
Cache Games – Bringing Access-Based Cache Attacks on AES to Practice

David Gullasch
Bern University of Applied Sciences,

Dreamlab Technologies
david.gullasch@bfh.ch

Endre Bangerter
Bern University of Applied Sciences

endre.bangerter@bfh.ch

Stephan Krenn
Bern University of Applied Sciences,

University of Fribourg
stephan.krenn@bfh.ch

Abstract—Side channel attacks on cryptographic systems ex-
ploit information gained from physical implementations rather
than theoretical weaknesses of a scheme. In recent years, major
achievements were made for the class of so called access-driven
cache attacks. Such attacks exploit the leakage of the memory
locations accessed by a victim process.

In this paper we consider the AES block cipher and present
an attack which is capable of recovering the full secret key
in almost realtime for AES-128, requiring only a very limited
number of observed encryptions. Unlike previous attacks, we
do not require any information about the plaintext (such as its
distribution, etc.). Moreover, for the first time, we also show
how the plaintext can be recovered without having access to
the ciphertext at all. It is the first working attack on AES
implementations using compressed tables. There, no efficient
techniques to identify the beginning of AES rounds is known,
which is the fundamental assumption underlying previous
attacks.

We have a fully working implementation of our attack
which is able to recover AES keys after observing as little
as 100 encryptions. It works against the OpenSSL 0.9.8n
implementation of AES on Linux systems. Our spy process does
not require any special privileges beyond those of a standard
Linux user. A contribution of probably independent interest
is a denial of service attack on the task scheduler of current
Linux systems (CFS), which allows one to observe (on average)
every single memory access of a victim process.

Keywords-AES; side channel; access-based cache attacks;

I. INTRODUCTION

Cryptographic schemes preventing confidential data from
being accessed by unauthorized users have become in-
creasingly important during the last decades. Before being
deployed in practice, such schemes typically have to pass a
rigorous reviewing process to eliminate design weaknesses.
However, theoretical soundness of a scheme is necessary but
not sufficient for the security of concrete implementations
of the scheme.

Side channel attacks are an important class of implemen-
tation level attacks on cryptographic systems. They exploit,
for instance, the leakage of information from electromag-
netic radiation or power consumption of a device, and
running times of certain operations. Especially, side channel

This work was in part funded by the European Community’s Seventh
Framework Programme (FP7) under grant agreement no. 216499 and the
Swiss Hasler Foundation.

attacks based on cache access mechanisms of microproces-
sors represented a vivid area of research in the last few
years [1]–[16]. These cache based side channel attacks (or
cache attacks for short) fall into the categories of time-
driven, trace-driven, and access-driven attacks.

In time-driven attacks an adversary is able to observe the
overall time needed to perform certain computations, such as
whole encryptions [9]–[12]. These timings leak information
about the overall number of cache hits and misses during an
encryption. In trace-driven attacks, an adversary is able to
obtain a profile of the cache activity during an encryption,
and to deduce which memory accesses issued by the cipher
resulted in a cache hit [13]–[16]. Finally, access-driven
attacks additionally enable the adversary to determine the
cache sets accessed by the cipher [4]–[7]. Therefore, he
can infer, e.g., which elements of a lookup table have been
accessed by the cipher.

All these three types of attacks exploit the fact that
accessing cached data is up to two orders of magnitude
faster than accessing data in the main memory. The attack
scenario underlying such attacks is a follows: Consider two
concurrently running processes (a spy process S and a
security sensitive victim process V) using the same cache.
After letting V run for some small amount of time and
potentially letting it change the state of the cache, S observes
the timings of its own memory accesses, which depend on
the state of the cache. These measurements allow S to infer
information about the memory locations previously accessed
by V .

A. Our Contributions

In a nutshell, we present a novel, practically efficient
access-driven cache attack on the Advanced Encryption
Standard (AES) [17], [18], which is the most widely used
symmetric-key block cipher today. On a high level the main
features of our attack are as follows: First, our attack works
under very weak assumptions, and thus is the strongest
working access-driven attack currently known. Second, we
provide a concrete and practically usable implementation of
the attack. It uses new techniques and also resolves a series
of so far open issues and technicalities.

Let us discuss our results in more detail. For our attack to
work we need to assume that the attacker has a test machine

2011 IEEE Symposium on Security and Privacy

1081-6011/11 $26.00 © 2011 IEEE

DOI 10.1109/SP.2011.22

490

at his disposal prior to the attack, which is identical to the
victim machine. The test machine is used to generate training
samples for two artificial neural networks from 168 000
encryptions. These then have to be trained on an arbitrary
platform.

To carry out the attack all we need to be able to execute
a non-privileged spy process (e.g., our spy process does not
need to have access to the network interface) on the victim
machine. We do not require any explicit interactions, such
as inter-process communication or I/O. Osvik et al. [7], [8]
refer to attacks in this setting as asynchronous attacks.

Our attack technique has the following features:
• In contrast to previous work [6]–[8], our spy process

neither needs to learn the plain- or ciphertexts involved,
nor their probability distributions in order recover the
secret key.

• For the first time, we describe how besides the key
also the plaintext can be recovered without knowing
the ciphertexts at all.

• Our attack also works against AES implementations
using so called compressed tables, which are typically
used in practice, e.g., in OpenSSL [19]. When using
compressed tables, the first and the last round of an
encryption typically cannot be identified any more,
which renders previous attacks impossible.

• We have a fully working implementation of our attack
techniques against the 128-bit AES It is highly effi-
cient and is able to recover keys in “realtime”. More
precisely, it consists of two phases: In an observa-
tion phase, which lasts about 2.8 seconds on our test
machine, approximately 100 encryptions have to be
monitored. Then an offline analysis phase lasting about
3 minutes recovers the key. The victim machine only
experiences a delay during the observation phase. This
slowdown is sufficiently slight to not raise suspicions,
since it might as well be caused by high network
traffic, disk activity, etc. To the best of our knowledge,
this is the first fully functional implementation in the
asynchronous setting.

• At the heart of the attack is a spy process which is able
to observe (on average) every single memory access of
the victim process. This extremely high granularity in
the observation of cache hits and misses is reached by
a new technique exploiting the behavior of the Com-
pletely Fair Scheduler (CFS) used by modern Linux
kernels. We believe that this scheduler attack could be
of independent interest.

B. Test Environment

All our implementations and measurements have been ob-
tained on a Intel Pentium M 1.5 GHz (codename “Banias”)
processor, in combination with an Intel ICH4-M (codename
“Odem”) chipset using 512 MB of DDR-333 SDRAM. On
this system, we were running Arch Linux with kernel version

2.6.33.4. As a victim process we used the OpenSSL 0.9.8n
implementation of AES, using standard configurations.

C. Related Work

It was first mentioned by Kocher [20] and Kelsey et
al. [21] that cache behavior potentially poses a security
threat. The first formal studies of such attacks were given
by Page [22], [23].

First practical results for time-driven cache attacks on the
Data Encryption Standard (DES) were given by Tsunoo et
al. [2], and an adoption for AES was mentioned without
giving details. Various time-driven attacks on AES were
given in the subsequent [7]–[12], some of which require
that the first or the last round of AES can be identified. Tiri
et al. [24] proposed an analytical model for forecasting the
security of symmetric ciphers against such attacks.

Trace-driven cache attacks were first described by
Page [22], and various such attacks on AES exist [13]–
[16]. Especially, Aciiçmez et al. [13] also propose a model
for analyzing the efficiency of trace-driven attacks against
symmetric ciphers.

Percival [4] pioneered the work on access-driven attacks
and described an attack on RSA. Access-driven attacks on
AES were first investigated by Osvik et al. [7], [8]. They
describe various attack techniques and implementations in
what they call the synchronous model. This model makes
rather strong assumptions on the capabilities of an attacker,
i.e., it assumes that an attacker has the ability to trigger en-
cryptions for known plaintexts and know when an encryption
has begun and ended. Their best attack in the synchronous
model requires about 300 encryptions.

Osvik et al. also explore the feasibility of asynchronous
attacks. They refer to asynchronous attacks as an “extremely
strong type of attack”, and describe on a rather high level
how such attacks could be carried out, assuming that the
attacker knows the plaintext distribution and that the attack is
carried out on a hyper-threaded CPU. Also, they implement
and perform some measurements on hyper-threaded CPUs
which allow to recover 47 key bits. However, a description
(let alone an implementation) of a full attack is not given
and many open questions are left unresolved. Further, the
authors conjecture that once fine-grained observations of
cache accesses are possible, the plaintext distribution no
longer needs to be known. Loosely speaking, one can
say that Osvik et al. postulate fully worked and practical
asynchronous attacks as an open problem.

This is where the work of Neve et al. [6] picks up.
They make progress towards asynchronous attacks. To this
end they describe and implement a spy process that is
able to observe a “few cache accesses per encryption”
and which works on single threaded CPUs. They then
describe a theoretical known ciphertext attack to recover
keys by analyzing the last round of AES. The practicality
of their attack remains unclear, since they do not provide an

491

implementation and leave various conceptual issues (e.g.,
quality of noise reduction, etc.) open.

