
Timing- and Termination-Sensitive Secure Information Flow:
Exploring a New Approach

Vineeth Kashyap
UC Santa Barbara

vineeth@cs.ucsb.edu

Ben Wiedermann
Virginia Tech

benalan@cs.vt.edu

Ben Hardekopf
UC Santa Barbara
benh@cs.ucsb.edu

Abstract—Secure information flow guarantees the secrecy
and integrity of data, preventing an attacker from learning
secret information (secrecy) or injecting untrusted information
(integrity). Covert channels can be used to subvert these
security guarantees; for example, timing and termination
channels can, either intentionally or inadvertently, violate these
guarantees by modifying the timing or termination behavior
of a program based on secret or untrusted data. Attacks using
these covert channels have been published and are known to
work in practice—as techniques to prevent non-covert channels
are becoming increasingly practical, covert channels are likely
to become even more attractive for attackers to exploit.

The goal of this paper is to understand the subtleties
of timing- and termination-sensitive noninterference, explore
the space of possible strategies for enforcing noninterference
guarantees, and formalize the exact guarantees that these
strategies can enforce. As a result of this effort we create a
novel strategy that provides stronger security guarantees than
existing work, and we clarify claims in existing work about
what guarantees can be made.

I. INTRODUCTION

Secure information flow guarantees the secrecy and in-
tegrity of data, preventing an attacker from learning se-
cret information (secrecy) or injecting untrusted information
(integrity). A commonly desired guarantee is noninterfer-
ence: for secrecy, noninterference states that the behavior
of publically observable events cannot be influenced by
secret data; for integrity, it states that the behavior of trusted
events cannot be influenced by untrusted data. The task
of secure information flow is to identify information chan-
nels—mechanisms that are able to transmit information—
and prohibit leaks (information flow along those channels
that violates noninterference).

The most prevalent information channels addressed by
existing work are explicit and implicit channels, correspond-
ing to data and control dependencies in a program [32].
However, the most difficult types of information channels to
control are covert channels; these channels are not intended
by their nature to transmit information, but they can be
subverted for this task. This paper focuses on timing and
termination covert channels. These channels leak infor-
mation (intentionally or inadvertently) by modifying the
timing or termination behavior of a program based on secret

or untrusted data1. Timing and termination channels have
been used in practical attacks against secrecy (e.g., in web
browsers [8], [16] and cryptographic applications [10], [15],
[20], [25], [39]) and can also be a concern for integrity
(e.g., preventing denial-of-service attacks by isolating the
timing and termination behavior of a program from untrusted
inputs). The goal of this paper is to understand the subtleties
of timing- and termination-sensitive noninterference, explore
the space of possible strategies for enforcing noninterference
guarantees, and formalize the exact guarantees that these
strategies can enforce. As a result of this effort we create a
novel strategy that provides stronger guarantees than existing
work, and we clarify claims in existing work about what
guarantees can be made.

A. Noninterference Guarantees

While the basic concept of timing- and termination-
sensitivity is clear, there are different formal definitions of
these terms in the literature (e.g., Agat [2], Devriese and
Piessens [13], Giacobazzi and Mastroeni [17], and Hedin
and Sands [21]). These different formal definitions imply
different security guarantees for noninterfering programs;
the security implications of these different guarantees are
not always clear. These guarantees are partially ordered
by their strength, such that a stronger guarantee implies a
weaker guarantee. Many of the definitions of timing- and
termination-sensitive noninterference used to formally prove
claims about security employ weaker guarantees [2], [7],
[13], [17], [33], while published attacks against timing- and
termination-sensitive noninterference can only be prevented
using the stronger guarantees [8], [16].

In this paper we discuss different notions of timing-
and termination-sensitivity and give simple examples that
illustrate their different guarantees. We then formalize these
notions and prove for a variety of enforcement strategies the
specific guarantees that they can enforce. In the process, we
clarify existing work by Devriese and Piessens [13], one of

1Both of these channels can leak an arbitrary number of bits [5], [36].
Timing channels have a higher bandwidth than termination channels (which
need time exponential in the size of the leaked information), but termination
channels can also be problematic, e.g., if a few bits contain dangerous
information, or if an attacker can observe multiple runs of a program.

2011 IEEE Symposium on Security and Privacy

1081-6011/11 $26.00 © 2011 IEEE

DOI 10.1109/SP.2011.19

413

the most advanced works to date on enforcing timing- and
termination-sensitivity, by (1) revealing a mistaken formal
claim of security; (2) showing that an enforcement strategy
proven to provide a weak guarantee of security actually pro-
vides a stronger guarantee; and (3) answering open questions
in their paper about what guarantees can be provided.

B. Enforcing Noninterference

There are three basic approaches for enforcing timing- and
termination-sensitive noninterference: mitigation, restricted
computation, and scheduling. Section II briefly discusses
the mitigation and restricted computation approaches; Sec-
tion IV discusses the scheduling approach in detail. This
paper focuses on the scheduling approach, which enforces
complete noninterference (unlike mitigation) and allows
arbitrary computation (unlike restricted computation).

The idea behind the scheduling approach is to partition
a program (statically or dynamically) into a set of sub-
programs, one for each element of the security lattice.
These sub-programs are then executed concurrently using
a scheduling strategy that guarantees the absence of timing
and termination leaks.

In this paper we describe a space of possible scheduling
strategies to enforce noninterference. We first informally
describe a number of different strategies along with the guar-
antees they can provide. For the most interesting scheduling
strategies we formalize the strategies and prove their security
guarantees. Some of the described strategies are found in
existing work; inspired by our descriptions of the strategies
and their guarantees, we also describe a novel scheduling
strategy that provides stronger guarantees than any strategy
in existing work.

C. Our Contributions

The specific contributions of this paper are:

• We explore different notions of timing- and
termination-sensitive noninterference in the literature
by describing possible interpretations and how they
differ.

• We explore a number of scheduler strategies for enforc-
ing timing- and termination-sensitive noninterference
and describe their respective security guarantees.

• We introduce a new scheduling strategy that provides
stronger guarantees than any existing scheduler.

• For the most interesting schedulers (including our new
scheduler) we give formal proofs of the security guar-
antees they can provide.

• We use our framework and formal proofs to clarify
claims made in existing work [13]—contradicting some
claims, strengthening other claims beyond what the
prior work showed was possible, and giving results for
some open questions asked in prior work.

The rest of the paper is laid out as follows: Section II
discusses related work. Section III informally describes

different notions of timing- and termination-sensitivity. Sec-
tion IV describes the scheduling approach to enforcing
noninterference. Section V informally describes a number
of possible scheduling strategies and their guarantees. Sec-
tion VI formalizes our notions of timing- and termination-
sensitivity as well as the strongest scheduling strategies and
proves their security guarantees. Section VII uses our results
to clarify existing work and discusses other related issues.
Section VIII concludes.

II. RELATED WORK

Secure information flow has benefited from extensive
study, beginning with the seminal work by Denning and
Denning [11], [12], Goguen and Meseguer [18], and Vol-
pano et al. [37]. Most existing work on enforcing secure
information flow has focused on timing- and termination-
insensitive security; we refer the reader to the comprehensive
survey by Sabelfeld and Myers for general background
on secure information flow research [32]. There has been
extensive work on enforcing noninterference for concurrent
programs; this prior work deals with internal timing leaks—
violations of noninterference due to race conditions among
concurrently executing threads [9], [29], [34], [38], [41].
While some of this prior work deals with thread scheduling
(e.g., Russo and Sabelfeld [30]), their goal is to prevent only
these internal leaks. In contrast, our work focuses on external
timing leaks: leaks due to differences in execution time
observable by an external attacker—these leaks are relevant
for both sequential and concurrent programs. The three basic
approaches for enforcing timing- and termination-sensitive
noninterference are:

Mitigation: The mitigation approach accepts the fact
that leaks will occur but attempts to either degrade the
bandwidth of the leaks [22] or to bound the amount of infor-
mation that can be leaked [6]. Mitigation does not actually
enforce timing- and termination-sensitive noninterference,
instead it attempts to make violations less harmful.

Restricted Computation: The restricted computa-
tion approach guarantees noninterference by constrain-
ing programs to disallow dangerous (potentially leaky)
computation—this is most often accomplished via a type-
system. Some systems disallow all loops and conditionals
predicated on restricted (i.e., secret or untrusted) data, e.g.,
Volpano and Smith [38], or allow loops and conditionals on
restricted data, but disallow any non-secret/trusted compu-
tation after any such loop or conditional, e.g., Boudol and
Castellani [9] and Smith and Volpano [34]. Other systems
enable conditionals predicated on restricted data by padding
the branches of the conditional to take equal time, but
still disallow loops on restricted data, e.g., Agat [2] and
Barthe et al. [7]. This technique can be extended to include
loops, but only by again restricting low computation after
loops (Hedin and Sands [21]) or potentially making the
computation unsound (Shroff and Smith [33]).

