we define

δ S
CR(n,k,�p) = max

Z
∑

ρ∈MS
Z,i

(AS
ρ,Z−AS

ρ,C(Z,i)). (2)

The following theorem shows that δ S
CR = δ S

CR(n,k,�p) indeed

is the optimal level of coercion-resistance for the instantiation

S, where the case in which S is the variant of ThreeBallot by

Marneffe et al. was shown in [18].

Theorem 5. Let S ∈ S . Then S is δ S
CR-coercion-resistant.

Moreover, S is is not δ ′-coercion-resistant for any δ ′ < δ S
CR.

Similar to the case of privacy, the details of the proofs for

the different variants S of the protocols differ significantly. Due

to lack of space, we omit the proofs in this extended abstract.

We developed concrete formulas for AS
ρ,i and AS

ρ,C(Z,i),

which involved non-trivial combinatorial arguments, but al-

lowed us to compute concrete values for δ S
CR, as depicted

in Figure 4 for the case of two candidates. To put these

values in context, we present also the corresponding values

for the variant of ThreeBallot and the ideal protocol studied

in [18]. As we can see in Figure 4, for each protocol, with the

exception of Pp+
VAV and Pp−

VAV, the level of coercion-resistance is

lower if the coercer can see the receipts. For Pp+
VAV and Pp−

VAV

the level of coercion-resistance is the same. Intuitively, the

reason for this is that, in Pp+
VAV, the information printed on a

receipt is independent of the chosen candidate, which is also

the case for Pp+
TB, but unlike Pp+

TB, no further information can

be derived from the receipt in conjunction with the bulletin

board. Altogether, under the same assumptions, VAV provides

a better level of coercion-resistance than ThreeBallot, but both

are still worse than the ideal protocol.

Some selected values for the multi-candidate case, namely

10 candidates, are depicted in Figure 5. To put these values

in context, we present also the corresponding values for the

ideal protocol and the variant of ThreeBallot by Marneffe et

al. as studied in [18]. We can see that the (privacy enhanced)

variant of VAV handles the case of multiple candidates much

better than ThreeBallot, which for 10 candidate basically does

not provide any coercion-resistance. (Recall that δ close to 1

means that the coercer can tell almost for sure whether the

coerced voter followed his instructions or not.)
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Fig. 4. Level of coercion (δ ) for different protocols with two candidates,
p0 = 0.3, p1 = p2 = 0.35. The goal of the coerced voter is to vote for candidate
1.
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Fig. 5. The lower-bound of coercion-resistance (δ ) for ThreeBallot in the
variant by Marneffe et al. and the precise values for VAV in the privacy
enhanced variant and the ideal voting protocol with 10 candidates, where an
honest voter abstains from voting with probability p0 = 0.3 and she chooses
a candidate with probability ((1− p0)/10).
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E. Relationship between Privacy and Coercion-resistance

As already mentioned in the introduction, one would expect

that privacy and coercion-resistance are closely connected: If

a protocol provides a poor level of privacy, i.e., an observer

has a good chance of distinguishing whether an honest voter

voted for candidate j or j′, then this should give the coercer

leverage to distinguish whether the coerced voter followed

the coercer’s instructions or not. Indeed some works suggest

a close connection between coercion-resistance and privacy,

most notable the already mentioned work by Moran and Naor

[21] and work in an abstract, Dolev-Yao style approach [10],

which, however, puts strong restrictions on the coercer and

counter-strategies. The definitions used in these works yield

yes/no-answers, rather than measuring the level of coercion-

resistance and privacy.

Our case study of ThreeBallot and VAV demonstrates that

the connection between privacy and coercion-resistance, in

particular when it comes to measuring the level of privacy and

coercion-resistance, is more subtle than what can be gathered

from existing work.

One observation that comes out of our case study is that

improving the level of privacy of a protocol in a natural way

(e.g., by changing the way honest voters fill out ballots) can

lead to a worse level of coercion-resistance. This is the case

when going from the original variant of ThreeBallot to the

“privacy enhanced” variant by de Marneffe et al., as can be

seen from the results in Sections VI-C and VI-D (compare

the levels of privacy of the systems So+
TB and Sp+

TB, given

in Figure 3, with those for coercion-resistance of the same

systems in Figure 4). Clearly, in general, one does not expect

privacy to imply coercion-resistance. One might, however, ex-

pect that improving privacy also improves coercion-resistance.