Acıiçmez et al. [5] are the first to present a practical
access-driven attack in the asynchronous model. Albeit tar-
getting OpenSSL’s DSA implementation via the instruction
cache on a hyper-threaded CPU, they contribute a clever
routine to perform timing measurement of the instruction
cache in a real-world setting.

We improve over prior work by providing a first practical
access-driven cache attack on AES in the asynchronous
model. The attack works under weaker assumptions than
previous ones as no information about plain- and ciphertext
is required1, and it is more efficient in the sense that we
only need to observe about 100 encryptions. We also reach a
novelly high granularity when monitoring memory accesses.
Further, our attack also works against compressed tables,
which were not considered before.

Finally, several hardware and software based mitigation
strategies for AES have been proposed [25]–[27].

D. Document Outline

In §II we briefly recapitulate the structure of a CPU
cache and the mechanisms underlying it. We also describe
the Advanced Encryption Standard (AES) to the extent
necessary for our attack. In §III we then explain how to
recover the AES key under the assumption that one is able
to perfectly observe single cache accesses performed by
the victim process. We drop this idealization in §IV and
show that by combining a novel attack on the task scheduler
and neural networks sufficiently good measurements can be
obtained to carry out the attack in practice. We also state
measurement results obtained from the implementation of
our attack. In §V we present extensions of our attack, and
countermeasures in §VI. We conclude with a discussion of
the limitations of our attack and potential future work in
§VII.

II. PRELIMINARIES

We first summarize the functioning of the CPU cache
as far as necessary for understanding our attack. We then
describe AES, and give some details on how it is typically
implemented. We close this section by describing the test
environment on which we obtained our measurements.

A. The CPU Cache and its Side Channels

Let us describe the behavior of the CPU cache, and how it
can be exploited as a side channel. The CPU cache is a very
fast memory which is placed between the main memory and
the CPU [28]. Its size typically ranges from some hundred
kilobytes up to a few megabytes.

1To be precise, the statement is true whenever AES is used, e.g., in CBC
or CTR mode, which is the case for (all) relevant protocols and applications.
In the practically irrelevant case, where the ECB mode (which is known
to be insecure by design) is used we have to require that there is some
randomness in the plaintext.

Typically, data the CPU attempts to access is first loaded
into the cache, provided that it is not already there. This
latter case is called a cache hit, and the requested data
can be supplied to the CPU core with almost no latency.
However, if a cache miss occurs, the data first has to be
fetched via the front side bus and copied into the cache, with
the resulting latency being roughly two orders of magnitude
higher than in the former case. Consequently, although being
logically transparent, the mechanics of the CPU cache leak
information about memory accesses to an adversary who is
capable of monitoring cache hits and misses.

To understand this problem in more detail it is necessary
to know the functioning of an n-way associative cache,
where each physical address in the main memory can be
mapped into exactly n different positions in the cache. The
cache consists of 2a cache sets of n cache lines each. A
cache line is the smallest amount of data the cache can work
with, and it holds 2b bytes of data together with tag and state
bits. Cache line sizes of 64 or 128 bytes (corresponding to
b = 6 and b = 7, respectively) are prevalent on modern x86-
and x64 architectures.

To locate the cache line holding data from address
A = (Amax, . . . , A0), the b least significant bits of A can
be ignored, as a cache line always holds 2b bytes. The
next a bits, i.e., (Aa+b−1, . . . , Ab) identify the cache set.
The remaining bits, i.e., (Amax, . . . , Aa+b) serve as a tag.
Now, when requesting data from some address A, the cache
logic compares the tag corresponding to A with all tags
in the identified cache set, to either successfully find the
sought cache line or to signal a cache miss. The state bits
indicate if the data is, e.g., valid, shared or modified (the
exact semantics are implementation defined). We typically
have max = 31 on x86 architectures and max = 63 on
x64 architectures. (However, the usage of physical address
extension techniques may increase the value of max [29].)

Addresses mapping into the same cache set are said to
alias in the cache. When more then n memory accesses to
different aliasing addresses have occurred, the cache logic
needs to evict cache lines (i.e. modified data needs to be
written back to RAM and the cache line is reused). This
is done according to a predetermined replacement strategy,
most often an undocumented algorithm (e.g. PseudoLRU in
x86 CPUs), approximating the eviction of the least recently
used (LRU) entry.

With these mechanics in mind, one can see that there
are at least two situations where information can leak to
an adversary in multitasking operating systems (OS). Let’s
therefore assume that a victim process V , and a spy process
S are executed concurrently, and that the cache has been
initialized by S. After running V for some (small) amount
of time, the OS switches back to S.
• If S and V physically share main memory (i.e., their

virtual memories map into the same memory pages in
RAM), S starts by flushing the whole cache. After

492

regaining control over the CPU, S reads from mem-
ory locations and monitors cache hits and misses by
observing the latency. Hits mark the locations of V ’s
memory accesses.

• If S and V do not physically share memory, then
they typically have access to cache aliasing memory.
In this case, S initializes the cache with some data D,
and using its knowledge of the replacement strategy,
it deterministically prepares the individual cache line
states. When being scheduled again, S again accesses
D, and notes which data had been evicted from the
cache. This again allows S to infer information about
the memory accesses of V .

Our target in the following is the OpenSSL library on
Linux, which in practice resides at only one place in physical
memory and is mapped into the virtual memory of every
process that uses it. In this paper we are therefore concerned
with the shared-memory scenario, where V uses lookup
tables with 2c entries of 2d bytes each, and uses a secret
variable to index into it. We will further make the natural
assumption of cache line alignment, i.e., that the starting
point of these lookup tables in memory corresponds to a
cache line boundary. For most compilers, this is a standard
option for larger structures. Exploiting the previously men-
tioned information leakage will allow S to infer the memory
locations V accesses into, up to cache line granularity. That
is, S is able to reconstruct l = c−max(0, b− d) bits of the
secret index for a cache line size of 2b bytes. Note that l > 0
whenever the lookup table does not entirely fit into a single
cache line. Starting from these l bits, we will reconstruct the
whole encryption key in our attack.

B. AES – The Advanced Encryption Standard

The Advanced Encryption Standard (AES) [17] is a sym-
metric block cipher, and has been adopted as an encryption
standard by the U.S. government [18]. For self-containment,
and to fix our notation, we next recapitulate the steps of the
AES algorithm [30, §4.2].

AES always processes blocks (x0 . . . xF) of 16 bytes at
a time by treating them as 4 × 4 matrices. We will denote
these matrices by capital letters, and its column vectors by
bold, underlined lowercase letters:

X =

x0 x4 x8 xC
x1 x5 x9 xD
x2 x6 xA xE
x3 x7 xB xF

 = (x0 x1 x2 x3)

The single bytes xi are treated as elements of GF (28). We
denote addition in this field by ⊕ and multiplication by •.
Note that the addition equals bitwise XOR. The irreducible
polynomial for multiplication is given by x8+x4+x3+x+1,
see the standard [18] for details. We use these operations
in the usual overloaded sense to operate on matrices and
vectors.

Except for XORing the current state with a round key,
the single rounds of AES makes use of three operations:
ShiftRows cyclically shifts the rows of a matrix X , SubBytes
performs a bytewise substitution of each entry in a matrix
according to a fixed and invertible substitution rule, and
MixColumns multiplies a matrix by a fixed matrix M .

In the first step of each round of AES, the ShiftRows
operation performs the following permutation on the rows
of a matrix X:

ShiftRows(X) = X̃ =

x0 x4 x8 xC
x5 x9 xD x1
xA xE x2 x6
xF x3 x7 xB

We will denote the columns of X̃ by (x̃0 x̃1 x̃2 x̃3).

In the next step, all bytes of X̃ are substituted as defined
by an S-box. We denote this substitution by s(·). That is, we
have SubBytes(X̃) = s(X̃) with

s(X̃) =

s(x0) s(x4) s(x8) s(xC)
s(x5) s(x9) s(xD) s(x1)
s(xA) s(xE) s(x2) s(x6)
s(xF) s(x3) s(x7) s(xB)

 ,

or s(X̃) = (s(x̃0) s(x̃1) s(x̃2) s(x̃3)) for short.
Finally, the state matrices are multiplied by a constant

matrix M in the MixColumns operation:

MixColumns(s(X̃)) = M•s(X̃) =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

•s(X̃)

As for X , we abbreviate the columns of M by bold letters.
Here and in the remainder of this document, byte values
have to be read as hexadecimal numbers.

Having said this, and denoting the round key of the ith

round by Ki, we can write AES as the following recurrence,
where X0 is the plaintext, and Xr+1 is the ciphertext:

Xi+1 =

Xi ⊕Ki i = 0,

M • s(X̃i)⊕Ki 0 < i < r,

s(X̃i)⊕Ki i = r .

(1)

For the 128-bit implementation of AES we have r = 10.
We will not detail the key schedule here, but only want

to note that Ki+1 can be obtained from Ki by applying a
nonlinear transformation using the same S-box as the cipher
itself, cyclically shifting the byte vectors, and XORing
with (2i, 0, 0, 0) (where 2 has to be read as an element in
GF (28)). The key schedule is illustrated in Figure 2.