414

Scheduling: The scheduling approach for enforcing
noninterference is our focus in this paper—unlike mitiga-
tion this approach does enforce noninterference, and unlike
restricted computation it does not place any constraints on
loops and conditionals. While there is related work in the
literature, we are (to our knowledge) the first to recognize
this strategy as a general approach for preventing timing and
termination leaks. The most directly related work on using
scheduling to eliminate timing and termination leaks is by
Devriese and Piessens [13], called Secure Multi-Execution
(SME). SME executes multiple instances of a sequential
program concurrently, with one instance per security level,
scheduling the threads to prevent timing and termination
leaks. Devriese and Piessens formalize the SME model
and prove its security properties, and they also evaluate a
practical implementation of the technique for JavaScript. Our
family of scheduling strategies encompasses and subsumes
those discussed in the SME paper, and in Section VII
we discuss the SME paper further. Other related research
does not directly target timing- and termination-sensitive
noninterference, but is relevant to the general scheduling
strategy. The VAX security kernel eliminates timing leaks
via cache memory by flushing the cache whenever a process
is switched out for another process at a lower security
level; Hu [23] proposes a process scheduler based on the
security lattice designed to minimize the number of times the
cache is flushed. Russo and Sabelfeld [30] consider a multi-
threaded language and propose a thread scheduler designed
to eliminate internal timing leaks.

III. SECURITY MODELS AND NONINTERFERENCE

In this section we informally describe and discuss dif-
ferent interpretations of timing- and termination-sensitive
noninterference. The information-flow policy of a program
is defined using a lattice (L,�) where L is a set of security
classes and � is a partial order indicating relative trust
or secrecy among those classes. The terms high and low
indicate relative position in the lattice. With regards to
secrecy higher means “more secret”, and with regards to
integrity higher means “less trusted”—the higher the data
is in the lattice, the more its flow should be restricted.
Figure 1 shows an example lattice that specifies a policy
for compartmentalizing classified information. There are 4
security levels: an Unclassified level (U), a secret level for
the Army (S:army), a secret level for the Navy (S:navy),
and the highest level that has access to all information. This
lattice specifies that Unclassified information can be seen by
anyone, but that only someone with Army clearance can see
Secret Army information (and similarly for the Navy). In
particular, since the S:army and S:navy levels are non-
comparable, Army personnel with Secret clearance cannot
see the Navy’s Secret information and vice-versa.

Noninterference states that values of variables at a given
security level � ∈ L can only influence the values of

S:army S:navy

U

S:army,navy

Figure 1. Example security lattice; S == Secret, U == Unclassified.

variables at any security level that is greater than or equal
to � in the security lattice. Different definitions of the word
influence induce different security models.

The most basic definition of influence considers only
the values of the variables: a program is noninterfering if
changing the values of variables at level �′ �� � cannot
affect the values of variables at level � either directly via
data dependencies (called explicit channels) or indirectly via
control dependencies (called implicit channels).

More sophisticated definitions of influence also account
for timing channels (the ability of values at level �′ to affect
when the values at level � are computed) and termination
channels (the ability of values at level �′ to affect whether
the values at level � are computed, via nontermination or ab-
normal termination). The remainder of this section discusses
different security guarantees that can be made, assuming
different properties of these timing and termination channels.
Timing and termination models each have a dimension of
sensitivity, which describes the assumptions that the model
makes about the attacker’s strength. The terms we use to
describe these definitions are specific to this paper—there is
no universally agreed-upon terminology.

A. Timing Models

A timing-insensitive model (TIME-I) discards all timing
information from the program semantics and definition of
noninterference, thereby assuming that an attacker has no
means to time program execution. This model is common
in existing works on secure information flow, and it is the
weakest model with respect to timing.

A timing-sensitive model assumes that an attacker is able
to time program execution, and it accounts for this fact in the
program semantics and in the definition of noninterference.
The semantics contains a function T that increments time
at each program step. There are two varieties of timing-
sensitivity depending on the definition of T :

• A weakly timing-sensitive model (TIME-WS) models
time abstractly in terms of the number of program
execution steps. This model assumes that T increments
time by a fixed, constant amount at each program
step. This assumption means that the model abstracts
away details of the execution environment that might
influence program timing, including architectural fea-
tures such as caches, pipelining, and branch predictors.

415

if x then skip ; skip
else skip ;

y := 0

Program (a)

if x then a := b
else a := c ;

y := 0

Program (b)
Figure 2. Example programs for timing channels.

Among formal definitions of timing-sensitive noninter-
ference, this is the most prevalent model [2], [7], [13],
[17], [33].

• A strongly timing-sensitive model (TIME-SS) is the
most aggressive security model with respect to timing;
it models “real-world” time rather than the number of
program execution steps and assumes that T increments
time by some unknown, variable amount at each pro-
gram step. TIME-SS assumes that an attacker is able
to time program execution using “wall-clock” time and
this assumption accounts for features in the program’s
execution environment, such as cache, pipelining, and
branch predictors, that may influence program timing.
We are aware of only one existing work that formalizes
a strongly timing-sensitive model [21].

The programs in Figure 2 illustrate the differences among
the three timing security models. For program (a) a timing-
insensitive security model would not detect any information
flow from variable x to the assignment statement, even
though the value of x determines when the assignment
statement executes. A weakly timing-sensitive model would
detect this information flow because the program executes
a different number of steps depending on which branch it
takes. For program (b), a weakly timing-sensitive model
would not detect any information flow from variable x to
the assignment statement because the program executes an
equal number of steps regardless of which branch it takes.
However, a strongly timing-sensitive model would detect
a potential information flow because architectural features
such as caches and branch predictors might affect the wall-
clock execution time of the program depending on which
branch is taken.

B. Termination Models

A termination-insensitive model (TERM-I) ignores the
possibility of non-termination or of abnormal termination
due to unchecked exceptions such as out-of-memory errors.
This model only makes security guarantees under the as-
sumption that a program always terminates normally. This
model is common in existing work on secure information
flow, and it is the weakest model with respect to termination.

A termination-sensitive model assumes that an attacker
is able to observe a program’s termination behavior, and
it accounts for this fact in the program semantics and in
the definition of noninterference. The ability to “observe
termination behavior” is a bit odd and deserves further

explanation. Assume the attacker is at some security level �.
We refer to any computation observable at level � or lower as
low computation and anything else as high computation. A
termination-sensitive model assumes that, at any step in the
program execution, an attacker can determine whether the
program will or will not execute any more low computation
in the future. A program is termination-sensitive noninter-
fering if values at security level �′ �� � cannot influence the
answer to this question for an attacker at level �.

A program can violate termination-sensitive noninterfer-
ence in two ways; which of these ways is considered as part
of the model defines two varieties of termination-sensitivity:

• A weakly termination-sensitive model (TERM-WS)
only considers whether the high computation may
diverge on some inputs and not others. If the high
computation precedes some low computation in the
program, then an attacker can infer information about
the inputs based on whether that subsequent low com-
putation will happen or not (which depends on whether
the high computation diverges or not). Note that the
attacker cannot observe the termination behavior of
the high computation directly, only the effect of the
high computation’s termination behavior on the low
computation. Among formal definitions of termination-
sensitive noninterference, weak termination-sensitivity
is the most prevalent model [2], [13], [31].

• A strongly termination-sensitive model (TERM-SS)
considers the same factors as weak termination-
sensitivity, but also considers whether the high com-
putation may influence the termination behavior of
the low computation via abnormal termination, e.g.,
by applying a partial function (such as division by
zero) or exhausting a shared resource2. For example,
consider a case where the high computation may or
may not allocate almost all available memory based
on some input. If the low computation then attempts
to allocate memory, the low computation will or will
not abnormally terminate from an out-of-memory error
based on the behavior of the high computation, and
an attacker observing the termination behavior of the
low computation can infer information about the inputs.
This is the strongest attacker model with respect to
termination. We are not aware of any existing work
that formalizes a strongly-sensitive termination model.

The programs in Figure 3 illustrate the differences among
the three termination security models. For program (a)
a termination-insensitive security model would not detect
any information flow from variable x to the assignment
statement, even though the value of x determines whether

2Although some researchers (e.g., [32]) describe resource exhaustion as
a covert channel distinct from termination, we choose to include it in the
termination channel because termination often is the by-product of resource
exhaustion.

416

if x then while 1 do skip
else skip ;

y := 0

Program (a)

if x then f x
else skip ;

y := 0

Program (b)
Figure 3. Example programs for termination channels.

the assignment statement executes. A weakly termination-
sensitive model would detect this information flow. For
program (b), a weakly termination-sensitive model would
not detect any information flow from variable x to the
assignment statement, despite the fact that the function appli-
cation’s allocation behavior may exhaust available memory
and cause abnormal termination. A strongly termination-
sensitive model would detect this potential flow.

C. Noninterference Guarantees

It is difficult to separate termination from timing and
treat them orthogonally. In fact, termination-sensitivity is a
special case of timing-sensitivity since influencing whether
a low computation happens or not also influences when that
computation happens (i.e., “sometime” versus “never”). For
this reason we consider timing and termination sensitivity
together for the remainder of the paper. From the discussion
above, we distinguish three types of noninterference guaran-
tees that vary in strength in terms of timing- and termination-
sensitivity:

Guarantee Timing/Termination Model

Insensitive TIME-I, TERM-I

Weakly-sensitive TIME-WS, TERM-WS

Strongly-sensitive TIME-SS, TERM-SS

Insensitive noninterference guarantees noninterference un-
der the TIME-I, TERM-I model, weakly-sensitive noninterfer-
ence guarantees noninterference under the TIME-WS, TERM-
WS model, and strongly-sensitive noninterference guarantees
noninterference under the TIME-SS, TERM-SS model. In
Section VI we formally define these three guarantees and
prove the guarantees enforced by a number of different
scheduling strategies.