In this sense, the illustrated effect is surprising. At the end of

this section, we propose another (though artificial) variant of

ThreeBallot which better explains and amplifies the described

effect.

Another finding that comes out of our case study, which

maybe more unexpected, is that the level of privacy of a pro-

tocol can be much lower than its level of coercion-resistance.

This is so for the original variant of ThreeBallot and the

simple variant of VAV, as can be seen from the results in

Sections VI-C and VI-D (compare the level of privacy of So+
TB,

given in Figure 3, with the level of coercion resistance of this

system, given in Figure 4; similarly for the system Ss+
VAV). The

reason behind this phenomenon is basically that the counter-

strategy hides the behavior of the coerced voter, including her

vote, better than the honest voting program hides the vote.

Conversely, one could say that the honest voting program is

“suboptimal” in hiding the way the voter voted. In the original

variant of ThreeBallot and the simple variant of VAV, a receipt

an honest voter obtains indeed discloses more information

than necessary. The following simple, but unlike ThreeBallot

and VAV, artificial example, carries this effect to extremes:

Consider the ideal voting protocol which collects all votes and

publishes the correct result. Now imagine a voting protocol in

which voters use the ideal voting protocol to cast their vote,

but where half of the voters publish how they voted (e.g.,

based on a coin flip). Clearly, the level of privacy this protocol

provides is very low, namely δ ≥ 1
2 . However, a coerced voter

can be more clever and simply lie about how she voted. This

protocol indeed provides a high level of coercion-resistance,

namely δ ≈ δ i
min(n/2,k,�p) (see Section VI-B). Below we also

provide a slightly more subtle example based on ThreeBallot.

In case the counter-strategy does not “outperform” the hon-

est voting program (or conversely, the honest voting program

does not leak more information than the counter-strategy), one

would expect that if a voting system provides a certain level

of coercion-resistance, then it provides at least the same level

of privacy. We now show that this is indeed true.

We first have to define what it means for the counter-strategy

to outperform the honest voting program.

For this purpose, let P∗ = P(AH ,q,VH ,k,�p) be a protocol

instantiation, with sets V and C of processes as in Definition 3.

As usual, with π̂v( j) we denote the honest voting program

voting for candidate j and with γi we denote the goal which

contains all runs in which the coerced voter voted for candidate

i (or the weaker goal, where this is required, only if the voter

is instructed by the coercer to vote for some candidate). Let

ṽi be a counter-strategy that tries to achieve this goal. Let

π j
c be a process of the coercer which only connects to dum,

but does not use any other part of the interface the coercer

can connect to, and which simply simulates the program of

an honest voter voting for candidate j. Clearly, the systems

(π j
c ‖ dum) and π̂v( j) are identical from the point of view of

an external observer.

Now, informally speaking, for ṽi to not outperform π̂v(i) we

require that from the point of view of an external observer,

ṽi, if instructed to vote for some candidate j by following the

honest program, behaves like π̂v(i). Recall that, the program πo

of an external observer may output 0 or 1 on some designated

channel and may use the same communication interface as the

coercer, except for connecting to dum, i.e., there is no direct

communication between an external observer and the coerced

voter. Now, formally we say that ṽi does not outperform π̂v(i),
if for all programs πo of the external observer we have that

Pr[(πo ‖ π j
c ‖ ṽi ‖ e)(�) 	→ 1]−Pr[(πo ‖ π̂v(i) ‖ e)(�) 	→ 1]

is negligible as a function in the security parameter 1�.

Now, we can state that, under the assumption that the

counter-strategy does not outperform the honest voting pro-

gram, we have that if a protocol is δ -coercion-resistant,

then it also achieves δ -privacy. In the following theorem,

we say that P∗ is δ -coercion-resistant w.r.t. γi and ṽi, if ṽi
can be used to show δ -coercion-resistant of P∗ w.r.t. γi. For

simplicity, we focus here on the case of single-voter coercion-

resistance/privacy, but this result can easily be lifted to the

multi-voter case.