C. How to Implement AES

In the following we briefly describe techniques for effi-
ciently implementing AES. These techniques are the corner
stones of our attack presented in the subsequent sections.

493

AES is heavily based on computations in GF (28),
whereas the arithmetic logic unit (ALU) of most CPUs
only provides arithmetic on integers. The fast reference
implementation of Rijmen et al. [31] reformulates AES to
only use basic operations on 32-bit machine words. The
implementation of OpenSSL [19] further exploits redundan-
cies and halves the space needed for lookup tables, saving
two kilobyte of memory. In the following we present these
techniques on hand of one inner round of AES. We let X
and Y denote the state matrices before and after the round,
and K the round key. That is, we have the following relation:

Y = M • s(X̃)⊕K. (2)

Consequently, we have

y
0

= m0 • s(x0)⊕m1 • s(x5)⊕
m2 • s(xA)⊕m3 • s(xF)⊕ k0, (3)

and similarly for y
1
,y

2
,y

3
, where k0, . . . ,k3 denote the

columns of K, indexed analogously to X and Y . To avoid
the expensive multiplications in GF (28) tables T0, . . . , T3
containing all potential results are precomputed. That is, we
have

Ti[x] = mi • s(x) 0 ≤ i ≤ 3.

This allows one to rewrite (3) in a form containing only
table lookups and binary XORs:

y
0

= T0[x0]⊕ T1[x5]⊕ T2[xA]⊕ T3[xF]⊕ k0.

Each Ti has 28 entries of size 4 bytes each, and thus the
tables require 4 kB of memory. However, they are highly
redundant. For instance, we have that

T1[x] = (3 2 1 1)T • s(x)

= (2 1 1 3)T • s(x) ≫ 3 = T0[x] ≫ 3,

where ≫ denotes a bytewise rotation towards the least
significant byte. Thus, it is possible to compute all Ti by
rotating T0. Yet, having to perform these rotations would
cause a performance penalty. The idea thus is to use one
table T the entries of which are doubled entries of T0. That
is, if T0 has entries of the form (abcd), those of T are of
the form (abcdabcd). We then have, e.g.,

T1[x] = 32 bit word at offset 3 in T [x].

While saving 2 kB of memory and thus reducing the L1
footprint of the implementation substantially, this approach
also allows to avoid the rotations by accessing T at the
correct offsets.

While the above techniques work for most of AES, there
are basically two ways to implement the last round which
differs from the other rounds, cf. (1). First, an additional
lookup table can be used for s(X̃) instead of M • s(X̃).
Alternatively, one can reuse the existing lookup table(s)
by accessing them at appropriate positions. While the first

technique can be exploited to identify where an encryption
ends (and thus also to identify the first or last round of
an encryption) by checking for memory accesses into this
new table, this is not possible in the latter situation, as the
observed memory accesses are indistinguishable from the
previous rounds. Thus, in the latter situation most previous
attacks [6], [7] cannot be executed. In particular this is the
case for the compressed tables implementation of OpenSSL
0.9.8.

III. BREAKING AES GIVEN IDEAL MEASUREMENTS

In this section, we show how the full secret AES key
can be recovered under the assumption of ideal cache
measurements. That is, we assume that a spy process can
observe all cache accesses performed by a victim process
in the correct order. Making this assumption considerably
eases the presentation of our key recovery techniques. We
will show how it can be dropped in §IV.

A. Using Accesses from Two Consecutive Rounds

As discussed in §II-A, having recorded the memory
accesses into the lookup tables allows one to infer l =
c−min(0, b− d) bits of the secret index, where the lookup
table has 2c entries of 2d bytes each, and where a cache line
can hold 2b bytes. We therefore introduce the notation x∗

to denote the l most significant bits of x, and also extend
this notation to vectors. In our case, we have c = 8 and
d = 3. If, for instance, we assume b = 6 we have l = 5 and
consequently

110010002
000100112
100100112
001010102

∗

=

110012
000102
100102
001012

 .

For ease of presentation and because of its high practical
relevance on current CPUs will fix b = 6 for the remainder
of this paper. However, the attack conceptually also works
for other values of b, with a higher efficiency for b < 6 and
a lower efficiency if b > 6.

From (2) it is now easy to see that the following equations
are satisfied:

k∗i = y∗
i
⊕ (M • s(x̃i))

∗ 0 ≤ i ≤ 3 . (4)

Each of these equations specifies a set Ki ⊆ {0, 1}4l of
partial key column candidates. Namely, we define Ki to
consist of all elements k∗i ∈ {0, 1}4l for which the measured
x̃∗i can be completed to a full four byte vector x̃i satisfying
(4). These sets can be computed by enumerating all 232−4l

possible values of x̃i.
The cardinality of Ki turns out to depend on x̃∗i , and

so does the probability that some random k∗i ∈ {0, 1}4l is a
partial key column candidate. As we need to argue about this
probability we compute the expected cardinality of the Ki

by assuming that the x̃∗i are equally distributed in {0, 1}4l.

494

l |{0, 1}4l| E[|Ki|] pl = E[|Ki|]/|{0, 1}4l|
1 24 24 1
2 28 28 1
3 212 212 1
4 216 214.661... 0.3955 . . .
5 220 211.884... 3.6063 . . . · 10−3

6 224 27.9774... 1.5021 . . . · 10−6

7 228 24 5.9604 . . . · 10−8

8 232 1 2.3283 . . . · 10−10

Table 1. Depending on the number l of leaked bits, only a fraction pl
of the keys in {0, 1}4l can be parts of the secret key’s ith column, if x∗

i
and y∗

i
are known. Here, E denotes the expectation value of the random

variable |Ki|.

Even though the encryption process is deterministic, this
assumption seems to be natural, as otherwise the different
states within an encryption would very likely be strongly
biased, resulting in a severe security threat to AES.

Table 1 displays the expected sizes of Ki for all possible
values of l. The last column of the table states the probability
pl that a random k∗i ∈ {0, 1}4l is a partial key column
candidate for a random x̃∗i . One can see that for 1 ≤ l ≤ 3
every x̃∗i can be completed to a x̃i satisfying (4). Thus, in
this case, this approach does not yield any information about
the secret key K. On the other hand, for l = 8 the exact
entries of the lookup table accessed by the victim process
can be monitored and the key can be recovered from the
states of two consecutive rounds only. In the interesting case
where 3 < l < 8 we learn a limited amount of information
about the secret key. We will be concerned with this case in
the following.

B. Using Accesses from Continuous Streams

The observations of the previous section typically cannot
be directly exploited by an attacker. This is because for
implementations of AES using compressed tables it is hard
to precisely determine where one round ends and where
the next one starts. Rather, an attacker is able to monitor
a continuous stream of memory accesses performed by the
victim process. Consequently, we will show how the key
can be reconstructed from observations of multiple, say M ,
encryptions.

We remark that the order of memory accesses within each
round is implementation dependent, but the single rounds are
always performed serially, and each round always requires
16 table lookups. Thus, as (4) puts into relation states of
consecutive rounds, it is always possible to complete all four
equations (i.e., for i = 0, . . . , 3) within the first 31 memory
accesses after the first access in a round.

Assume now that an attacker is able to observe 160M +
31 = N + 31 memory accesses. This means that quanti-
tatively the accesses of M full encryptions are observed,
but we do not require that the first observed access also is
the first access of an encryption. The 31 remaining accesses
belong to the (M + 1)st encryption. On a high level, to

circumvent the problem of not being able to identify round
ends/beginnings, we now perform the following steps:
• We treat each of the first N observed memory accesses

as if it was the beginning of an AES round.
• For each of these potential beginnings, we compute

the sets of potential key column candidates. For each
element of {0, 1}4l we thereby count how often it lies
in these sets.

• From these frequencies we derive the probability that
a given element of {0, 1}4l is a correct part of the
unknown key.

More precisely, for any of the potential N beginnings of
an AES round, we compute the sets Ki of partial key column
candidates for i = 0, . . . , 3, and count how often each k∗i ∈
{0, 1}4l also satisfies k∗i ∈ Ki. We denote this frequency by
fi(k

∗
i). Because of the 31 last monitored memory accesses,

we have enough observations to complete (4) for any of
these N offsets.

One can now see that k∗i is an element of Ki at least zk∗
i
M

times, if k∗i is the truncated part of the correct ith column
of a round key in zk∗

i
different rounds. Put differently, we

have fi(k∗i) ≥ zk∗
i
M . For each of the remaining N−zk∗

i
M

wrong starting points we may assume that k∗i occurs in Ki

with probability pl. This is, because solving (4) for wrong
values of x∗i ,y

∗
i

should not leak any information about
the correct key, even if x∗i ,y

∗
i

are not fully random, but
overlapping parts of correct values from subsequent rounds.
In our experiments this assumption proved to be sufficiently
satisfied for our purposes.