IV. ENFORCEMENT: SCHEDULING APPROACH

As explained in Section II, existing work has developed
differing approaches to enforcing the different timing- and
termination-sensitive noninterference properties described in
the previous section, with restricted computation as the most
common approach. In this paper we focus on a different ap-
proach that we call the scheduling approach. This approach
encompasses a family of strategies for preventing timing
and termination leaks all based on the same basic idea:
partitioning a program into sub-programs and concurrently
executing those sub-programs in a manner that prevents

leaks. Recently a related approach called Secure Multi-
Execution [13] (SME) has been proposed; we see SME as a
particular instance of this more general family of strategies
that we explore in this paper.

The reasoning behind the scheduling approach is as
follows. A program is insensitively noninterfering if the
low computation cannot be either data or control dependent
on high computation. Intuitively, this means that the low
computation can be sliced out and executed independently
of the high computation. Abadi et al. [1] formalize this
connection between noninterference and dependency. The
scheduling approach is based on the insight that (1) for
an insensitively noninterfering program all low computation
is independent of any high computation; (2) this program
can be partitioned into multiple sub-programs that are in-
dependent of one another; and (3) these sub-programs can
then be scheduled to execute so as to eliminate timing and
termination leaks. The family of solutions representing the
scheduling approach is parameterized by two characteristics:

• The partitioning strategy: how a solution partitions a
program into sub-programs, one per security level.

• The scheduling strategy: how a solution schedules sub-
program execution.

The partitioning strategy depends heavily on the particular
features of the programming language being partitioned.
We briefly discuss possible partitioning strategies in this
section, however the main part of this paper focuses on
the scheduling strategy, which enforces a particular security
guarantee independently of the partitioning strategy used.
We first outline some possible partitioning strategies. We
then define a scheduler semantics that, given a set of sub-
programs derived using some (arbitrary) partitioning strat-
egy, models the concurrent execution of the individual sub-
programs. This scheduling semantics is parameterized by the
select function that chooses which sub-program to execute in
each time-slice. In subsequent sections, we discuss a number
of possible select functions and the security guarantees
they provide (including the strategies described in the SME
paper). We then formalize these strategies and prove our
claims about their guarantees.

A. Partitioning Strategies

Secure Multi-Execution [13] demonstrates one practical
partitioning strategy (implemented for JavaScript) that oper-
ates dynamically. If the security lattice has n elements, then
n instances of the program will be created, each assigned a
security level. A program at security level � can read only
from inputs with security levels �′ � � and can write only
to outputs with security level �.

SME is not the only possible partitioning strategy. Other
existing work explores methods for partitioning programs
based on security levels, though besides SME none of
these are intended specifically for enforcing timing- and

417

termination-sensitive noninterference using the scheduling
approach. However, they do demonstrate the practicality
of partitioning programs; these methods target real-world
languages such as Java [19] and C [24], [35]. Abadi et
al. [1] encode both a slicing calculus and a typed lambda
calculus with secure information flow in their Dependency
Core Calculus, showing the fundamental relation between
program slicing and insensitive noninterference. Since then,
there have been multiple works that have used program
slicing to create sub-programs at different security levels.
Hammer et al. [19] provide a program dependence graph
based approach to information flow control in Java pro-
grams. Their technique can be used both to certify programs
for insensitive noninterference as well as to obtain program
slices. Amtoft and Banerjee [4] show how a Hoare-like
logic based approach to specify information flow analysis
can be used to obtain low slices that are free from high
variables. Smith and Thober [35] use program slicing to
guide programmers in refactoring high code into a separate
component.

For the remainder of this paper we assume that an
insensitively noninterferent program has been partitioned
into a set of independent sub-programs, one per security
level, using a strategy such as one of those described above.

B. Scheduling Semantics

In this section, we provide a formal definition for the
semantics of schedulers. This definition will be used in the
next two sections to informally describe a set of scheduling
strategies and to formalize and prove the security of these
scheduling strategies.

The scheduler executes each sub-program in its own
thread (in the remainder of the paper, we conflate sub-
programs with their respective threads and use the terms
interchangeably). Informally, a scheduler switches among
threads by continually choosing a candidate sub-program
to execute for a specified amount of time before control is
returned to the scheduler. A scheduler’s security properties
are determined by the way in which the scheduler chooses
sub-programs to execute.

Figure 4 provides formal notation for the scheduling
semantics and for the domains over which the semantics
operates. We model sub-programs using an unspecified
semantics—we leave the sub-program semantics unspecified
because we wish to focus on the security properties of sched-
ulers, rather than of the sub-programs themselves. However,
these semantics are rich enough to describe the behavior of
real-world languages and execution environments.

The sub-program semantics is given by a small-step
operational relation �, which transforms a sub-program
configuration consisting of a sub-program p, a store σ,
and a runtime state ψ. We use record syntax to denote a
configuration, and we use field syntax to denote elements of
a configuration. A configuration’s store κ.σ models memory.

Semantic domains:

p ∈ Sub-program Sub-programs

σ : Variable → Value Stores

ψ ∈ State = {R,B,T} Runtime States

δ ∈ R Time

� ∈ L Security Labels

Sub-program semantics:

κ = 〈p :Sub-program , σ :Store, ψ :State〉
� ⊆ κ× κ Sub-program Semantics

Scheduler semantics:

select : (
−−−−−−−−−→
Sub-program×−−−→

State)→(Sub-program×State×L)
K = 〈−→p :

−−−−−−−−−→
Sub-program , σ :Store,

−→
ψ :

−−−→
State, δ ∈ R〉

� ⊆ K ×K × L Scheduler Semantics

T : Sub-program → R Time Semantics

∃ � ∈ L :
−→
ψ [�] �= Terminated

p, ψ, � = select(−→p ,−→ψ) 〈p, σ, ψ〉� 〈p′, σ′, ψ′〉
−→p ′=−→p [�
→ p′]

−→
ψ ′=

−→
ψ [�
→ ψ′] δ′=δ+δs+T (p)

〈−→p , σ,−→ψ , δ〉�� 〈−→p ′, σ′,
−→
ψ ′, δ′〉

Figure 4. Sub-program and scheduler semantics. R = Ready, B =
Blocked, T = Terminated.

A configuration’s runtime state κ.ψ indicates whether the
sub-program is Ready, Blocked, or Terminated. The
semantics handles I/O based on the method described by
Devriese and Piessens [13]: a sub-program only blocks on
input if (1) it tries to read a value from an input at a lower
security level �′, and (2) the �′ sub-program has not yet read
that value from the input. The sub-program’s state changes
back from Blocked to Ready once the �′ sub-program
has read from the low input. A sub-program may also block
deterministically based on its own computation (e.g., a sleep
system call). In this case, the sub-program changes back
from Blocked to Ready after a deterministic amount of
time.

A sub-program can make progress only when it is in the
ready state. Given an initial store, a sub-program terminates
when the reflexive, transitive closure of the semantic re-
lation (denoted �∗) yields a configuration whose state is
Terminated.

The scheduler orchestrates the sub-programs’ computa-
tions. Its semantics are given by the relation �, which
transforms scheduler configurations. Each scheduler config-
uration is a four-tuple that consists of a sub-program vector
−→p , a store σ, a state vector

−→
ψ , and a time value δ.

The sub-program vector −→p is a list of sub-programs. The
vector contains a sub-program for each label � in the security

418

lattice L. A vector is indexed by a security label, so that the
expression −→p [�] refers to the sub-program for security label
�. The state vector

−→
ψ holds the sub-programs’ corresponding

state values.
The scheduler semantics proceeds in steps as defined

at the bottom of Figure 4. At each step, the scheduler
checks that there exists at least one sub-program that has not
terminated. If so, then the scheduler uses its select function
to choose which sub-program will execute next. For the
sake of the discussion in this section, we assume that select
non-deterministically chooses an available sub-program. In
subsequent sections, we describe more concrete strategies.

At each step, the scheduler records the level � of the
selected sub-program, as denoted by ��. For convenience,
we sometimes omit a step’s level. We write �S to mean a
scheduling step that selects one level from a set S of possible
levels.

Having selected a sub-program p and its corresponding
state ψ, the scheduler executes the sub-program for one step
using the sub-program semantics given by�. This results in
a transformed sub-program and potentially modifies the sub-
program’s state and the global store. The scheduler updates
the sub-program and state vectors to record these changes.
The expression −→p [�
→ p′] updates the the sub-program
vector to contain the reduced sub-program for level �; the
expression

−→
ψ [�
→ ψ′] updates the the state vector to contain

the modified state for level �.
The scheduler also updates the time value δ at each

step, according to a parameterized definition of time, T .
When a sub-program p takes a step, the scheduler semantics
increases time by T (p) (the time required to execute p for
one step) and by δs (which corresponds to the time required
for the scheduler to select a sub-program and update the
vectors).

—Timing and Termination Models—

The scheduler semantics implicitly embeds parameterized
timing and termination models. The function T parame-
terizes the scheduler semantics by a given timing model.
Different definitions for T correspond to different models
of time. Our time parameterization follows in the style of
Hedin and Sands [21], who describe how to model various
notions of time. A timing-insensitive model can be defined
by a function T (p) = 0, i.e., one that ignores time. A
weakly timing-sensitive model can be defined by a function
T (p) = 1, i.e., one that models every command as taking
the same amount of time. A strongly timing-sensitive model
can be defined by a deterministic, history-based function T
which provides a value for time at each step and which
accounts for all features of the execution environment that
affect timing (e.g., caches, branch predictors, etc).