Theorem 6. Let P∗ be δ -coercion-resistant w.r.t. γi and ṽi, for
every candidates i. Then, if ṽi does not outperform π̂v(i), for
every candidate i, then P∗ achieves δ -privacy.
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Proof sketch: Let j, j′ ∈ {1, . . . ,k} and let πo be a

program of the observer, in the sense of Section VI-A. We

define πc = (πo ‖ π j
c ) to be a coercer program. Recall from

Section VI-B that the communication interface of a coercer is

that of an observer, except that a coercer can also communicate

with the coerced voter. Therefore, πc indeed is a coercer

program. Since P∗ is δ -coercion-resistant w.r.t. γ j′ and ṽ j′ ,
we know that Pr[T 	→ 1] − Pr[T̃ 	→ 1] is δ -bounded for

T = (πc ‖ dum ‖ e)(�) and T̃ = (πc ‖ ṽ j′ ‖ e)(�).
Now, by the definition of π j

c , we know that Pr[T 	→ 1] =
Pr[T ′ 	→ 1], for T ′ = (πo ‖ π̂v( j) ‖ e)(�). Moreover, because ṽ j′
does not outperform π̂v( j′), we have that Pr[T̃ 	→ 1]−Pr[T̃ ′ 	→
1] is negligible for T̃ ′ = (πo ‖ π̂v( j′) ‖ e)(�). It follows that

Pr[T ′ 	→ 1]−Pr[T̃ ′ 	→ 1] is δ -bounded, which proves that P∗
achieves δ -privacy.

It turns out that for many voting protocol which have been

analyzed with respect to coercion-resistance, the (optimal)

counter-strategies indeed do not outperform the honest voting

program of the respective protocol. In particular, it is not

hard to check that at least the following protocols satisfy the

condition in Theorem 6: the Bingo voting system [3] (see

[18]), Scantegrity II [5] (see [17]), the JCJ voting protocol

[13] and the Civitas voting system [7] (see also [16]). Also the

“privacy enhanced” variants of ThreeBallot and VAV satisfy

the condition (but clearly not the other variants of ThreeBallot

and VAV we considered, since, as mentioned, for these variants

the level of coercion-resistance is higher—δ is smaller—than

the level of privacy.)
For such protocols, once δ -coercion-resistance is proven,

by Theorem 6 we obtain δ -privacy for free. In case the level

of coercion-resistance corresponds to the ideal one—as, e.g.,

proven for the Bingo voting system and Scantegrity II in [18]

and [17]—, by Theorems 2 and 3, the level of privacy is ideal

as well. However, in general, the actual level of privacy might

be better than what can be concluded from the theorem, with

the “privacy enhanced” variants of ThreeBallot and VAV being

examples.
We conclude this section with the postponed examples

mentioned above.

Example (Improving Privacy Significantly Lowers the Level
of Coercion-Resistance). We consider the following variant

of ThreeBallot. An honest voter is supposed to submit either

(xx,
x
o,

o
o) or (xx,

o
x,

o
o) (according to her favorite candidate). This

scheme is ideal in terms of privacy, because the bulletin board

and the receipts do not leak any information apart from the

pure result of the election. However, this scheme provides

no coercion-resistance whatsoever: When the coerced voter

is instructed to submit (ox,
x
x,

o
o) (which is allowed but never

done by honest voters), but wants to vote for candidate A, she

would have to submit (ox,
x
o,

x
o). But then, as all the honest voters

submit (xx,
x
o,

o
o) or (xx,

o
x,

o
o), the coercer could easily detect that

he was cheated, by counting the number of ballots of type o
o

on the bulletin board.

Example (Improving Coercion Resistance Significantly Lowers
the Level of Privacy). We consider the following variant of

ThreeBallot. In order to vote for candidate A, an honest voter

is supposed to submit (xx,
x
o,

o
o) or (xo,

x
o,

o
x), each with probability

1
2 . Analogously for a voter that wants to vote for candidate 2.

By this, in 50% of the cases, an honest voter reveals her vote,

namley in the case where she does not have x
x as receipt. That

means that this variant provides a very low level of privacy

(δ ≥ 0.5), i.e. the observer can with quite high probability tell

which candidate a given voter voted for. However, this variant

is not that bad in terms of coercion-resistance, as here, the

coerced voter is not bound to follow the honest strategy and

can choose patterns in a more clever way. In fact, we can

use here the same counter-strategy we used previously—take

the receipt required by the coercer and adjust the remaining

ballots to form a valid vote for the favorite candidate. Note

that, following this strategy, the coerced voter may submit

patterns which are valid but never chosen by the program of

an honest voter. For this counter-strategy, although the coercer

might learn approximatively half of the votes of the honest

voters, the actual vote of the coerced voter is still hidden

behind the votes of the honest voters that submitted (xx,
x
o,

o
o)

or (xx,
o
x,

o
o), i.e. that did not reveal their votes to the coercer.