Denoting the binomial distribution for n samples and
probability p by Binomial(n, p), we can now describe the
properties of fi(k∗i) as follows:

fi(k
∗
i) ∼ Binomial(N − zk∗

i
M,pl) + zk∗

i
M

E[fi(k
∗
i)] = Npl + zk∗

i
M(1− pl)

V[fi(k
∗
i)] = (N − zk∗

i
M)pl(1− pl) .

From these equations one can see that every k∗i occurring
in a round key causes a peak in the frequency table. We
can now measure the difference of these peaks and the large
floor of candidates k∗i which do not occur in a round key.
This difference grows linearly in the number of observed
encryptions M . On the other hand, the standard deviation
σ[fi(k

∗
i)] =

√
V[fi(k

∗
i)] only grows like the square root

of M (remember that N = 160M). Thus, the higher the
number of encryptions, the better the peaks can be separated
from the floor.

Using the fi(k∗i) and the Bayes Theorem [32], [33] it is
now possible to compute a posteriori probabilities qi(k∗i)
that a given k∗i really occurred in the key schedule of AES.

C. Key Search

In the previous section we assigned probabilities to partial
key column candidates, such that only those occurring in the

495

correct key schedule have a high probability while all others
do not. Before describing our key search heuristic, we now
show how these probabilities can be used to assign scores
to sets of partial key column candidates as well.

Let therefore S be a set of partial key column candidates,
and let each element in S be tagged with the position of the
key schedule it is a candidate for. The score of S is then
given by the mean log probability of the elements in S:

h(S) =
1

|S|
∑
k∗
i∈S

log qi(k
∗
i) .

We now search for the correct unknown key. Loosely
speaking, our technique outputs the K for which the mean
log probability over all partial key columns in the whole key
schedule is maximal. The algorithm stated below starts by
fixing one entry of the key schedule which has a good score.
It then adds another element to obtain a larger fraction of the
whole schedule, which in turn forces one to fix even more
entries, cf. Figure 2. Depending on the score of the resulting
set it repeats this step or postpones the further investigation
of the set and continues with another one with a higher score.
This is repeated until a full key schedule with a high score
is found.

• We start by searching for partial key column candidates
for ki

3

∗
, i.e., for the last column of the ith round key.

Therefore, we initialize a heap containing singletons for
all possible values of k∗3, sorted by their score h({k∗3}).

• The topmost element of the heap, {ki
3

∗} is removed,
and combined with all partial key column candidates
k∗3, interpreted as candidates for ki+1

3

∗
, i.e., as partial

key column candidates for the last column of the
(i + 1)st round’s key. As can be seen from Figure 2,
combining {ki

3

∗} with a candidate for ki+1
3

∗
also

implies fixing ki+1
2

∗
because of the relation of round

keys. We denote this operation of adding a partial key
column candidate ki+1

3

∗
and all associated values to

{ki
3

∗} by]. All the resulting sets {ki
3

∗}]{ki+1
3

∗} are
added to the heap, according to their scores.
This step is applied analogously whenever the topmost
element of the heap does not at the same time contain
candidates for ki

3

∗
and ki+3

3

∗
.

• If the topmost element S of the heap already contains
a candidate for ki+3

3

∗
, we compute the combinations

S]{ki+4
3

∗} for all possible choices of ki+4
3

∗
as before.

However, because of the nonlinear structure of the
key schedule of AES, we are now able to put into
relation ti+3∗ with parts of ki+3

3 , and check whether the
nonlinearity can be solved for any i, i.e., for any fixed
position of S in Figure 2 (there, we indicated the case
i = 2). If this is not the case, we discard S] {ki+4

3

∗},
otherwise we add it to the heap.
We proceed analogously for ki+5

3

∗
.

• Let now the topmost element of the heap S already
contain candidates for ki

3

∗
up to ki+5

3

∗
.

From Figure 2 we can see that given four kj
i in a line

allows to fill the complete key schedule. Given S, we
already fixed 4 ·4 · l = 80 bits of such a “line”. Further,
solving the nonlinearities in the key schedule yields
24 more bits. That is, only 24 bits of the potential key
remain unknown. We now perform a brute-force search
over these 224 possibilities at each possible position of
S in the key schedule.
For all possible completions of ki

3

∗
, . . . ,ki+3

3

∗
, we

compute the whole key schedule, i.e., we compute kj
i

for i = 0, . . . , 3, j = 1, . . . , 9 and compute the score
for {kj

i

∗
: i = 0, . . . , 3, j = 0, . . . , 9}. We store the key

corresponding to the set with the highest score, together
with its score.
This step can be implemented efficiently because the
solved nonlinearity typically only has 1 solution. In the
rare case that there are more solutions, the above step
is performed for either of them.

• We now continue processing the heap until its topmost
element has a smaller score than the stored full key. In
this case, we output the stored key and quit.
Typically the output of our algorithm is the key sched-
ule with a maximum score, as usually the score of a
set decreases when extending it. This is because even
when adding a candidate with very high score to some
set of partial key column candidates, most often other
parts with worse scores also have to be added due to
the structure of the key schedule.

We remark that the symmetry of the key schedule can be
used to increase the efficiency when actually implementing
our attack in software. For instance, a triangle S with some
fixed “base line” has the same score h(S) as the triangle
flipped vertically. For this reason, the score only has to be
computed for one of these triangles in the first two steps of
our attack.

IV. ATTACKING AES IN THE REAL WORLD

In the previous section we showed how the full secret
key can efficiently be recovered under the assumption that
the cache can be monitored perfectly. That is, we assumed
that an attacker is able to observe any single cache access
performed by the victim process. We now show how our
attack can be carried out in the real world where this
idealization is no longer satisfied. We therefore first describe
the way the task scheduler of modern Linux kernel works,
and explain how its behavior can be exploited for our
purposes. We then briefly recapitulate the concept of neural
networks, and show how they can be used by an attacker to
clean inaccurate measurements.

496

⊕ ⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

k0
0 k1

0 k2
0 k3

0 k4
0 k5

0 k6
0 k7

0 k8
0 k9

0 k10
0

k0
1 k1

1 k2
1 k3

1 k4
1 k5

1 k6
1 k7

1 k8
1 k9

1 k10
1

k1
2 k2

2 k3
2 k4

2 k5
2 k6

2 k7
2 k8

2 k9
2 k10

2

k0
3 k9

3 k10
3

k0
2

k1
3 k2

3 k3
3 k4

3 k5
3 k6

3 k7
3 k8

3

10

⊕

≫

s 20

≫

s

≫

s 36

⊕
1b

≫

s

⊕
80

⊕

≫

s40

≫

s

⊕

≫

s

⊕

≫

s

≫

s

≫

s 0201

⊕

⊕

⊕ ⊕
04 08

⊕

Figure 2. Key schedule of the 128 bit variant of AES. By kn
m we denote the mth column of the nth round key. The tn are temporary variables without

any further semantics. The bottommost elements, i.e., k0
i , are passed as inputs to the nonlinearity at the top. During the key search, incrementally parts of

the key schedule are fixed in order to find a full key schedule with maximal score.

A. CFS – The Completely Fair Scheduler

Scheduling is a central concept in multitasking OS where
CPU time has to be multiplexed between processes, creating
the illusion of parallel execution. In this context there are
three different states a process can possibly be in (we do not
need to distinguish between processes and threads for now):

• A running process is currently assigned to a CPU and
uses that CPU to execute instructions.

• A ready process is able to run, but temporarily stopped.
• A blocked process is unable to run until some external

event happens.

The scheduler decides when to preempt a process (i.e., set
it from running to ready) and which process to activate
next when a CPU becomes idle (i.e., set it from ready to
running). This is a difficult problem, because of the multiple,
conflicting goals of the scheduler:

• guaranteeing fairness according to a given policy,
• maximizing throughput of work that is performed by

processes (i.e., avoid wasting time on overhead like
context switching and scheduling decisions) and

• minimizing latency of responses to external events.

Starting from Linux kernel 2.6.23, all Linux systems are
equipped with the Completely Fair Scheduler (or CFS) [34],
whose general principle of operation we describe in the
following. Its central design idea is to asymptotically behave
like an ideal system where n processes are running truly
in parallel on n CPUs clocked at 1/nth of normal speed
each. To achieve this on a real system, the CFS introduces
a virtual runtime τi for every process i. In the ideal system,
all virtual runtimes would increase simultaneously and stay
equal when the processes were started at the same time and
never block. In a real system, this is clearly impossible, as
only the running process’s virtual runtime can increase at
a time. Therefore CFS keeps a timeline (an ordered queue)
of virtual runtimes for processes that are not blocked. Let

virtual

runtime

time

process 1

process 2

process 3

maximum

“unfairness”

reached

Figure 3. Functioning of the Completely Fair Scheduler. Here, three
process are running concurrently. After process 1 was the assigned the CPU
for some time, process 2 is the next to be activated to keep the unfairness
among the different processes smaller than some threshold.

the difference between the rightmost and leftmost entries be
∆τ = τright − τleft. This difference of the virtual runtimes
of the most and least favorably scheduled processes can be
interpreted as unfairness, which stays always zero in an ideal
system. CFS lives up to its name by bounding this value
above by some ∆τmax. It always selects the leftmost process
to be activated next and preempts the running rightmost
process when further execution would result in ∆τ ≥ ∆τmax.