The scheduler semantics also encompasses a range of
termination models. As described in Section III-B, an in-
sensitive termination model allows for security guarantees

about terminating programs only, i.e., those whose final state
is Terminated. Under a strongly-sensitive termination
model, a low sub-program can detect whether it abnormally
terminates due to the behavior of a high sub-program.
Under a weakly-sensitive termination model, it cannot. The
semantics of the store distinguishes these two cases. If a low
sub-program is insensitively noninterferent, then the only
way for a high sub-program to cause the low sub-program’s
abnormal termination is via memory exhaustion. If the store
described by the sub-program’s semantics is exhaustible
(i.e., of finite size), then the semantics describes a strongly-
termination sensitive model. If the store is of infinite size,
then the semantics describes a weakly-sensitive termination
model.

A scheduler’s security properties depend on the timing
and termination models and on the way in which it selects
sub-programs to execute. In the subsequent section, we
informally describe possible selection strategies and their
security properties under certain timing and termination
models. In Section VI, we formally describe the strongest
of these strategies and prove their security.

V. SCHEDULING STRATEGIES

In this section, we explore the space of possible schedul-
ing strategies created by the scheduler semantics in the
previous section. We informally examine several strategies,
discussing their characteristics and the security guarantees
they can provide (either insensitive, weakly-sensitive, or
strongly-sensitive noninterference). Figure 5 summarizes
these strategies. Some of these strategies correspond to those
used in existing work, but the Lattice-Based strategy is novel
to this paper and results in stronger security guarantees
than any other scheduler. The three strongest strategies—
Sequential-2, Multiplex-2, and Lattice-Based—are formal-
ized and their security guarantees proven in Section VI.

Each scheduling strategy is defined by a filter function.
This function, at each step, examines the set of all threads,
whether Ready, Blocked, or Terminated, and returns
a subset of threads for the select function to choose from
(selecting a Blocked or Terminated thread to run corre-
sponds to executing a noop instruction). We assume that the
select function chooses threads from the resulting pool in a
round-robin fashion to guarantee progress for each thread in
the pool3. In the following discussion we conflate threads
with their security levels, e.g., thread A is lower than thread
B if the code in thread A is at a lower security level than
the code in thread B.

A. Scheduling Strategy Sequential-1

The sequential strategies execute threads in increasing
order of their security level. At each step, Sequential-1

3This assumption gives the attacker greater power than with a nondeter-
ministic scheduler because it gives the attacker stronger guarantees about
how the scheduler will behave, making it easier to infer information.

419

Scheduling Strategy Filter Function Security Guarantee

Sequential-1† Lowest R thread
Weakly-sensitive between comparable levels.
Insensitive between noncomparable levels.

Sequential-2† Lowest R/B thread
Strongly-sensitive between comparable levels.
Insensitive between noncomparable levels.

Multiplex-1 All R threads (or all R/B threads) Insensitive between all levels.

Multiplex-2 All R/B/T threads Weakly-sensitive between all levels

Lattice-Based†
Fixed number of threads that Strongly-sensitive between comparable levels.
includes all R/B threads for which all Weakly-sensitive between noncomparable levels.
lower threads are T

Figure 5. Scheduling strategies and their security guarantees (R = Ready, B = Blocked, T = Terminated). The filter function defines a scheduling
strategy by returning a pool of threads for the select function to choose from (choosing a Blocked or Terminated thread corresponds to executing a
noop instruction). Strategies marked with † can starve higher-level threads if a lower-level thread diverges.

selects the lowest-level Ready thread. Given a partial order,
the ‘lowest-level’ thread may not always be well-defined;
to ensure this choice is always well-defined we extend
the partial order to a total order (meaning we refine the
partial order to a total order that respects the initial ordering
relation). Any finite partial order can be extended in this
manner.

The immediate consequence of extending the partial order
to a total order is that no guarantees can be made between
noncomparable threads. Consider the case of the security
lattice in Figure 1, with the noncomparable levels S:army
and S:navy. In the new total order one of these levels
must necessarily precede the other. If S:army’s execution
precedes S:navy’s then the S:army thread’s timing and
termination behavior can leak information to the S:navy
thread; similarly if S:navy precedes S:army.

Among comparable threads, however, Sequential-1 gives
a stronger guarantee: weakly-sensitive noninterference. The
strategy guarantees that the scheduler never executes a
higher-level thread when a lower-level thread is Ready.
Thus, the timing of the lower-level thread, measured using
number of execution steps, is independent of the behavior of
higher-level threads (including their termination behavior).
However, this strategy does allow higher-level threads to
execute when no lower-level threads are Ready. Higher-
level threads can therefore affect the execution environment
(e.g., cache, branch predictors, memory, etc), which prevents
Sequential-1 from guaranteeing strongly-sensitive noninter-
ference. For example, a higher-level thread may or may not
evict a certain memory location from the cache based on
secret data. A lower-level thread can observe which action
was taken based on the length of time needed for it to access
the same memory location and thereby infer information
about the higher thread.

An additional difficulty with this strategy is that higher-
level threads may starve if a lower-level thread diverges.
Consider the following program:

while (true) do
low := low+1 ; high := high+2

Once divided into a sub-program per level, the low thread
(updating low in an infinite loop) will never terminate, and
hence the high thread (updating high in an infinite loop)
will never get a chance to execute.

B. Scheduling Strategy Sequential-2

The Sequential-2 strategy strengthens Sequential-1 by
choosing the lowest level Ready or Blocked thread. The
effect is to always execute the lowest non-terminated thread
to completion before executing any other thread. Because
no higher thread can affect the execution environment in
any way while a lower thread executes, this strategy pro-
vides strongly-sensitive noninterference between comparable
threads. However, this strategy, like Sequential-1, can of-
fer only insensitive noninterference between noncomparable
threads and also may starve higher-level threads if a lower-
level thread diverges.

C. Scheduling Strategy Multiplex-1

The multiplexing strategies use a filter function that
returns multiple threads as candidates for the select func-
tion, as opposed to the sequential strategies’ filter function
that returns a singleton set. The Multiplex-1 filter function
returns all Ready threads for the select function to choose
from. In effect, the Multiplex-1 scheduler time-multiplexes
among all of the Ready threads regardless of their security
level, executing each thread one step at a time.

The strongest security guarantee that the Multiplex-1
strategy can provide is insensitive noninterference. As an
example, consider the following program running in a high
thread concurrently with some low thread:

if (high) then skip else while (true) do skip

If high is true, then the high thread executes one skip
instruction and terminates. After the high thread terminates

420

the low thread continues to execute all by itself. However, if
high is false, then the high thread executes forever. In this
case, the low thread must continually alternate its execution
with the high thread, thus leaking information about high
to a low observer4. An advantage of Multiplex-1 over
the sequential strategies is that all threads are guaranteed
progress, so no high thread will starve regardless of the lower
threads’ behaviors.

D. Scheduling Strategy Multiplex-2

The Multiplex-2 strategy strengthens Multiplex-1 by
picking from among all threads—Ready, Blocked,
and Terminated. In effect, Multiplex-2 time-multiplexes
among all threads regardless of status or security level. The
key difference from Multiplex-1 is that the number of threads
being multiplexed remains constant (i.e., all of them). Thus,
Multiplex-2 prevents the termination behavior of one thread
from affecting the timing of any other thread and therefore
does not leak information in the way Multiplex-1 does.

However, Multiplex-2 can still give only a weakly-
sensitive noninterference guarantee. Because high and low
threads are time-multiplexed, high threads are able to affect
the execution environment and leak information in the same
manner as that described for Sequential-1.

E. Scheduling Strategy Lattice-Based

In this section, we describe a novel strategy inspired
by the strengths and weaknesses of the Sequential and
Multiplex strategies. The essential idea of this strategy is to
schedule based on the the partial order of the security lattice
itself. However, doing so naı̈vely does not quite provide the
guarantees we need. We first describe two failed attempts
at defining the Lattice-Based scheduling strategy, then we
describe our correct version of the strategy.

1) First Attempt at Scheduling Strategy Lattice-Based:
In our first attempt at defining the Lattice-Based strategy,
we combine the behaviors of Sequential-2 and Multiplex-2
by multiplexing all threads at one tier of the security lattice
to completion before executing any threads from a higher
tier. To be more precise, the scheduler assigns to thread �
a priority that is equal to the length of the longest chain
in the lattice from � to ⊥. The filter function then returns
all Ready/Blocked/Terminated threads with priority x
such that all threads whose priority is lower than x are
Terminated. For example, given the lattice in Figure 6a:
first the ⊥ thread executes to completion, then the D and E
threads execute concurrently until they both are complete,
then A, B, and C execute concurrently until they are all
complete, then finally � executes.

4A thread could also leak information via its blocking behavior
in the same fashion; we can modify the filter function to return all
Ready/Blocked threads to prevent leaking information via blocking,
but the resulting scheduling strategy still fails the example above and has
the same insensitive noninterference guarantee as Multiplex-1.

A CB

ED

⊥

�

(a)

A{1} C{3}B{2}

E{3}D{1, 2}

⊥{1, 2, 3}

�{1, 2, 3}

(b)

Figure 6. (a) an example security lattice and (b) the example lattice anno-
tated with slots assigned by the donation strategy discussed in Section V-E3.

The intent of this attempt at defining the Lattice-Based
strategy is to combine the security guarantees of Sequential-
2 and Multiplex-2; however, it is only partially successful.
The strongest guarantee this strategy can give is strongly-
sensitive noninterference among comparable threads and
insensitive noninterference among noncomparable threads.
Consider again the scheduling of the lattice in Figure 6a.
As with Sequential-2, no thread executes until all lower
threads have completed5. But suppose that while D and E
are executing concurrently, E terminates before D does. Then
the C thread cannot begin executing until D completes, thus
D’s timing and termination behaviors leak to C.

