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Abstract—Introspection has featured prominently in many
recent security solutions, such as virtual machine-based in-
trusion detection, forensic memory analysis, and low-artifact
malware analysis. Widespread adoption of these approaches,
however, has been hampered by the semantic gap: in order
to extract meaningful information about the current state of
a virtual machine, detailed knowledge of the guest operating
system’s inner workings is required. In this paper, we present
a novel approach for automatically creating introspection
tools for security applications with minimal human effort.
By analyzing dynamic traces of small, in-guest programs
that compute the desired introspection information, we can
produce new programs that retrieve the same information from
outside the guest virtual machine. We demonstrate the efficacy
of our techniques by automatically generating 17 programs
that retrieve security information across 3 different operating
systems, and show that their functionality is unaffected by
the compromise of the guest system. Our technique allows
introspection tools to be effortlessly generated for multiple
platforms, and enables the development of rich introspection-
based security applications. 1

I. INTRODUCTION

As kernel-level malware has become both more common
and more sophisticated, some researchers have advocated
protecting insecure commodity operating systems through
the use of virtualization-based security [11], [14], [19], [27].
By moving protection below the level of the OS, these
solutions aim to provide many traditional security services
such as intrusion detection and policy enforcement without
fear of subversion by malicious code running on the system.
At the same time, because the code base of the hypervisor is
small, there is some hope that it can be verified and provide
secure isolation for the virtual machines it supervises.

This enhanced security and isolation comes at a cost,
however. Because the guest operating system is untrusted,
information about its state can not be reliably obtained by
calling standard APIs within the guest. Instead, security
tools must use introspection to retrieve information about
the current state of the guest OS by examining the physical
memory of the running virtual machine and using detailed
knowledge of the operating system’s algorithms and data
structures to rebuild higher level information such as lists

1This work was performed under U.S. Air Force contract FA8721-05-C-
0002. Opinions, interpretations, conclusions, and recommendations are not
necessarily endorsed by the U.S. Government.

of running processes, open files, and active network con-
nections. Even if the guest OS is compromised, the tools
using introspection will continue to report accurate results,
so long as the underlying internal data structures used by
the operating system are intact.

The creation and maintenance of introspection tools,
therefore, is dependent on detailed, up-to-date information
about the internal workings of commodity operating sys-
tems. Even for systems where the source code to the kernel
is available, acquiring this knowledge can be a daunting
task; when source is not available, prolonged effort by a
skilled reverse engineer may be required. Moreover, the
time and effort spent divining the internals of a particular
version of an operating system may not be applicable
to future versions. This problem of extracting high-level
semantic information from low-level data sources, known
as the semantic gap, presents a significant barrier to the
development and widespread deployment of virtualization
security products.

The fact that creating introspection tools by hand is
difficult has multiple security implications. Security profes-
sionals and system administrators rely upon the output of
hand-built introspection tools; at the same time, these tools
are fragile and often cease to function upon application of
operating system patches. Currently, therefore, one must of-
ten choose between keeping an up-to-date system and main-
taining a working set of introspections. Moreover, hand-built
introspection tools may introduce opportunities for attackers
to evade security tools: to the extent that introspection must
replicate the behavior of in-guest functionality, the developer
must have an accurate model of the OS’s inner workings.
Garfinkel [10] has demonstrated, with numerous examples
drawn from his experience with system call monitors, that
any divergence between reality and the model assumed by
a security program can provide opportunities for evasion.

In this paper, we both ease the burden of maintaining
introspection-based security tools and make them more
secure by providing techniques to automatically create pro-
grams that can extract security-relevant information from
outside the guest virtual machine. Our fundamental insight
is that it is typically trivial to write programs inside the
guest OS that compute the desired information by querying
the built-in APIs. For example, to get the ID of the currently
running process in Linux, one need only call getpid(); by
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contrast, implementing the same functionality from outside
the virtual machine depends on intimate knowledge of
the layout and location of kernel structures such as the
task_struct, as well as information about the layout of
kernel memory and global variables. Our solution, named
Virtuoso, takes advantage of the OS’s own knowledge (as
encoded by the instructions it executes in response to a
given query) to learn how to perform OS introspections. For
example, using Virtuoso, a programmer can write a program
that calls getpid() and let Virtuoso trace the execution
of this program, automatically identify the instructions nec-
essary for finding the currently running process, and finally
generate the corresponding introspection code.

Virtuoso takes into account complexities that arise from
translating a program into a form that can run outside
of its native environment. It must be able to extract the
program code, and its dependencies; to do this, we use a
dynamic analysis that captures all the code executed while
the program is running. At the same time, Virtuoso must
be able to distinguish between the introspection code and
unrelated system activity, a challenge that we overcome by
making use of dynamic slicing [17] to identify the exact set
of instructions required to compute the introspection. Finally,
the use of dynamic analysis means that a single execution
of the program may not cover all paths required for reliable
re-execution. To ensure that our generated programs are re-
liable, we introduce a method for merging multiple dynamic
traces into a single coherent program and show that its use
allows our generated programs to achieve high reliability.