This logic is illustrated in Figure 3 where three processes
are running on a multitasking system. At the beginning,
process 1 is the next to be activated because it has the least
virtual runtime. By running process 1 for some time the
unfairness is allowed to increase up to ∆τmax. Then CFS
switches to process 2, which became the leftmost entry on
the timeline in the meantime. This procedure is repeated
infinitely so that every process asymptotically receives its
fair share of 1/nth CPU computing power per time.

A very important question is how to compute the virtual
time of a processes which blocked at τblock when it is
unblocked again. We denote this computed virtual runtime
by τunblock. Following a concept called sleeper fairness it is
desirable that the process is activated as soon as possible and
given enough time to react to the event it was waiting for

497

Time

Thread i

Thread i+1

Victim process

OS kernel

twakeup

measure

accesses

program timer
busy wait

measure

accesses

tsleep

Figure 4. Sequence diagram of our denial of service attack on CFS.
Multiple threads run alternatingly and only leave very small periods of
time to the victim process.

with low latency. In CFS terms this means assigning it the
lowest possible virtual runtime while not violating CFS’s
invariants: to not exceed the maximum unfairness it must
hold that τunblock < τright −∆τmax. Also, the virtual runtime
must not decrease by blocking and unblocking to prevent a
trivial subversion of CFS’s strategy. Therefore τblock needs to
be remembered and serves as another lower bound. Finally,
we get

τunblock = max(τblock, τright −∆τmax).

By blocking for a sufficiently long time, a process can ensure
that it will be the leftmost entry on the timeline with τleft =
τright−∆τmax and preempt the running process immediately.

B. A Denial of Service Attack on CFS

On a high level, our spy process S measures the memory
accesses of the victim process V as follows: It requests
most of the available CPU time, and only leaves very
small intervals to V . By choosing the parameters of S
appropriately, V will only be able to advance by one memory
access on average before it is preempted again. Then, S
accesses each entry of the lookup table, and checks whether
a cache hit, or a cache miss occurs. Next V is again allowed
to run for “a few” CPU cycles, and V measures again, etc.

In this section, we describe how the sleeper fairness of
CFS can be exploited for the denial of service (DoS) attack
underlying our spy process. The procedure for measuring
cache accesses can be found in §IV-C.

When getting started, our spy process launches some hun-
dred identical threads, which initialize their virtual runtime
to be as low as possible by blocking for a sufficiently long
time. Then they perform the following steps in a round-robin
fashion, which are also illustrated in Figure 4:
• Upon getting activated, thread i first measures which

memory accesses were performed by V since the
previous measurement.

• It then computes tsleep and twakeup, which denote the
points in time when thread i should block and thread
i + 1 should unblock. It programs a timer to unblock
thread i+ 1 at twakeup.

• Finally, thread i enters a busy wait loop until tsleep is
reached, where it blocks to voluntarily release the CPU.

In the time where no spy thread is active the kernel first
activates the victim process (or some other process running
concurrently on the system). This process is allowed to run
until the timer unblocking thread i + 1 expires. Because
of the large number of threads and the order they run,
their virtual runtimes will only increase very slowly. Thus,
upon unblocking a spy thread is the leftmost element in
the timeline of CFS and the currently running process is
immediately preempted. This mechanism ensures that S
immediately regains control of the CPU after V ran.

Typically, twakeup − tsleep is set to about 1500 machine
cycles. Subtracting time spent executing kernel code and for
context switching, this leaves less than 200 cycles for the
CPU to start fetching instructions from V , decode and issue
them to the execution units and finally retire them to the
architecturally visible state, which is saved when the timer
interrupts. When V performs memory accesses which result
in cache misses, these few hundreds cycles are just enough
to let one memory access retire at a time, on average.

Because of different timers used within the system, accu-
rately setting tsleep and twakeup is a challenging issue. In a
first step, we have to find out the precise relation between
the time stamp counter (in machine cycles), and the wall
time of the OS (in nanoseconds as defined by the POSIX
timer API). This can be achieved by repeatedly measuring
the CPU time using the rdtsc instruction and the OS time,
and interpolating among these values. This approximation
only has to be performed once for every hardware setting.
For our test environment, we got 0.6672366819 ns per CPU
cycle. When starting our spy process the offset of the time
stamp counter to the OS time is measured, which enables us
to convert time measured by rdtsc to OS time with very
high accuracy.

Since newer Linux versions change the CPU clock to save
power when the idle thread runs, a dummy process with
very low priority is launched to prevent the idle thread from
changing the linear relationship between OS time and time
stamp counter.

But even with exact computations of twakeup and tsleep there
are still other sources of inaccuracy. First, the time spent
in the OS kernel stays constant for many measurements,
but sometimes abruptly changes by hundreds of machine
cycles. This is dynamically compensated by a feedback
loop that adjusts twakeup − tsleep according to the rate of
observed memory accesses. Second, the clock and timer
devices do not actually operate with nanosecond accuracy
as suggested by their APIs. As a result the actual time
when the timer expires lies in an interval of about ±100
machine cycles around twakeup for our hardware setting. In
theory this could also be compensated with a more complex
computational model of the hardware. However, assuming a
linear relationship between the time stamp counter and OS
time is sufficient for our purposes.

To hide the spy process from the user twakeup − tsleep is

498

#define CACHELINESIZE 64
#define THRESHOLD 200
unsigned measureflush(const uint8_t *table,

size_t tablesize,
uint8_t *bitmap)

{
size_t i;
uint32_t t1, t2;
unsigned n_hits = 0;

for (i = 0; i < tablesize/CACHELINESIZE; i++)
{

__asm__ (
"xor %%eax, %%eax \n"
"cpuid \n"
"rdtsc \n"
"mov %%eax, %%edi \n"
"mov (%%esi), %%ebx \n"
"xor %%eax, %%eax \n"
"cpuid \n"
"rdtsc \n"
"clflush (%%esi) \n"

: /* output operands */
"=a"(t2), "=D"(t1)

: /* input operands */
"S"(table + CACHELINESIZE * i)

: /* clobber description */
"ebx", "ecx", "edx", "cc"

);

if (t2 - t1 < THRESHOLD) {
n_hits++;
bitmap[i/8] |= 1 << (i%8);

} else {
bitmap[i/8] &= ˜(1 << (i%8));

}
}

return n_hits;
}

Listing 5. Complete C source code for checking which parts of a lookup
table table have been accessed by some process shortly before.

dynamically increased if no memory accesses are detected
for an empirically set number of measurements. This allows
the system to react to the actions of an interactive user with
sufficient speed while no victim process is running.

Remark: Note that in spirit our DoS attack is similar
to that of Tsafrir et al. [35]. However, while their attack
is still suited for the current BSD family, it does not work
any more for the last versions of the Linux kernel. This is
because the logics of billing the CPU time of a process has
advanced to a much higher granularity (from ms to ns) and
no process can be activated without being billed by CFS any
more, which was a central corner stone of their attack.

C. Testing for Cache Accesses

In the foregoing we described how the fairness condition
of the CFS can be exploited to let the victim process advance
by only one table lookup on average. We next show how the
spy process can learn information about this lookup. That is,
we show how the spy process can find the memory location
the victim process indexed into, up to cache line granularity.

An implementation of this procedure in C is given in
Listing 5, which we now discuss in detail. On a high level, it
measures the time needed for each memory access into the

lookup table and infers whether or not this data had already
been in the cache before.

We start by describing the inner block of the for loop.
The __asm__ keyword starts a block of inline assembly,
consisting of four parts: the assembly instructions, the out-
puts of the block, its inputs, and a list of clobbered registers.
These parts are separated by colons. For ease of presentation,
we describe these blocks in a different order in the following.

• Inputs: Only one input is given to the assembly block,
namely a position in the lookup table. The given
command specifies to store this position into the register
%esi. The lookup table is traversed during the outer
for loop, starting at the very beginning in the first
iteration.

• Assembly Instructions: The first instruction,
xor%eax, %eax is a standard idiom to set the
register %eax to zero, by XORing it with its
own content. Then, the cpuid instruction stores
some information about the CPU into the registers
%eax,%ebx,%ecx,%edx. We do not need this
information in the following. The only purpose of
these two instructions is the side effect of the latter:
namely, cpuid is a serializing instruction, i.e., it
logically separates the instructions before and after
cpuid, as the CPU must not execute speculatively
over such an instruction. Then, a 64 bit time stamp
is stored into %edx:%eax by using the rdtsc
instruction. The most significant bits of this time
stamp are discarded, and the least significant bits
(which are stored in %eax) are moved to %edi to
preserve them during the following operations. Having
this, the procedure accesses data at address %esi in
the main memory and stores it to %ebx. Similar to the
beginning, the CPU is forced to finish this instruction,
before again a time stamp is stored to %eax, and
the accessed data is flushed from the cache again by
flushing its cache line using clflush(%%esi).