2) Second Attempt at Scheduling Strategy Lattice-Based:
The previous definition of the Lattice-Based strategy leaked
information because it could force one thread to wait for
another, noncomparable thread to terminate. To prevent
this problem, we refine the filter function to return all
Ready/Blocked threads x such that all threads lower than
x are Terminated. For the lattice in Figure 6a, C would
have to wait for E to complete, but would not have to wait
for D.

This strategy still guarantees strongly-sensitive noninter-
ference between comparable security levels, but does not
improve on the insensitive noninterference between noncom-
parable levels. Suppose, using the same lattice, that ⊥ has
completed and D and E are concurrently executing. Suppose
that E then completes, hence C immediately starts executing
concurrently with D, sharing the execution time half and
half. Then D completes and both A and B begin executing,
thus splitting the execution time with C into thirds (i.e., C
is now executing on every third instruction instead of every
other instruction). From this reduction in execution time, C
can infer timing and termination behavior of D.

3) Correct Version of Scheduling Strategy Lattice-Based:
The previous strategy failed because the number of threads
concurrently executing could vary, thus leaking information
to noncomparable threads. The correct version of Lattice-
Based strategy is similar to the previous attempt, but avoids
its deficiencies by ensuring that a constant number of threads
are concurrently executing at all times, thus re-capturing
the benefits of Multiplex-2. Lattice-Based has the strongest

5Also like Sequential-2, high threads may starve if lower threads diverge.

421

security guarantees of all the schedulers, enforcing strongly-
sensitive noninterference between comparable threads and
weakly-sensitive noninterference between noncomparable
threads. However, it still suffers from the weakness of the
Sequential strategies by potentially starving higher threads
if lower threads diverge.

The Lattice-Based filter function ensures that the sched-
uler always multiplexes a constant number of threads. To do
so, the scheduler creates k slots and pre-assigns each thread
to one or more slots. The scheduler’s filter function then
selects a particular slot to execute at each step (as opposed
to a particular thread) in a round-robin fashion. If a step’s
selected slot corresponds to a Blocked or Terminated
thread, then the scheduler executes a noop for that step,
effectively padding the execution.

The number of slots k must be large enough to ac-
commodate the largest possible set of qualifying threads
(otherwise some qualifying thread would not get to run and
this would leak information). Making k larger than necessary
does not impact the security guarantee, but does affect
performance. Computing a value for k reduces to the MAX

CLIQUE graph problem. Given a security lattice (L, �), the
scheduler constructs an undirected graph G = (V,E), where
V contains the elements of the security lattice and E consists
of edges between any two non-comparable security levels.
Let MC be the maximum clique in G, i.e., the largest set of
elements in L that are non-comparable to one another. Then
k = |MC |. For the lattice in Figure 6a, k = 3. The MAX

CLIQUE problem is NP-complete. For small security lattices
(fewer than 1,000 elements) the scheduler can employ a fast
exact algorithm [27], for large security lattices it can employ
an approximation algorithm [28].

Optimizing Performance of Lattice-Based: Perfor-
mance is a potential issue with the Lattice-Based scheduling
strategy—if the number of qualifying threads is less than
k, then the scheduler wastes time executing noops instead
of doing useful work. For example, for the lattice in Fig-
ure 6a, the � thread executes when all other threads have
terminated. Since k = 3, the scheduler will multiplex the �
thread with two dummy threads running noops. Intuitively,
however, it is safe for the � thread to execute in all three
scheduling slots. This optimization allows the � thread to
infer information about the timing and termination of A, B,
and C, but since they are all lower in the lattice than �, the
optimization preserves noninterference.

We use this intuition to develop an optimization for
the Lattice-Based strategy called Slot Donation that allows
lower-level threads to “donate” their scheduling slots to
higher-level threads. This optimization would allow A, B,
and C to donate their slots to �, so that � can use all
three scheduling slots when it executes. This optimization is
safe (i.e., it does not violate noninterference) because lower-
level threads are only allowed to donate slots to comparable,
higher-level threads.

The scheduler statically computes a donation strategy,
which assigns to each thread the set of scheduling slots
in which it can safely execute. When the filter function
returns a thread that can go in multiple scheduling slots,
the scheduler executes the thread in each slot given by
the donation strategy (instead of filling the extra slots with
noops). The donation strategy must guarantee that no threads
that may execute concurrently will be assigned the same slot
in which to execute.

Computing a donation strategy reduces to a particular type
of network flow problem: a circulation problem with lower
bounds. The scheduler constructs a flow graph F = (V,E)
whose nodes are computed from the elements of the security
lattice L as follows. For every l ∈ L the scheduler creates
two nodes l and l′ and creates an edge l → l′. The scheduler
also creates an edge l′1 → l2 for all elements l1, l2 ∈ L such
that l1 � l2 and �l3 ∈ L : l1� l3� l2. The �′ node is the
sink node, and the ⊥ node is the source node. Figure 7 gives
the flow-graph corresponding to the lattice in Figure 6a.

1

1

2

1

1

1

2
1

3

1

1

1

1 1

3

A

A′

�′

⊥

E

D

D′C

C ′ B

E ′

� B′

⊥′

Figure 7. Flow-graph corresponding to Figure 6a, edges are annotated with
flow values that satisfy the circulation problem described in Section V-E3.

A circulation problem gives each node a demand D and
each edge a capacity C and lower bound L. The solution
assigns each edge a flow value that simultaneously satisfies
the demands of all nodes and the lower bound and capacity
constraints of all the edges. The scheduler assigns demands,
capacities, and lower bounds as follows:

1) Set D(⊥) = −k and D(�′) = k. For each v ∈ V −
{�′,⊥}, set D(v) = 0. [These demands set up the
flow problem such that the source node ⊥ can supply
k slots while the sink node � must consume k slots.
The remaining nodes act as transit nodes].

2) For each l ∈ MC, set L(l → l′) = 1 and C(l → l′) =
1. [These lower bounds and capacities state that each
l ∈ MC should be assigned exactly one slot].

3) For each l /∈ MC, set L(l → l′) = 1 and C(l →

422

l′) = k. [These lower bounds and capacities state that
every other l′ /∈ MC can receive between 1 and k slots.
Because every l′ must either reach a node in MC or be
reached by such a node, they are guaranteed to receive
at least one slot].

4) For every edge e ∈ E without an assigned lower bound
or capacity, set L(e) = 0 and C(e) = k. [These lower
bounds and capacities state that flow values in edges
between comparable levels are not important].

The scheduler can solve the circulation problem using any
of the well-known solution strategies [3]. Given a solution,
the flow value assigned to the edge l → l′ determines
the number of slots in which the thread at level l may
execute. The scheduler assigns each thread a set of slots by
initializing the source node to the set of slots {1..k}, then
forwarding them through the graph based on the number of
slots in which a node may execute. For example, Figure 7
depicts a flow graph corresponding to the security lattice in
Figure 6a. The edges of the graph are annotated with flow
values that satisfy the circulation problem setup as described
above. Figure 6b gives a possible slot assignment for each
node based on the computed donation strategy.

VI. FORMAL SECURITY GUARANTEES

We now present a formal framework that encapsulates
the scheduling strategies described in the previous section.
We first provide formal definitions for various kinds of
noninterference. We then formally define strategies for three
schedulers: Sequential-2, Multiplex-2, and Lattice-Based.

A. Noninterference

Noninterference is defined with respect to a security lattice
L and a label � ∈ L that partitions the security lattice
into low labels and high labels. Given �, the low labels
are L� = {�′ ∈ L | �′ � �}. The high labels are then
H� = L − L� (which includes all labels noncomparable to
�). We omit the subscripts for L and H when the specific
label is unimportant. Variables have specified security levels
and can be high or low, written x : L or x : H . Sub-programs
can be labeled as high or low based on whether they modify
any low variables (p : L) or not (p : H).

—Low Equivalence Definitions—

We give a series of definitions that formalize our intuitive
notion of security. We begin with the definition of low
equivalence for the semantic domains given in Figure 4. Low
equivalence captures the notion that an attacker can only
observe things at low security levels, and hence differences
at high security levels are irrelevant.

Definition 1 (Low Equivalence of Sub-Programs). Two sub-
programs p1 and p2 are low-equivalent (p1 ∼L p2) if both
sub-programs are syntactically equivalent (denoted p1 = p2)
or if both sub-programs are high:

p1 ∼L p2 ⇔ (p1 = p2) ∨ (p1 : H ∧ p2 : H)

Definition 2 (Low Equivalence of Stores). Two stores σ1
and σ2 are low-equivalent (σ1 ∼L σ2) if their low values
agree:

σ1 ∼L σ2 ⇔ ∀x ∈ dom(σi) . x :L⇒ σ1[x] = σ2[x]

Proving that a semantic relation exhibits insensitive non-
interference relies on proving the following lemma, which
states that high commands cannot modify low values.

Lemma 1 (Confinement). For every security level �, high
sub-program p : H , store σ, and state ψ:

〈p, σ, ψ〉� 〈p′, σ′, ψ′〉 implies σ ∼L σ
′.

In our subsequent proofs for the scheduler semantics,
we assume that the Confinement Lemma holds for any
given sub-program semantics. We also assume that the
sub-program semantics is deterministic and that low sub-
programs never block due to I/O, as described in Sec-
tion IV-B.

We now lift these definitions of low equivalence to operate
on the semantic domains of the scheduler.