This paper makes the following contributions:
1) A new method for automatically generating introspec-

tion programs for security and other purposes. This
method requires only a programmer’s knowledge of
operating system APIs and a few minutes of compu-
tation, rather than detailed knowledge of kernel data
structure layouts or weeks of reverse engineering.

2) A new technique for extracting whole-system exe-
cutable dynamic slices of binary “programs”. Previous
work has focused on extracting simple functions from
user-level code only.

3) An algorithm for combining the results of multiple dy-
namic traces into a single program, which overcomes
some of the limitations of dynamic analysis present
in previous work [16], and a proof of our algorithm’s
correctness.

4) Creation of memory analysis tools for the Haiku
operating system [12], generated without knowledge
of the Haiku kernel’s internal design or data structures.

The remainder of this paper is organized as follows.
Section II discusses related work in binary code extraction
and virtual machine introspection. Next, Section III de-
scribes the scenarios in which Virtuoso can be used to speed
up the development of security-focused introspection tools.
Sections IV and V discuss the design and implementation of
our system. In Section VI, we evaluate Virtuoso’s generality,
security, reliability, and performance by generating 17 intro-

spection programs for Windows, Linux, and Haiku. Finally,
we conclude by outlining future research directions (Section
VII) and summarizing our conclusions (Section VIII).

II. RELATED WORK

Most closely related to our own techniques are two
recent works which perform extraction of binary code for
security purposes. Binary Code Reutilization (BCR) [5] and
Inspector Gadget [16] focus on the problem of extracting
subsets of binary code, particularly in order to reuse pieces
of malware functionality (such as domain name generation
or encryption functions). While the former primarily uses
static analysis and recursively descends into function calls,
the latter adopts a dynamic approach similar to our own.
Inspector Gadget performs a dynamic slice on a log collected
from a single run of the malicious code and changes half-
covered conditional branches into unconditional jumps (the
authors do not discuss the possible correctness issues that
may arise from this strategy, nor do they say whether their
system can combine multiple dynamic traces into a single
program). Both systems are more limited in scope than Vir-
tuoso and do not consider kernel code. They make extensive
use of domain knowledge about the target operating system,
and would therefore be difficult to adapt to new platforms.
By contrast, Virtuoso uses no domain knowledge aside from
understanding the x86 platform, and performs whole-system
binary code extraction.

More generally, virtual machine introspection has played
an integral role in a number of recent security designs.
Garfinkel and Rosenblum [11] first proposed the idea of per-
forming intrusion detection from outside the virtual machine.
Their system introspects on Linux guests to detect certain
kinds of attacks; higher level information is reconstructed
through the use of the crash utility [25]. Since then, other
researchers have proposed using virtualized environments
for tasks such as malware analysis [7], [13] and secure
application-layer firewalls [31]; these systems all make
heavy use of virtual machine introspection and therefore
must maintain detailed and accurate information on the
internals of the operating systems on which they introspect.

Introspection can also be useful in contexts outside of tra-
ditional virtualization security. Petroni et al. [28] presented a
system called Copilot that polls physical memory from a PCI
card to detect intrusions; such detection needs introspection
to be useful. Malware analysis platforms that run samples
in a sandboxed environment, such as CWSandbox [34] and
Anubis [3], can also benefit from introspection: by extracting
high-level information about the state of the system as the
malware runs, more meaningful descriptions of its behavior
can be generated. At the same time, this introspection must
be secure and unobtrusive, as the guest OS is guaranteed
to be compromised. Our work can help provide higher-level
semantic information to such systems.

Originally proposed by Korel and Laski [17], the dynamic
slicing at the heart of our algorithm has been used in several
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other recent security tools, such as HookMap [33] and K-
Tracer [18]. The former makes use of this technique to
identify memory locations in the kernel that could be used
by a rootkit to divert control flow, while the latter uses
a combination of dynamic backward and forward slicing
(also known as “chopping”) to analyze the behavior of
kernel malware with respect to sensitive data such as process
listings. Additionally, Kolbitsch et al. [15] described a mal-
ware detection system that uses dynamic slicing to extract
the code necessary to relate return values and arguments
between system calls.

III. INTROSPECTION FOR SECURITY

To motivate the design of Virtuoso, we consider the
common scenario where secure introspection into the state
of a running virtual machine (known as the guest) from
outside that VM (i.e., from the host) is needed. This need
may arise when performing out-of-the-box malware analysis
or debugging [13], [14], or when attempting to secure a
commodity operating system by placing security software
in an isolated virtual machine for intrusion detection [11]
or active monitoring [27]. In cases such as these it is easy
to see why in-guest monitoring is undesirable: if the guest
OS can be compromised, then the in-guest tools themselves
can become corrupted or the system APIs can be altered to
return false information (such as by omitting a malicious
process from a task list).