• Outputs: In each iteration, the least significant bits of
both time stamps are handed back: the content of the
register %%eax is stored to t2, and that of %%edi is
stored to t1.

• Clobbered Registers: The last block describes a list
of clobbered registers. That is, it tells the compiler
which registers the assembly code is going to use and
modify. It is not necessary to list output registers here,
as the compiler implicitly knows that they are used.
The remaining cc register refers to the condition code
register of the CPU.

Now, depending on the difference of t1 and t2, the
procedure decides whether the accesses resulted in a cache
hit. These cache hits and misses describe whether or not
the victim processes accessed the corresponding cache line
in its last activation with high probability. The THRESHOLD

499

of 200 CPU cycles has been found by empirical testing. Note
here that the serializing property of the cpuid instructions
forces the CPU to always execute the same instructions
to be timed between two rdtsc instructions, disregarding
superpipelining and out-of-order instruction scheduling.

These steps are performed for the whole lookup table,
starting at the beginning of the table in the memory (i=0)
and counting up in steps of size of the cache line, as this
is the highest precision that can be monitored. The number
n_hits of cache hits and a bitmap bitmap containing
information about where cache hits and where cache misses
occurred are then handed back to the caller of the function.

D. Using Neural Networks to Handle Noise

Naturally, the measurements obtained using the tech-
niques from §IV-B and §IV-C are not perfect, but overlaid
with noise. This is because not only the victim and the spy
process, but also other processes are running concurrently
on the same system. They also perform memory accesses,
which can cause flawed identifications of cache hits and
misses. Also, sometimes the spy process will be able to
advance by more than only one memory access at a time.
Further, massive noise can be caused by prediction logic of
the CPU, cf. §IV-D4.

Thus, filtering out noise is a core step in our attack, which
we achieve by using artificial neural networks (ANNs). In
the following, we describe the configuration and training of
the ANNs we use.

1) Introduction to Artificial Neural Networks: An arti-
ficial neural network [36]–[39] is a computational model
inspired by the workings of biological neurons. Simply
speaking, neurons are interconnected nerve cells, commu-
nicating via electrical signals. They fire a signal when their
summed inputs exceed an activation threshold.

An ANN can be represented as a directed graph with a
value attached to each of its nodes. Some of the nodes are
labeled as input or output nodes. Except for the input nodes,
the value of each node is computed from the values attached
to its predecessors. For a node i, let zi denote the value
associated with i and for an edge from j to i, let wij be
an associated weight. The weight wi0 does not belong to
an edge, it only serves to bias the sum that is fed into i’s
activation function σ, which typically is a sigmoid function.
Then zi is computed as

zi = σ
(
wi0 +

∑
wijzj

)
.

Let x be the vector of values assigned to the input nodes,
y the vector of values computed for the output nodes and
w the vector of weights. With these, the network computes
a function y = fw(x). By choosing an appropriate network
structure, activation function and weights, a neural network
can be used to approximate an arbitrary target function.
Usually, the network structure and activation function are
fixed first. Finding values for the weights is then formulated

as an optimization problem, i.e., one searches for a w
minimizing the error, which is the distance between fw and
the target function (where difference is, e.g., the mean square
error). This problem can seldom be solved algebraically and
therefore nonlinear optimization techniques are used in a
training phase to find sufficiently good weights. We refer to
standard literature on artificial neural networks for detailed
discussions [38], [39].

2) Overview of our ANNs: We use two neural networks to
remove noise from our measurements: the many stray cache
hits are tackled in the first and inaccuracies of the DoS on
the scheduler in the second.

Measurements are made as described in §IV-C and rep-
resented by a rectangular bitmap. It is generated by using
the result of each call to measureflush() in the spy
process as one column concatenating them, so that columns
are sorted chronologically from left to right. This is shown
in Figure 6(a), hits and misses recorded as 1 and 0 are shown
by black and white pixels in the bitmap. Because of the size
of the lookup table (2 kB) and the size of each cache line
(26 = 64 B), 32 addresses have to be considered. Here, 61
activations are shown and therefore the bitmap’s size is 61
by 32 pixels.

The first network outputs the probability that at a given
pixel in the bitmap a memory access was actually performed
in the victim since the last measurement. For this, a rectan-
gular area centered on the pixel of interest is used as input
vector. We use a square of edge length 23 filled with zeros
where it extends beyond the borders of the bitmap. The
probabilities generated for all pixels in the input bitmap are
again organized in columns.

We then use a second ANN to estimate how many
memory accesses the victim performs between two mea-
surements. This is important for accurately estimating the
timeline of memory accesses. It is not guaranteed that
exactly one memory access retires in the victim between
two measurements because of inaccuracy of the scheduler
DoS. Sometimes no memory access may retire, because the
victim did not run at all or for too few instructions. At other
times, several memory accesses retire, because the victim
was interrupted too late. The input of this second ANN is
the sum of probabilities over one column produced by the
first ANN. Its output is a value in R, which is used to resize
the width of the corresponding column of probabilities. After
resizing and concatenating the columns in order, the result
is a map of probabilities shown in Figure 6(b). In one step
in the horizontal direction, one memory access is performed
in the victim.

3) Parameters and Structure of our ANNs: We now give
a concise summary of the design of our neural networks,
whereas we assume that the reader is familiar with ANNs.

The first ANN is a multilayer neural network. It has
232 = 529 input nodes, one layer of 30 hidden nodes and
one output node. Every hidden node has incoming edges

500

Figure 7. Map of weights for the hidden layer in the first neural network. Each square of 23 by 23 pixels represents the weights for the edges from all
input nodes to one hidden node. To compute the weighted sum of inputs for a hidden node one can think of placing one of these squares on top of the
bitmap of inputs, centered on the pixel of interest. Then every input value is multiplied by the value indicated by the pixel above it. Darker shades indicate
negative weights and lighter shades positive weights.

(a) Input bitmap of measurements.

(b) Output map of probabilities.

Figure 6. Input and output of our artificial neural networks. The input
is given by a bitmap, where black squares indicate observed cache hits.
One step in the horizontal direction corresponds to the time between two
measurements. The output of the first ANN are probabilities that memory
accesses were actually performed by the victim process in a cache line.
Higher probabilities are indicated by a darker shade. Combined with the
estimation of the second network how many accesses were performed
between two measurements, this gives a map where one step in the
horizontal direction corresponds to one memory access in the victim.

from all input nodes and one outgoing edge to the output
node. The activation functions are tanh for all hidden nodes
and 1/(1 + e−x) − 1

2 for the output node. Note that the
latter activation function is tanh rescaled to yield an output
in the interval [0, 1], which can directly be interpreted as
probability. We picked the cross entropy as error function
used during the training phase. This allows for a faster
training than using the mean square error [39]. Further, the
cross entropy also has preferable numerical properties in our
specific case.

The training was done in generations. A new generation
was generated by taking the best one or two networks
from the previous generation (or an empty ANN at first)
as a parent. Then children were created by adding a few
randomly initialized hidden nodes. Sometimes also manual

tweaking was necessary when weights either approached
zero or very large values. Then the new generation was
trained on batches from a training set of about 230 samples
and finally on the whole set. The L-BFGS algorithm was
used for numerical optimization. This was repeated until
we arrived at a network where neither manual tweaking nor
adding more hidden nodes improved the error. The resulting
weights for the hidden nodes are shown in Figure 7. It can
be seen that the network seems to detect patterns centered
on the same row or the same column as the pixel of interest.
Also, the patterns most often consist of a horizontal line of
pixels with the same value, starting from the left up to one
distinguished pixel. This pixel is surrounded by pixels of
differing value and to the right of it the line continues with
pixels of this value.

The second network is used to estimate the number n
of memory accesses performed between two measurements
from the sum of probabilities x calculated by the first ANN
for one column. For sake of brevity we skip the elaborate
description of its structure, because it can easily be replaced
by any other method for function approximation. It is trained
to approximate the estimator n̂(x) that minimizes the mean
squared error E[(n̂(x)− n)2] over all training samples.

4) Sources of Noise: As can be seen in Figures 6 and 7,
the noise obtained from real measurements is not entirely
unstructured. We now briefly explain the sources of this
structure.

The vertical lines in Figure 6(a) stem from prediction log-
ics of the cache, which detects linear memory access patterns
and prefetches data accordingly. Thus, when the encryption
process accesses addresses x and x+δ, sometimes the cache
lines containing x+ 2δ and x+ 3δ will be filled as well.

The horizontal lines can be explained by speculative
execution. On a high level, if parts of the CPU are idle, it
looks ahead in the instruction queue, and computes results
in advance. Thus, the results are already available when
the according instruction is to be retired and the latency
of the instruction execution is hidden from the user. In this
case, memory loads are issued to the cache as soon as the
addresses are known and cache lines are filled. But before
the data from memory can actually be used and written into
an architecturally visible register, an interrupt preempts the

501

program. This also explains why most of the horizontal lines
in Figure 6(a) end in a real memory access in Figure 6(b).

The remaining noise is due to other processes running
concurrently on the same system and inaccuracy of the DoS
on the scheduler.