Definition 3 (Low Equivalence of Sub-Program Vectors).
Two sub-program vectors −→p1 and −→p2 are low-equivalent
(−→p1 ∼L

−→p2) if their corresponding sub-programs are low-
equivalent:

−→p1 ∼L
−→p2 ⇔ ∀�′ ∈ L : −→p1[�′] ∼L

−→p2[�′]
Definition 4 (Low Equivalence of State Vectors). Two state
vectors

−→
ψ1 and

−→
ψ2 are low-equivalent (

−→
ψ1 ∼L

−→
ψ2) if their

corresponding low states are the same:
−→
ψ1 ∼L

−→
ψ2 ⇔ ∀�′ ∈ L :

−→
ψ1[�

′] =
−→
ψ2[�

′]

Given the Confinement Lemma for the sub-program
semantics (Lemma 1), we can establish a corresponding
corollary for the scheduler semantics.

Corollary 1 (Scheduler Confinement). For every security
level �, every sub-program vector −→p , every store σ, every
state vector

−→
ψ , and every time value δ:

〈−→p , σ,−→ψ , δ〉�∗
H 〈

−→
p′ , σ′,

−→
ψ′, δ′〉

implies −→p ∼L

−→
p′ and σ ∼L σ

′ and
−→
ψ ∼L

−→
ψ′.

The scheduler semantics operates over configurations, for
which we define a notion of low-equivalence:

Definition 5 (Low Equivalence of Scheduler Configura-
tions). Two scheduler configurations K1 and K2 are low-
equivalent (K1 ∼L K2) if their sub-program vectors, stores,
and state vectors are low-equivalent and if their times are
equal:

K1 ∼L K2 ⇔
(K1.

−→p ∼L K2.
−→p) ∧ (K1.σ ∼L K2.σ) ∧

(K1.
−→
ψ ∼L K2.

−→
ψ) ∧ (K1.δ = K2.δ)

423

Given a deterministic sub-program semantics we can
establish the following lemma for the scheduler semantics,
which says that, under a weakly-sensitive termination model,
the scheduler preserves low-equivalence when it takes a low
step.

Lemma 2 (Weak Low-step Preservation). Under a weakly-
sensitive termination model, for every security level � and
every pair of low-equivalent configurations K1 ∼L K2:

K1 �� 〈
−→
p′
1, σ

′
1,
−→
ψ′
1, δ

′
1〉 and K2 �� 〈

−→
p′
2 , σ

′
2,
−→
ψ′
2, δ

′
2〉

implies
−→
p′
1 ∼L

−→
p′
2 and σ′

1 ∼L σ
′
2 and

−→
ψ′
1 ∼L

−→
ψ′
2.

Proof: By Definitions 3 and 4, −→p1[�] = −→p2[�] and−→
ψ1 ∼L

−→
ψ2. Therefore, under a weakly-sensitive termination

model, the scheduler makes the same decision under both
configurations: either the scheduler executes −→pi [�] for one
step or the scheduler executes a noop. If the scheduler
executes a noop, then

−→
p′
1 =

−→
p′
2 , and σ′

1 = σ′
2, and

−→
ψ′
1 ∼L

−→
ψ′
2.

The same result is achieved if the scheduler executes −→pi [�],
where i ∈ {1, 2}, because K1.σ ∼L K2.σ and the sub-
program semantics are deterministic.

Under a strongly-sensitive termination model, the sched-
uler does not preserve low-equivalence. Recall from Sec-
tion IV-B that, under a strongly-sensitive termination model,
the store is of finite size. Consider the case when σ1 and σ2
are low-equivalent and σ1 has free memory but σ2 does not.
If pi allocates memory, then K1 executes normally but K2

terminates abnormally due to resource exhaustion. Assuming
ψ′
1 �= Terminated, we have ψ′

1 �= ψ′
2, so the scheduler

semantics do not preserve low-equivalence.

—Noninterference Definitions—

We now formally define different notions of noninterfer-
ence. A terminating sub-program exhibits insensitive non-
interference if the sub-program’s execution preserves low
equivalence.

Definition 6 (Insensitive Noninterference). A semantic re-
lation � exhibits insensitive noninterference if, for every
security level � and every pair of low-equivalent configura-
tions κ1 ∼L κ2:

κ1 �∗ 〈p′
1, σ

′
1,Terminated〉 and

κ2 �∗ 〈p′
2, σ

′
2,Terminated〉

implies p′
1 ∼L p′

2 and σ′
1 ∼L σ

′
2.

A sub-program exhibits sensitive noninterference if ex-
ecution time cannot be used to differentiate among low-
equivalent values.

Definition 7 (Sensitive Noninterference). A semantic rela-
tion � exhibits sensitive noninterference if, for every secu-
rity level � and every pair of low-equivalent configurations
K1 ∼L K2:

K1 �∗ 〈
−→
p′
1, σ

′
1,
−→
ψ′
1, δ

′〉 and K2 �∗ 〈
−→
p′
2, σ

′
2,
−→
ψ′
2, δ

′〉

implies
−→
p′
1 ∼L

−→
p′
2 and σ′

1 ∼L σ
′
2 and

−→
ψ′
1 ∼L

−→
ψ′
2.

This definition says that a semantic relation is sensitively
noninterferent if, after executing two low-equivalent config-
urations for an arbitrary amount of time, low-equivalence
is preserved. If the definition holds under a weak timing
and termination model then the semantic relation exhibits
weakly-sensitive noninterference. If the definition holds un-
der a strong timing and termination model then the semantic
relation exhibits strongly-sensitive noninterference.

Section IV claims that some scheduling strategies are
“strongly-sensitive among comparable levels,” a notion we
now formally define. This definition states that if an �2-
level sub-program executes, then time cannot be used to
differentiate values at levels strictly lower than �2.

Definition 8 (Strong Sensitivity Among Comparable Lev-
els). A semantic relation � is strongly-sensitive among
comparable levels if, under a strong timing and termination
model, for every pair of comparable security labels �1 � �2,
if L = L�1 , then for every pair of low-equivalent configura-
tions K1 ∼L K2:

K1 ��2 K
′
1 �∗ 〈

−→
p′′
1 , σ

′′
1 ,
−→
ψ′′
1 , δ

′′〉 and

K2 ��2 K
′
2 �∗ 〈

−→
p′′
2 , σ

′′
2 ,
−→
ψ′′
2 , δ

′′〉

implies
−→
p′′
1 ∼L

−→
p′′
2 and σ′′

1 ∼L σ
′′
2 and

−→
ψ′′
1 ∼L

−→
ψ′′
2 .

Definitions 7 and 8 are sufficient to describe the guaran-
tees made by the most secure schedulers from Section IV.
We next formally define these schedulers, then prove that
the schedulers provide the security guarantees that we have
ascribed to them.

B. Scheduler Definitions

We now give formal semantics for the three schedulers
from Section V that can make the strongest security guar-
antees: Sequential-2, Multiplex-2, and Lattice-Based. Each
scheduler is defined as the composition of a series of filters,
and each filter whittles down the set of threads that are
allowed to execute in each step. The filters’ job is to provide
at most one thread that is allowed to execute. If the filter
does not provide a thread, then the scheduler executes a
noop.

The scheduler semantics from Section IV-B defines a
select function which returns a thread, its state, and its
level. To define this select function as the composition of
filters requires some formal machinery, which we present
in Figure 8. The select function performs three operations:
configs, a series of filters, and noop?. The configs operation
maps each thread to the set of slots in which it can run.
This mapping is parameterized by the function slots, which
assigns threads to one or more slots. For each thread-slot
pair, configs generates a thread configuration t that consists

424

Selection Semantics

select : (
−−−−−−−−−→
Sub-program×−−−→

State)→(Sub-program×State×L)
≡ noop? ◦ filter∗ ◦ configs

T = 〈p :Sub-program , ψ :State, � :L, slot : Z〉
configs : (

−−−−−−−−−→
Sub-program ×−−−→

State) → T

filter : T → T

noop? : T → (Sub-program × State × L)
Thread Configurations

configs(−→p ,−→ψ) =
⋃
�∈L

{〈−→p [�],
−→
ψ [�], �, s〉 | s ∈ slots (�)}

Filters

running(T) = {t∈T | t.ψ �= T}
min(T) = {t∈T | ∀t′∈T : t �= t′ ⇒ t.� < t′.�}

round-robin(T) = {t∈T | next = t.slot}
min-depth(T) = {t∈T | ∀t′∈T : t′.� � t.�⇒ t′.ψ = T}

noop Execution

noop?(T) =

⎧⎪⎨
⎪⎩

(t.p, t.ψ, t.�) : (T = {t}) ∧ (t.ψ = R)

(noop,R, t.�) : (T = {t}) ∧ (t.ψ �= R)

(noop,R,⊥) : otherwise

Figure 8. Scheduling strategy components (R = Ready, T =
Terminated). A scheduler is defined over a set of thread configurations,
which combines information about each thread with the thread’s assigned
slot(s). Each scheduler relies on the composition of one or more filters,
which eventually selects at most one thread to execute. If the filters do
not choose a running thread to execute, then noop? executes a noop. The
boxed functions indicate parameters to the scheduler whose behavior can
affect the scheduler’s security guarantees.

of the thread’s program, state, level, and slot number. These
configurations provide enough information to enable filters
to compose.

Each filter operation whittles down the full set of thread
configurations T by applying selection criteria to the set. Fil-
ters can be composed so that, eventually, the filter operation
chooses at most one thread configuration. If the filter chooses
a configuration whose thread is in the running state, then
noop? returns this configuration. Otherwise, noop? returns
a noop thread that performs no work.