Developing tools to perform such introspections, however,
is no easy task: extracting even simple information such as
the current process ID or a list of active network connections
requires deep understanding of the operating system running
in the VM. In particular, the location of the data, its layout,
and what algorithms should be used to read it must all be
known. While some recent work has addressed the problem
of automatically reverse engineering data structure layouts
[20], [21], [30], the overall task of creating introspections is
still largely a manual effort. With Virtuoso, however, another
option is available: by simply writing small programs (which
we refer to as training programs) for the guest OS that
extract the desired information, host-level introspection tools
can be automatically created that later retrieve the same
information at runtime from outside the running VM.

To illustrate how Virtuoso can be used to quickly create
secure introspection programs, consider the running example
shown in Figure 1. Here, a developer wishes to create an
introspection that obtains the name of a process by its PID.
To do so, he first writes an in-guest program that queries the
OS’s APIs for the information. Such programs are generally
trivial to create for even modestly skilled programmers.
The program is then run inside Virtuoso, which records
multiple executions, analyzes the resulting instruction traces,
and creates an out-of-guest introspection program that can
retrieve the name of a process running inside a virtual
machine. This program can then be deployed to a secure
virtual machine and used to obtain this security-relevant
information at runtime. The generated program does not

call any in-guest APIs, but rather contains all the low-level
instructions necessary to implement that API outside of the
virtual machine. This entire procedure involves only minimal
effort on the part of the developer, and requires no reverse
engineering or specialized knowledge of the OS’s internals.

Tools generated in this way are specific to the operating
system for which the corresponding training programs were
developed; that is, if the developer writes a program that
gets the current process ID in Windows XP, the generated
out-of-the-box tool will only work for Windows XP guests.
However, supporting a new platform only requires adapting
the training program to a new OS and its API, rather than
costly reverse engineering or source code analysis by a
specialist. Moreover, different releases of various operating
systems are often backwards compatible at either the source
or binary level. This is the case, for example, with Microsoft
Windows: programs written for Windows NT 3.1 (released
over 15 years ago) can run without modification on Windows
7. In this case Virtuoso could analyze the behavior of the
same program under each release of Windows, generating a
suite of host-level introspection tools to cover any version
desired with no additional programmer effort. Changes in
the underlying implementations of the OS APIs would be
automatically reflected in the generated host introspection
tools.

Once the introspection tools have been generated for
a particular OS release, they can be deployed to aid in
the secure monitoring of any number of virtual machines
running that OS. The generated introspection tools will
provide accurate data about the current state of the guest
VM, even when the code of that VM is compromised.2

Thus, Virtuoso produces tools that enable secure monitoring
of insecure commodity operating systems, and accomplishes
this task with only minimal human intervention.

A. Scope and Assumptions
Although we believe Virtuoso represents a large step

forward in narrowing the semantic gap, there are some
fundamental limitations to our techniques and constructs
that Virtuoso is not currently equipped to handle. First,
Virtuoso is, by design, only able to produce introspection
code for data that is already accessible via some system
API in the guest. These introspections are a subset of those
that could be programmed manually, and it is possible
that some security-relevant data are not exposed through
system APIs. For those functions that are exposed through
system APIs, Virtuoso greatly reduces the cost of producing
introspections; we describe six such useful introspections in
Section VI.

Second, there are certain code constructs that are difficult
to reproduce, such as synchronization primitives (which
may require other threads to act before an introspection
can proceed) and interprocess communication (IPC). These

2As with all introspection, malicious alterations to the guest’s kernel data
structure layouts, locations, or algorithms may still cause incorrect results
to be reported.

299



getpsname.exegetpsfile.exe

Trace Logger

  I
ns

tru
ct

io
n 

Tr
ac

es Trace Analyzer

Instruction 
Translator

Security VM Untrusted VM

C 
O 
W

getpsfile(pid=384)

Runtime

chrome.exe

R/W R/O

Kernel

Applications

getpsfile

  I
ns

tru
ct

io
n 

Tr
ac

es

getpsfile

Training Analysis Runtime

Training Environment

Figure 1. An example of Virtuoso’s usage. A small in-guest training program that retrieves the name of a process given its PID is executed in the training
environment a number of times, producing several instruction traces. These traces are then analyzed and merged to create an introspection program that
can be used to securely introspect on the state of a guest virtual machine from outside the VM. We explain further details of this diagram in Section IV.

limitations are not neccessarily fundamental, but they require
additional research to overcome. We discuss these limita-
tions further in Section VII.