E. Results

In the following we present measurement results that
allows to assess the effectiveness of our attack in practice.
Our spy process was specified to start 250 threads and to
monitor 100 encryptions. The following numbers, which
characterize the phases of our attack, were obtained on our
test platform specified in §I-B.
• Running time: Performing 100 AES encryptions (i.e.,

encrypting 1.56 kB) takes about 10 ms on our platform.
This running time blows up to 2.8 seconds, when
memory accesses are monitored by the spy process.
We believe that this delay is sufficiently small for the
attack to go unnoticed. In fact, the user might attribute
the delay to, e.g., high disk activity or network traffic.

• Denoising: The obtained measurements are first refined
by applying our neural networks. This step approx-
imately takes 21 seconds when running as a normal
process on the target machine.

• Preparing key search: Next, the a posteriori probabili-
ties of all partial key column candidates are computed
by analyzing their frequencies, cf. §III-B. This step
approximately takes 63 seconds.

• Key search: Finally, the correct key is sought as ex-
plained in §III-C. The runtime of this step varies
between 30 seconds and 5 minutes, with an average
of about 90 seconds.

Thus, finding the key on average takes about 3 minutes.
However, if at all, the user will only notice the first few sec-
onds, as all other processes are executed as normal processes
without attacking the scheduler any more. Alternatively, the
data collected in the first step could be downloaded to, and
evaluated on, another machine. This data consists of one
bitmap of size 2l = 25 = 32 bits for each memory access,
cf. §IV-C. For each encryption 160 memory accesses are
monitored. Thus, 160 · 100 · 32 bits = 62.5 kB would have
to be downloaded.

V. EXTENSIONS

In the following we show how the key search algorithm
can be sped up, and how this can be used to extend our attack
to other key length as well. Furthermore, we explain how
the encrypted plaintext can be recovered without accessing
the ciphertext at all.

A. Accelerating the Key Search

If a higher number of encryptions can be observed by the
spy process, the key search of our attack can be accelerated
considerably. Using the notation from §III-B this is because

the peaks of the fi(k
∗
i) corresponding to the true partial

key column candidates become easier to separate from the
floor of wrong ones. This is because the expectation value of
fi(k

∗
i) grows much faster than its standard deviation. Thus,

after sufficiently many observations, i.e., for large N , the 9
correct candidates for each kj

i

∗
will exactly be given by the

partial key column candidates with the highest frequencies.
Now, the key search algorithm from §III-C can be short-

ened significantly, as for each kj
i

∗
only 9 choice are left

compared to 24·l = 220 before. Having assigned values of,
e.g., k2

3

∗
and k3

3

∗
, there will typically be at most one possible

solution for k3
2

∗
among the 9 possible values. This allows

one to implement the key search in a brute force manner.
On our test environment, 300 encryptions (i.e., 4.69 kB of

encrypted plaintext) are sufficient for this approach.

B. Extensions to AES-192 and AES-256

While our implementation is optimized for AES-128, the
presented key search algorithm conceptually can easily be
adopted for the case of AES-192 and AES-256. However,
the heap used in §III becomes significantly more complex
for key sizes larger than 128 bits. This problem does
not occur for the key search technique presented in the
previous paragraph, as its complexity is rather influenced
by the number of rounds than by the size of the ciphertext.
We leave it as future work to obtain practically efficient
implementations of either of these two techniques.

C. Decryption without Ciphertext

In previous work it was always implicitly assumed that
sniffing the network over which the ciphertext is sent is a
comparatively trivial task, and thus that obtaining the key is
sufficient for also recovering the plaintext. We go one step
further and show how our attack can be used to also recover
the plaintext without knowing the ciphertext. Because of
space limitations we will only describe the plaintext recovery
technique given ideal observations of the cache.

As in §III-B we assume that we have a continuous stream
of cache hits/misses, without knowing where one encryption
starts and the next one ends. Further, we assume that the
full key K has already been recovered. We then perform
the following steps to recover the plaintext without knowing
the ciphertext:
• As in §III-B, we consider each of the N possible offsets

in the stream of observations, and treat it as if it was the
beginning of an AES round. As earlier, we use xi,yi
to denote the ith column of the state matrix X before
and after the round.

• For each possible number of the inner round, i.e.,
j = 1, . . . , 9, and each column number, i.e., i =
0, . . . , 3, we now solve the following equation, under
the constraint that x∗i ,y

∗
i

are equal to the observed
values:

kj
i = y

i
⊕M • s(x̃i) .

502

Enumerating all possibilities shows that this equation
typically has 0 or 1 solutions, where is 0 is dominating.
For each j, we consider all possibly resulting state
matrices, i.e., all possible Xj = (x0,x1,x2,x3).

• For each Xj , we now compute the offset at which
the corresponding encryption started by just subtracting
16(j− 1) from the current offset. Further, we compute
the corresponding plaintext which can easily be done
as the key is already known.

• For each of the resulting plaintexts, we now count its
frequency. At some offset (namely, the correct starting
point of an encryption), the correct plaintext will occur
at least 9 times, whereas all other resulting plaintexts
will be randomly distributed by a similar argument as
in §III-A.

An ad hoc real-world implementation of this approach
takes about 2 minutes to recover the plaintext of a single
encryption, i.e., to reconstruct 16 B of the input. However,
this must be seen as a proof of concept, which leaves
much space for optimization, and which shows that it is
not necessary to know the ciphertext to recover both, the
key and the plaintext.

VI. COUNTERMEASURES

In the following we discuss mitigation strategies against
our attack, which we believe to be practical. They either get
rid of information leakage entirely, or at least limit leakage
to an extent which renders our attack impossible. For an
extensive list of countermeasures against access-driven cache
attacks we refer to [7].

A. Generic Countermeasures

Let us describe two generic countermeasures against
access-based cache attacks, which seem to be reasonably
efficient.

First, the OS could be adapted such that it offers the
possibility of pre-loading certain data each time a certain
process is activated. If, in our case, the lookup table T [x]
would be pre-loaded, a spy process would only see cache
hits, and could not infer any information about the secret
key. However, such a pre-loading mechanism only seems
to be reasonable if the lookup table is sufficiently small,
such as 2 kB in our situation. For lookup tables used in
asymmetric cryptography this is often not the case. Also,
the implementation of this feature might require substantial
work on the kernels of current operating systems.

Alternatively, the task scheduler could itself be hardened
against our (and similar) attacks. Namely, one could limit
the minimum time period between two context switches to,
e.g., 500µs. While such a bound is small enough to keep the
system responsive, denial of service attacks on the scheduler
similar to ours would no longer work.

B. Countermeasures for AES

One concrete mitigation strategy, which defeats our attack
has been realized in OpenSSL 1.0 [19]. In that implementa-
tion only the substitution tables S is stored, which contains
28 entries of 1 byte each. Thus, on standard x86 architectures
with a cache line size of 26 bytes we have that only l = 2
bits of each x∗i are leaked. Looking at Table 1 now shows
that we have p3 = 1, i.e., every k∗i ∈ {0, 1}4·2 is a valid
partial key column candidate for every x∗i and y∗

i
. For this

reason, our key search algorithm does not work anymore.
This mitigation strategy prevents our specific attack, but

it does not eliminate the problem completely, because it still
leaks information. Since AES was not designed to be secure
in a threat model where an attacker is able to learn any bits
of the xi, the implementation remains, at least potentially,
attackable. For instance, it might be possible to combine
information leaking in three or more rounds to infer possible
configurations of the lower, not directly leaking bits.

Finally, because of the prevalence and importance of AES,
we increasingly see hardware implementation of AES, which
render access-driven cache attacks impossible [26], [40],
[41].

VII. CONCLUSION AND OUTLOOK

The most obvious limitation of our attack is that it targets
a very specific software and hardware configuration (i.e.,
Linux OS, OpenSSL 0.9.8n, and single core x86 CPUs). In
the following we discuss in how far our attack can be made
more generic by extending it to a broader set of systems. In
general, we believe that it is very hard to render the attack to
be inherently generic, since it is sensitive to exact parameters
of the target system. In fact, we have put substantial effort
into fine tuning the attack, and have also experienced that
minor updates of the operating system required substantial
adjustments.

Yet we believe that the attack might be extended to other
operating systems and multi core CPUs. To port the attack
to other operating system, an intimate knowledge of task
scheduler mechanics is needed to implement a successful
DoS attack. According to our experience with the Linux
kernel, the scheduler is a moving target, subtly changing
from one release to another. With Linux understanding the
scheduler and these changes is a surmountable task, as it is
open source software. For a closed source operating system,
one would have to reverse engineer the scheduler first. This
of course tremendously increases the effort going into the
attack, but does not make it impossible.

We believe our results are relevant for modern CPUs
which typically have more than one core. Multiple cores
clearly complicate the attack on the task scheduler, because
the fundamental assumption that the victim is preempted
while the spy process is running is not satisfied any longer.
Yet, we believe that a dedicated attacker might overcome
this problem in certain cases. For example with CPU affinity

503

(either by explicitly using the OS’s APIs or by deceiving the
OS’s scheduler heuristics) the attacker can influence where
the victim will run and gain nearly the same amount of
control as it had in the single core scenario. The spy needs
to be distributed across multiple cores and has to perform
sophisticated synchronization. This is certainly a difficult
but not unsurmountable task. On the other hand, multi core
CPUs give the opportunity to an OS to defeat such attacks
by dedicating a whole CPU core to sensitive processes. That
core could even be isolated by not sharing its cache with
other cores.