Figure 8 lists several possible filters, which can be com-
posed to specify the Sequential-2, Multiplex-2, and Lattice-
Based schedulers. Sequential-2 is defined by the filter com-
position min◦running. The scheduler’s slots function assigns
the same slot to every security level. The < relation extends
the security lattice’s partial order to a total order. This
extension ensures that the filter always returns a singleton
set, though the set’s element may correspond to a Blocked
thread.

Multiplex-2 is defined by the filter round-robin. The

scheduler’s slots function assigns a unique slot to each
security level. The scheduler’s next function iterates through
the slots using modular arithmetic. This function ensures
that the filter always returns a singleton set, though the set’s
element may correspond to a Blocked or Terminated
thread.

Lattice-Based is defined by the filter composition
round-robin ◦ min-depth ◦ running. The scheduler’s slots
function is the donation strategy defined in Section V-E3.
This strategy may map a single thread to multiple slots and
multiple threads to the same slot. However, it guarantees
that any two non-comparable threads are never mapped to
the same slot. The scheduler’s next function iterates through
the security level’s slots using modular arithmetic.

The boxed operations slots, <, and next in Figure 8
indicate parameters to the scheduler whose behavior can
affect the scheduler’s security guarantees.

C. Scheduler Security Guarantees

We define two classes of schedulers, ordered and fixed-
step, and prove their properties. We use these properties to
prove the security guarantees provided by the scheduling
strategies Sequential-2, Multiplex-2, and Lattice-Based.

—Ordered Schedulers—

An ordered scheduler is one that permits an �-level sub-
program to execute only when all sub-programs at lower
levels have terminated.

Definition 9 (Ordered Scheduler). The semantic relation�
defines an ordered scheduler if it maintains the following
invariant for all security levels �:

〈−→p , σ,−→ψ , δ〉�� 〈−→p ′, σ′,
−→
ψ ′, δ′〉

implies ∀�′ ∈ L . �′ � �⇒ −→
ψ [�′] = Terminated

Lemma 3. Every ordered scheduler enforces strong sensi-
tivity among the comparable levels of L.

Proof: Let �1, �2 ∈ L such that �1 � �2 and define
L = L�1 . Let K1 ∼L K2 and

K1 ��2 K
′
1 �∗ 〈

−→
p′′
1 , σ

′′
1 ,
−→
ψ′′
1 , δ

′′〉

K2 ��2 K
′
2 �∗ 〈

−→
p′′
2 , σ

′′
2 ,
−→
ψ′′
2 , δ

′′〉

Because �2 ∈ H , Corollary 1 gives −→pi ∼L

−→
p′
i , and

σi ∼L σ
′
i, and

−→
ψi ∼L

−→
ψ′
i, where i ∈ {1, 2}. By Definition 9,

all subsequent transitions are also in H because all sub-
programs at level �1 and lower must have terminated before
the sub-program at level �2 can execute. Corollary 1 applies,
inductively, to give

−→
p′
i ∼L

−→
p′′
i , and σ′

i ∼L σ′′
i , and−→

ψ′
i ∼L

−→
ψ′′
i , where i ∈ {1, 2}. By transitivity, −→pi ∼L

−→
p′′
i , and

σi ∼L σ
′′
i , and

−→
ψi ∼L

−→
ψ′′
i , where i ∈ {1, 2}. By transitivity,−→

p′′
1 ∼L

−→
p′′
2 , and σ′′

1 ∼L σ
′′
2 , and

−→
ψ′′
1 ∼L

−→
ψ′′
2 .

425

—Fixed-Step Schedulers—

A fixed-step scheduler is one that enforces a constant time
interval between the selection of every slot.

Definition 10 (Fixed-step Scheduler). A fixed-step scheduler
is one that (a) defines a deterministic slots function that
is fixed for every run of every sub-program, (b) defines
a slots function that assigns distinct slots to any set of
security levels whose sub-programs may be multiplexed, and
(c) defines a deterministic, history-based next function that
depends only on the number of steps the scheduler has
executed.

Lemma 4. Every fixed-step scheduler exhibits weakly-
sensitive noninterference.

Proof: For a given security level � and a pair of low-
equivalent configurations K1 ∼L K2, let:

K1 �n1 〈
−→
p′
1, σ

′
1,
−→
ψ′
1, δ

′〉 and K2 �n2 〈
−→
p′
2, σ

′
2,
−→
ψ′
2, δ

′〉

Under a weak timing model:

K1.δ +

n1∑
j=1

(δs + δp) = δ′ = K2.δ +

n2∑
j=1

(δs + δp)

where δp is the constant-time value that the weak timing
model gives to each sub-program step. By Definition 5,
K1.δ = K2.δ. Because δs is constant, it must be that
n1 = n2. Let k represent this number. Then:

Ki ��1i
· · ·��ki

〈
−→
p′
i , σ

′
i,
−→
ψ′
i, δ

′〉

where i ∈ {1, 2}. Because the scheduler is fixed-step, �j1 =
�j2, for j = 1 . . . k. Either �ji : L or �ji : H . If �ji : L then
Lemma 2 and weak sensitivity give that the sub-program
vectors, stores, and state vectors of Kj−1

i and Kj
i are low-

equivalent for j = 2 . . . k. The same result is achieved by
Corollary 1 and weak timing, if �ki : H . By induction over k,
the sub-program vectors, stores, and state vectors of Ki are
low-equivalent to

−→
p′
i , σ′

i, and
−→
ψ′
i, respectively. By transitivity,−→

p′
1 ∼L

−→
p′
2, and σ′

1 ∼L σ
′
2, and

−→
ψ′
1 ∼L

−→
ψ′
2.

A fixed-step scheduler does not exhibit strongly-sensitive
noninterference among all security levels. Under strong ter-
mination, differences in the high portion of stores K1.σ and
K2.σ may, for example, cause K1 to terminate abnormally
but not cause K2 to do so. If the abnormal termination
prevents a low sub-program from updating the store, then
low-equivalence is not preserved.

—Scheduler Security Guarantees—

Theorem 1 (Sequential-2). The Sequential-2 scheduler is
strongly-sensitive among comparable levels.

Proof: By Lemma 3, it suffices to show that Sequential-
2 is an ordered scheduler. This is true by construction. The
scheduler’s filter min◦ ready prevents a sub-program at level

�2 from executing before a sub-program at level �1 � �2 has
terminated.

Theorem 2 (Multiplex-2). The Multiplex-2 scheduler is
weakly-sensitive.

Proof: By Lemma 4, it suffices to show that Multiplex-
2 is a fixed-step scheduler. This is true by construction.
Every security level may be multiplexed. The scheduler’s
deterministic slots function assigns a distinct slot to every
security level. The scheduler’s next function uses modular
arithmetic over a finite domain, which means that the slot
choice depends only on the number of steps taken.

Theorem 3 (Lattice-Based). The Lattice-Based scheduler
is strongly-sensitive among comparable levels and weakly-
sensitive among all other levels.

Proof: By Lemma 4, if Lattice-Based is a fixed-
step scheduler than it is weakly-sensitive among all
levels. If Lattice-Based also is an ordered scheduler,
than it is strongly-sensitive among comparable levels, by
Lemma 3. Lattice-Based is an ordered scheduler because
the min-depth ◦ running component of the scheduler’s filter
prevents a sub-program at level �2 from executing before a
sub-program at level �1 � �2 has terminated. Lattice-Based
is a fixed-step scheduler because only non-comparable levels
may be multiplexed and the scheduler’s deterministic slots
function assigns a distinct set of slots to any subset of non-
comparable security levels. The scheduler’s next function
uses modular arithmetic over a finite domain, which means
that the slot choice depends only on the number of steps
taken.

VII. FURTHER DISCUSSION

In this section we first discuss the relation of our work to
an earlier paper on timing- and termination-sensitive secure
information flow called “Noninterference Through Secure
Multi-Execution,” by Devriese and Piessens [13]. We then
discuss how we might incorporate a form of declassification
into our scheme.

A. Secure Multi-Execution

Secure Multi-Execution (SME), described by Devriese
and Piessens [13], is the first description and practical
implementation of an instance of the scheduling approach
to eliminating timing and termination leaks. The SME paper
contains formal claims and open questions that are addressed
by our work.

1) First SME Scheduling Strategy (selectlowprio): The
selectlowprio strategy described in the SME paper is equiva-
lent to our Sequential-2 strategy. The SME paper claims that
this scheduling strategy enforces weakly-sensitive noninter-
ference (what the paper refers to as “strong noninterference”)
among all security levels [13, § IV-A]. Our paper shows
that this claim is not true for non-comparable security

426

levels and that this claim may be strengthened for compa-
rable security levels. The SME paper’s proof of weakly-
sensitive noninterference is valid for comparable security
levels, and indeed we showed in Section VI-C that it can
be strengthened to a proof of strongly-sensitive noninterfer-
ence. The SME paper’s mistaken claim of weakly-sensitive
noninterference among non-comparable levels relies on the
assumed extension of a partially ordered security lattice to
a totally ordered one [13, § III-B]. However, we have shown
in Sections V-A and VI-C that, although such an extension
does make it possible to employ selectlowprio, any proof
of security guarantees that relies on a total order does not
necessarily apply to the original, partially ordered lattice.