This results in a reasonably small δ .

VII. CONCLUSION

In this paper, we presented new insights into central se-

curity properties, namely verifiability, privacy, and coercion-

resistance. Our findings, in part, come from a case study, in

which we precisely measure the level of verifiability, privacy,

and coercion-resistance of different variants of ThreeBallot

and VAV proposed in the literature.

For verifiability we have demonstrated that the combination

of individual and universal verifiability is, unlike commonly

believed, insufficient to provide overall/global verifiability.

Our case study shows that the main problem with individual

and universal verifiability is that these notions ignore that

dishonest authorities/voters can break the integrity of ballots

of honest voters by ill-formed ballots. We therefore advocate

the concept of global verifiability, as captured by the definition

of verifiability in [19] and used in the present paper.

We also demonstrated that the relationship between pri-

vacy and coercion-resistance is more subtle than what can

be gathered from the literature. Our case study highlighted

interesting phenomena for existing protocols: i) improving

privacy may degrade the level of coercion-resistance, ii) the

level of coercion-resistance may be higher than the level of

privacy. The latter is due to the fact that the counter-strategy

a coerced voter uses maybe “smarter” in hiding information

than the honest voting program. For the case that this is not

so, we were able to prove that δ -coercion-resistance implies

δ -privacy. As discussed in Section VI-E, for many protocols,

the counter-strategy does indeed not outperform the honest

voting program. We conjecture that if it does, then it should

be possible to improve the honest voting program.

Besides these general findings on verifiability, privacy, and

coercion-resistance, our case study also provides the first
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comprehensive picture on the security of prominent voting

systems, ThreeBallot and VAV.
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[20] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Verifiability,
Privacy, and Coercion-Resistance: New Insights from a Case Study.
Technical report, University of Trier, 2011. Available at http://infsec.
uni-trier.de/publications.html.

[21] T. Moran and M. Naor. Receipt-Free Universally-Verifiable Voting
With Everlasting Privacy. In C. Dwork, editor, Advances in Cryptology
- CRYPTO 2006, 26th Annual International Cryptology Conference,
Proceedings, volume 4117 of Lecture Notes in Computer Science, pages
373–392. Springer, 2006.

[22] T. Moran and M. Naor. Split-ballot voting: everlasting privacy with
distributed trust. In P. Ning, S. De Capitani di Vimercati, and P. F.
Syverson, editors, Proceedings of the 2007 ACM Conference on Com-
puter and Communications Security, CCS 2007, pages 246–255. ACM,
2007.

[23] T. Okamoto. Receipt-Free Electronic Voting Schemes for Large Scale
Elections. In B. Christianson, B. Crispo, T. M. A. Lomas, and M. Roe,
editors, Proceedings of the 5th International Workshop on Security
Protocols, volume 1361 of Lecture Notes in Computer Science, pages
25–35. Springer, 1997.

[24] B. Riva and A. Ta-Shma. Bare-Handed Electronic Voting with Pre-
processing. In USENIX/ACCURATE Electronic Voting Technology (EVT
2007), 2007.

[25] R. L. Rivest and W. D. Smith. Three Voting Protocols: ThreeBallot,
VAV and Twin. In USENIX/ACCURATE Electronic Voting Technology
(EVT 2007), 2007.

[26] Charlie E. M. Strauss. A critical review of the triple ballot voting
system, part 2: Cracking the triple ballot encryption. http://www.cs.
princeton.edu/∼appel/voting/Strauss-ThreeBallotCritique2v1.5.pdf, Oc-
tober 8, 2006. Draft V1.5.

APPENDIX

A. Proof Sketch of Theorem 1

For the first condition of Definition 1, we have to show that

whenever, in a run of the system, the machine and the bulletin

board are honest, ver accepts this run with overwhelming

probability. This is easy to see: If the machine and the bulletin

board are honest in a run of the system, only well-formed

ballots are sent to the bulletin board, (with overwhelming

probability) no serial numbers occur twice, and the bulletin

board correctly displays the ballots received from the machine.