Finally, as cloud computing and virtualization are be-
coming more and more prevalent, investigating to which
extent these systems are vulnerable to cache-based side
channel attacks is an interesting open problem. Ristenpart
et al. [42] demonstrate the existence of a cache-based side
channel between virtual machines in Amazon’s EC2 cloud
computing service. It seems very likely that their attack can
be improved significantly, e.g., by abusing mechanisms like
kernel same-page mapping (KSM) in Linux KVM, where
an attacker can share memory with a victim across virtual
machine boundaries and mount a powerful attack through
that channel.

Acknowledgments

We would like to thank Billy Brumley, the anonymous
reviewers and our shepherd, Adrian Perrig, for their valuable
comments and support.

REFERENCES

[1] J.-F. Gallais, I. Kizhvatov, and M. Tunstall, “Improved trace-
driven cache-collision attacks against embedded AES imple-
mentations,” in WISA ’10, ser. LNCS, Y. Chung and M. Yung,
Eds., vol. 6513. Springer, 2010, pp. 243–257.

[2] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi,
“Cryptanalysis of DES implemented on computers with
cache,” in CHES ’03, ser. LNCS, C. D. Walter, Ç. Koç, and
C. Paar, Eds., vol. 2779. Springer, 2003, pp. 62–76.

[3] B. Brumley and R. Hakala, “Cache-timing template attacks,”
in ASIACRYPT ’09, ser. LNCS, S. Halevi, Ed., vol. 5677.
Springer, 2009, pp. 667–684.

[4] C. Percival, “Cache missing for fun and profit,”
http://www.daemonology.net/hyperthreading-considered-
harmful/, 2005.

[5] O. Acıiçmez, B. Brumley, and P. Grabher, “New results
on instruction cache attacks,” in CHES 2010, ser. LNCS,
S. Mangard and F.-X. Standaert, Eds., vol. 6225. Springer,
2010, pp. 110–124.

[6] M. Neve and J.-P. Seifert, “Advances on access-driven cache
attacks on AES,” in SAC ’06, ser. LNCS, E. Biham and A. M.
Youssef, Eds., vol. 4356. Springer, 2006, pp. 147–162.

[7] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache at-
tacks on AES, and countermeasures,” Journal of Cryptology,
vol. 23, no. 1, pp. 37–71, 2010.

[8] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: The case of AES,” in CT-RSA ’06, ser.
LNCS, D. Pointcheval, Ed., vol. 3860. Springer, 2006, pp.
1–20.

[9] O. Acıiçmez, W. Schindler, and Ç. Koç, “Cache based remote
timing attack on the AES,” in CT-RSA ’07, ser. LNCS,
M. Abe, Ed., vol. 4377. Springer, 2007, pp. 271–286.

[10] D. J. Bernstein, “Cache-timing attacks on AES,”
http://cr.yp.to/papers.html, 2004, University of Illinois,
Chicago, US.

[11] M. Neve, J.-P. Seifert, and Z. Wang, “A refined look at
Bernstein’s AES side-channel analysis,” in ASIACCS ’06, F.-
C. Lin, D.-T. Lee, B.-S. Lin, S. Shieh, and S. Jajodia, Eds.
ACM, 2006, p. 369.

[12] J. Bonneau and I. Mironov, “Cache-collision timing attacks
against AES,” in CHES ’06, ser. LNCS, L. Goubin and
M. Matsui, Eds., vol. 4249. Springe, 2006, pp. 201–215.

[13] O. Acıiçmez and Ç. Koç, “Trace-driven cache attacks on
AES,” Cryptology ePrint Archive, Report 2006/138, 2006.

[14] X. Zhao and T. Wang, “Improved cache trace attack on
AES and CLEFIA by considering cache miss and S-box
misalignment,” Cryptology ePrint Archive, Report 2010/056,
2010.

[15] G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and
G. Palermo, “AES power attack based on induced cache miss
and countermeasure,” in ITCC ’05. IEEE Computer Society,
2005, pp. 586–591.

[16] C. Lauradoux, “Collision attacks on processors with cache
and countermeasures,” in WEWoRC ’05, ser. LNI, C. Wolf,
S. Lucks, and P.-W. Yau, Eds., vol. 74. GI, 2005, pp. 76–85.

[17] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” AES
Algorithm Submission, 1999.

[18] FIPS, Advanced Encryption Standard (AES). National
Institute of Standards and Technology, 2001,
http://csrc.nist.gov/publications/fips/. Federal Information
Processing Standard 197.

[19] OpenSSL, “OpenSSL: The Open Source toolkit for
SSL/TSL,” http://www.openssl.org/, 1998–2010.

[20] P. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” in CRYPTO ’96,
ser. LNCS, N. Koblitz, Ed., vol. 1109. Springer, 1996, pp.
104–113.

[21] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side chan-
nel cryptanalysis of product ciphers,” Journal of Computer
Security, vol. 8, no. 2/3, pp. 141–158, 2000.

[22] D. Page, “Theoretical use of cache memory as a cryptanalytic
side-channel,” Department of Computer Science, University
of Bristol, Tech. Rep. CSTR-02-003, June 2002.

[23] ——, “Defending against cache based side-channel attacks,”
Information Security Technical Report, vol. 8, no. 1, pp. 30–
44, April 2003.

504

[24] K. Tiri, O. Acıiçmez, M. Neve, and F. Andersen, “An ana-
lytical model for time-driven cache attacks,” in FSE ’07, ser.
LNCS, A. Biryukov, Ed., vol. 4593. Springer, 2007, pp.
399–413.

[25] E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert, “Software
mitigations to hedge AES against cache-based software side
channel vulnerabilities,” Cryptology ePrint Archive, Report
2006/052, 2006.

[26] S. Gueron, “Advanced Encryption Standard (AES) instruc-
tions set,” www.intel.com/Assets/PDF/manual/323641.pdf,
2008, Intel Corporation.

[27] R. Könighofer, “A fast and cache-timing resistant implemen-
tation of the AES,” in CT-RSA ’08, ser. LNCS, T. Malkin,
Ed., vol. 4964. Springer, 2008, pp. 187–202.

[28] “Intel 64 and IA-32 architectures optimization reference man-
ual,” http://www.intel.com/Assets/PDF/manual/248966.pdf,
2010, Intel Corporation.

[29] “Intel 64 and IA-32 architectures software developer’s man-
ual. Volume 3A: System Programming Guide, Part 1,”
http://www.intel.com/Assets/PDF/manual/253668.pdf, 2010,
Intel Corporation.

[30] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The
Advanced Encryption Standard. Springer, 2002.

[31] V. Rijmen, A. Bosselaers, and P. Barreto,
“Optimised ANSI C code for the Rijndael cipher,”
http://fastcrypto.org/front/misc/rijndael-alg-fst.c, 2000.

[32] M. Bayes, “An essay towards solving a problem in the
doctrine of chances,” Philosophical Transactions, vol. 53, pp.
370–418, 1763.

[33] J. Bernardo and A. Smith, Bayesian Theory. Wiley, 1994.

[34] I. Molnár, “Design of the CFS scheduler,”
http://people.redhat.com/mingo/cfs-scheduler/sched-design-
CFS.txt, 2007, Redhat.

[35] D. Tsafrir, Y. Etsion, and D. Feitelson, “Secretly monop-
olizing the cpu without superuser privileges,” in USENIX
Security ’07. USENIX, 2007, pp. 1–18.

[36] M. Jordan and C. Bishop, “Neural networks,” ACM Comput-
ing Surveys, vol. 28, no. 1, pp. 73–75, 1996.

[37] W. McCulloch and W. Pitts, “A logical calculus of the
ideas immanent in nervous activity,” Bulletin of Mathematical
Biophysics, vol. 5, no. 4, pp. 115–113, 1943.

[38] C. Bishop, Neural Networks for Pattern Recognition. Oxford
University Press, 1996.

[39] P. Simard, D. Steinkraus, and J. Platt, “Best practices for
convolutional neural networks applied to visual document
analysis,” in ICDAR ’03. IEEE Computer Society, 2003,
pp. 958–962.

[40] P. Ghewari, J. Patil, and A. Chougule, “Efficient hardware de-
sign and implementation of AES cryptosystem,” International
Journal of Engineering Science and Technology, vol. 2, no. 3,
pp. 213–219, 2010.

[41] M. Mali, F. Novak, and A. Biasizzo, “Hardware implemen-
tation of AES algorithm,” Journal of Electrical Engineering,
vol. 56, no. 9-10, pp. 265–269, 2005.

[42] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud! Exploring information leakage
in third-party compute clouds,” in CCS ’09, S. Jha and
A. Keromytis, Eds. ACM Press, 2009, pp. 199–212.

505