2) Second SME Scheduling Strategy (unnamed): The
SME paper proposes an unnamed second scheduling strategy
that is not formalized or proven secure, but is implemented
and evaluated in the paper [13, § II-B, §V-A]. The descrip-
tion of the strategy is ambiguous.

Assuming that threads are time-multiplexed on the same
processor, this unnamed strategy is equivalent to Multiplex-
1. Thus, as shown in Section V, it cannot guarantee anything
stronger than insensitive noninterference.

Assuming instead that the number of threads is limited to
the number of processor cores and each thread is pinned
to a separate core6, this same strategy is equivalent to
Multiplex-2 and can guarantee at most weakly-sensitive
noninterference.

3) Nonterminating Sub-programs: The SME paper’s se-
curity guarantees are only made for terminating runs of
sub-programs. The paper raises an open question: whether
any scheduling strategy can guarantee progress of high sub-
programs while also guaranteeing noninterference [13, § IV-
A]. We show that this is possible using the Multiplex-2
strategy, but that the strongest guarantee that can be given
for this case is weakly-sensitive noninterference.

B. Declassification

Strict noninterference between security levels is some-
times too limiting—some applications need the ability to
declassify information, allowing a lower security level to ob-
serve information that comes from higher in the lattice [26],
[40]. Our current framework does not allow declassification,
but we believe that it can be accommodated under certain
constraints. The main constraint is that declassifying some
data D must necessarily declassify the timing and termina-
tion behavior of the computation that computes D.

Under this constraint, declassification can be handled as
follows. When partitioning a program into sub-programs,
create an additional sub-program to compute D, the data that
will be declassified to a lower security level L (this extra par-
titioning can be done using program slicing, multi-execution,
or whatever other technique is used for partitioning the

6According to the authors, this is the intended interpretation [14].

original program). Then schedule the execution of that sub-
program as if it had security level L (while still keeping the
sub-program logically separate from the sub-program that is
actually at level L). In this way, D can be declassified while
still preserving insensitive noninterference.

VIII. CONCLUSION

Secure information flow is a critical requirement for
ensuring the privacy and integrity of information. Covert
channels such as timing and termination are a particularly
difficult source of information leaks to prevent. Attackers
can use these covert channels to leak arbitrary amounts of
information, even in programs that have been certified as
secure using timing- and termination-insensitive noninter-
ference properties. We believe that timing- and termination-
sensitive secure information flow will only become more
important over time. As techniques are developed and em-
ployed to prevent the more standard types of leaks (i.e.,
explicit and implicit leaks), attackers will have ever more
motivation to exploit these covert channels. We believe
that our contributions in this paper will help the research
community to better understand and address the security
challenges of the future.

Existing work in timing- and termination-sensitive secure
information flow uses a variety of formal definitions and
enforcement strategies. We clarify this research area by (1)
describing and discussing in detail different definitions of
timing- and termination-sensitivity; (2) exploring a space of
scheduling strategies for enforcing timing- and termination-
sensitive noninterference; and (3) formally proving the secu-
rity guarantees implied by a variety of scheduling strategies.
As an outgrowth of this clarification, we introduce a new
scheduling strategy that provides stronger security guaran-
tees than any in existing work, and we address issues with
existing work by demonstrating an error in a formal claim
of security, strengthening another formal security guarantee,
and answering open questions.

Acknowledgements: We thank Frank Piessens, Do-
minique Devriese, and the anonymous reviewers for their
comments on this paper.

REFERENCES

[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of
dependency. In ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL), pages 147–160, 1999.

[2] J. Agat. Transforming out timing leaks. In ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL), pages 40–53, 2000.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms,
and applications. Prentice Hall, 1993.

[4] T. Amtoft and A. Banerjee. A logic for information flow analysis with an
application to forward slicing of simple imperative programs. Science of
Computer Programming (SCP), 64(1):3–28, 2007.

[5] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive
noninterference leaks more than just a bit. In European Symposium on Research
in Computer Security (ESORICS), pages 333–348, 2008.

427

[6] A. Askarov, A. C. Myers, and D. Zhang. Predictive black-box mitigation
of timing channels. In ACM Conference on Computer and Communications
Security (CCS), pages 297–307, 2010.

[7] G. Barthe, T. Rezk, and M. Warnier. Preventing Timing Leaks Through
Transactional Branching Instructions. Electronic Notes Theoretical Computer
Science, 153:33–55, May 2006.

[8] A. Bortz and D. Boneh. Exposing private information by timing web
applications. In International Conference on World Wide Web (WWW), pages
621–628, 2007.

[9] G. Boudol and I. Castellani. Noninterference for concurrent programs. In
International Colloquium on Automata, Languages and Programming (ICALP),
pages 382–395, 2001.

[10] D. Brumley and D. Boneh. Remote timing attacks are practical. In USENIX
Security Symposium, pages 1–14, 2003.

[11] D. E. Denning. A lattice model of secure information flow. Communications
of the ACM (CACM), 19(5):236–243, 1976.

[12] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Communications of the ACM (CACM), 20(7):504–513, 1977.

[13] D. Devriese and F. Piessens. Non-interference through secure multi-execution.
In IEEE Symposium on Security and Privacy, pages 109–124, 2010.

[14] D. Devriese and F. Piessens. Personal communication, November 2010.

[15] J. F. Dhem, F. Koeune, P. A. Leroux, P. Mestré, J. J. Quisquater, and J. L.
Willems. A Practical Implementation of the Timing Attack. In International
Conference on Smart Card Research and Applications (CARDIS), pages 167–
182, 2000.

[16] E. W. Felten and M. A. Schneider. Timing attacks on web privacy. In ACM
Conference on Computer and Communications Security (CCS), pages 25–32,
2000.

[17] R. Giacobazzi and I. Mastroeni. Timed Abstract Non-interference. In Formal
Modeling and Analysis of Timed Systems, volume 3829 of Lecture Notes in
Computer Science, chapter 22, pages 289–303. 2005.

[18] J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy, pages 11–20, 1982.

[19] C. Hammer, J. Krinke, and G. Snelting. Information flow control for Java based
on path conditions in dependence graphs. In IEEE International Symposium
on Secure Software Engineering, 2006.

[20] H. Handschuh and H. M. Heys. A Timing Attack on RC5. In SAC ’98:
Proceedings of the Selected Areas in Cryptography, pages 306–318, 1999.

[21] D. Hedin and D. Sands. Timing aware information flow security for a javacard-
like bytecode. Electronic Notes in Theoretical Computer Science, 141(1):163–
182, 2005.

[22] W. M. Hu. Reducing timing channels with fuzzy time. In IEEE Symposium
on Security and Privacy, pages 8–20, 1991.

[23] W. M. Hu. Lattice Scheduling and Covert Channels. In IEEE Symposium on
Security and Privacy, pages 52–61, 1992.

[24] T. Khatiwala, R. Swaminathan, and V. N. Venkatakrishnan. Data Sandboxing: A
Technique for Enforcing Confidentiality Policies. In Annual Computer Security
Applications Conference (ACSAC), pages 223–234, 2006.

[25] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In International Cryptology Conference on Advances
in Cryptology (CRYPTO), pages 104–113, 1996.

[26] A. C. Myers and B. Liskov. A decentralized model for information flow control.
SIGOPS Operating Systems Review (OSR), 31(5):129–142, October 1997.

[27] P. R. J. Östergård. A fast algorithm for the maximum clique problem. Discrete
Applied Mathematics, 120(1–3):197–207, 2002.

[28] P. M. Pardalos and J. Xue. The maximum clique problem. Journal of Global
Optimization, 4(3):301–328, 1994.

[29] A. Russo, J. Hughes, D. Naumann, and A. Sabelfeld. Closing internal timing
channels by transformation. In Asian Computing Science Conference on
Advances in Computer Science (ASIAN), pages 120–135, 2007.

[30] A. Russo and A. Sabelfeld. Securing interaction between threads and the
scheduler. In IEEE Workshop on Computer Security Foundations, pages 177–
189, 2006.

[31] A. Russo and A. Sabelfeld. Security for multithreaded programs under
cooperative scheduling. In International Andrei Ershov Memorial Conference
on Perspectives of Systems Informatics (PSI), pages 474–480, 2007.

[32] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[33] P. Shroff and S. F. Smith. Securing timing channels at runtime. Technical
report, Department of Computer Science, The Johns Hopkins University, July
2008.

[34] G. Smith and D. Volpano. Secure information flow in a multi-threaded imper-
ative language. In ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL), pages 355–364, 1998.

[35] S. F. Smith and M. Thober. Refactoring programs to secure information flows.
In ACM SIGPLAN Workshop on Programming Languages and Analysis for
Security (PLAS), pages 75–84, 2006.

[36] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome,
G. A. Reis, M. Vachharajani, and D. I. August. Rifle: An architectural frame-
work for user-centric information-flow security. In IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 243–254, 2004.

[37] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow
analysis. Journal of Computing Security, 4(2-3):167–187, 1996.

[38] D. Volpano and G. Smith. Eliminating covert flows with minimum typings. In
IEEE Workshop on Computer Security Foundations, page 156, 1997.

[39] W. H. Wong. Timing attacks on RSA: revealing your secrets through the fourth
dimension. Crossroads, 11(3):5, May 2005.

[40] S. Zdancewic and A. C. Myers. Robust declassification. In IEEE Workshop
on Computer Security Foundations, pages 15–23, 2001.

[41] S. Zdancewic and A. C. Myers. Observational determinism for concurrent
program security. In IEEE Workshop on Computer Security Foundations, pages
29–43, 2003.

428