Now, by the definition of the verifier, it follows that ver accepts

such a run.

For the second condition of Definition 1, we have to show

that the probability that the system produces a run which is

accepted by ver, even though the goal is violated, is bounded

by δ p
Ver or δ o

Ver, respectively. In such a run, since it is accepted

by ver, the bulletin board must be consistent. Furthermore,

because the goal is violated, there must exist a candidate, say

candidate i, such that the sum of all votes of honest voters for

all candidates except i is at least �+1.

As we have already shown, the machine can safely change

m votes. Therefore, in order to violate the goal γ�, it remains

to change k′ = �+1−min(�+1,m) votes of honest voters that
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did not vote for candidate i. One can verify that the best (the

safest) way of doing this is to change k′ multi-ballots cast by

k′ different honest voters, who voted for some j �= i, in the

following way: A dishonest party (the voting machine or the

bulletin board) chooses one simple ballot of such a voter with

marked j-th position, but not i-th position, and replaces it by

a similar ballot, but with the markings on the i-th and j-th
position swapped (one can show that this is always possible).

Every time this is done, the probability that this is detected by

an honest voter is 1
6 · pcheck in the system Sp

TB and 1
3 · pcheck in

So
TB. These probabilities can be computed by some elementary

calculation. As it must be done k′ times and, as mentioned,

there must exist �+ 1 voters who voted not for candidate i,
we conclude that the probability that the goal γ� is violated

and the observer accepts the run is bounded by δ p
Ver and δ o

Ver,

respectively, and that these bounds are optimal.

B. Verifiability of VAV

Let Ps
VAV and Pp

VAV denote the VAV protocol in the sim-

ple variant and the privacy enhanced variant, respectively.

Based on analogous assumptions as those for ThreeBallot

(see Section V-B), it is straightforward to formally define the

protocol instantiations Ss
VAV = Ps

VAV({ver},q,VH ,k,�p) of Ps
VAV

and Sp
VAV = Pp

TB({ver},q,VH ,k,�p) of Pp
VAV.

To state the following theorem, we need to introduce the

following notation. For a given run of the protocol, we denote

by A the set of those candidates j for which the sum of all

votes of honest voters for all candidates except j is at least

�+1. Moreover, by Xj we denote the number of multi-ballots

in a run submitted by honest voters for which the following

holds: i) The multi-ballot forms a vote for a candidate different

from j and ii) On the multi-ballot, not the same candidate
is marked on all three simple ballots; these multi-ballots can

safely be changed to votes for j, as explained in Section IV.

Finally, we define pr = Pr[A �= /0 and max j∈A Xj = r], where

the probability is over runs of the protocol. (Note that pr only

depends on choices made by honest voters.)

Theorem 7. Let B be the set containing the voting ma-
chine and the bulletin board and x ∈ {s, p}. The goal γ� is
guaranteed in Sx

VAV by B and δ x
VerVAV-verifiable by a, where

δ s
VerVAV = δ o

Ver with δ o
Ver as in Theorem 1 and

δ p
VerVAV =

n

∑
r=0

pr

(
1− 1

4
· pckeck

)max(�+1−r−m,0)

,

where m is the number of dishonest voters and pr is defined
as above.

The statement for Ss
VAV follows as in the proof of The-

orem 1. The intuition behind the statement for Sp
VAV is the

following. The best strategy of the adversary for violating

the goal in a given run is as follows: First, he determines

those candidates j such that the number of submitted multi-

ballots not for j is bigger than �. (Those candidates form the

set A introduced above). Second, among those candidates, he

determines a candidate j for which the number Xj is maximal.

The probability of this number being r is pr. Now, if Xj = r,

then the adversary can safely change r votes. If there are

some further votes to be changed (i.e. if r < �+ 1), then

the adversary can use dishonest voters to change additional

m votes, as described in Section V-B. Only if there are still

some votes to be changed (i.e. r+m < �+ 1), the adversary

has to change further ballots, namely �+1− r−m, which is

detected with probability 1
4 · pcheck for each ballot. Hence, the

probability that the adversary goes undetected when changing

�+1− r−m ballots is
(
1− 1

4 · pckeck
)�+1−r−m

.
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