Finally, if an introspection requires interaction with a
hardware device, such as the disk or a network interface,
the introspection cannot currently be generated by Virtuoso.
In Section VII we discuss possible extensions to Virtu-
oso that could enable automatic generation of some such
introspections, however, for some devices any interaction
might irreversibly perturb the guest state (for example, if
an introspection must access the network, there is no way
to reverse its effects—the packets cannot be “unsent”). This
would leave the guest in an inconsistent state and may cause
the system to become unstable; it also violates the principle
that introspection should not alter the guest.

IV. VIRTUOSO DESIGN

At a high level, Virtuoso creates introspection tools for
an operating system by converting in-guest programs that
query public APIs into out-of-guest programs that reproduce
the behavior of the in-guest utilities. This is done in three
phases (Figure 2): a training phase, in which an in-guest
program that computes the desired information is run a
number of times, and a record of each execution is saved; an
analysis phase, which extracts just the instructions involved
in computing the data required for the introspection, merges
the traces into a single program, and translates that program
into one that can be executed from outside the virtual
machine; and finally a runtime phase, in which the generated
program is used to introspect on a running virtual machine.
These steps are described in more detail below.

A. Training

The training phase is shown in Figure 1, our running
example: the training program, getpsfile.exe, is run
several times in the training environment to capture a variety

• Write in-guest program computing 
introspection quantity X

Training
Phase

• Execute program on relevant 
system

• Record instruction trace

Analyst

Automated

• Extract only instructions 
relevant to computing X

Repeat for
multiple
system
states

Analysis
Phase• Aggregate multiple traces

Instruction Traces

• Generate code
• Convert in-guest memory refs to 

cross-domain refs

Out-of-guest 
introspection routine 

that computes X

Figure 2. A high-level conceptual view of our system for generating
introspection tools. This view corresponds to the training and analysis
phases shown in Figure 1. The programmer creates an in-guest program
that computes the desired introspection quantity by calling standard OS
APIs. This in-guest program is then run repeatedly under various system
states, and the instructions executed are logged. These instruction traces are
then analyzed to isolate just the instructions that compute the introspection
quantity, merged into a unified program, and then translated into an out-
of-guest introspection tool.

of program paths, producing a number of instruction traces.
For this stage, we assume the developer can create such
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# i n c l u d e <windows . h>
# i n c l u d e <p s a p i . h>
#pragma comment ( l i b , ” p s a p i . l i b ” )
# i n c l u d e ” v m n o t i f y . h ”

i n t main ( i n t argc , char ∗∗ a rg v ) {
char ∗name ;
HANDLE h ;
DWORD p i d = a t o i ( a rg v [ 1 ] ) ;
name = ( char ∗ ) m a l lo c ( 1 0 2 4 ) ;
vm mark buf in (& pid , 4 ) ;
vm mark buf in (&name , 4 ) ;
h = OpenProcess (PROCESS QUERY INFORMATION, 0 , p i d ) ;
Ge tProcess ImageF i l eName ( h , name , 1 0 2 4 ) ;
vm mark buf out ( name , 1 0 2 4 ) ;
re turn 0 ;

}
Listing 1. A complete sample program that gets the name of a
process given its PID under Windows. Programs such as these are
easy to write from inside the operating system using documented APIs.
GetProcessImageFileName and malloc are standard API calls
known to Windows programmers. vm_mark_buf_in and out notify
Virtuoso of input and output.

number of times, and a record of each execution is saved; an
analysis phase, which extracts just the instructions involved
in computing the data required for the introspection, merges
the traces into a single program, and translates that program
into one that can be executed from outside the virtual
machine; and finally a runtime phase, in which the generated
program is used to introspect on a running virtual machine.
These steps are described in more detail below.

A. Training

For the training stage of our system, we assume the
developer can create a small, in-guest program that computes
the data needed for the introspection tool. This places a
very minimal burden on the programmer: because ordinary
programs running inside the target operating system need
to query many of the same kinds of information desired by

introspection tools, OS designers typically make rich APIs
available for finding out this information. Additionally, such
APIs are generally easy to use, stable, and well-documented,
as they are the primary interface through which programs
talk to the OS.

A sample program that obtains a list of running pro-
cesses under Windows is shown in Listing 1. The pro-
gram, annotated with markers that indicate where to be-
gin and end tracing (vm_mark_buf_in and out), in-
vokes the Windows API functions OpenProcess and
GetProcessImageFileName to get the list of running
processes. The annotations also record the addresses of input
and output buffers for the program; these will ground the
data flow analysis performed to help identify what portions
of the system’s execution are necessary to compute the
introspection quantity (in this case, the process name).

Even for simple programs like the one described above,
there may be a number of different execution paths taken
through the program depending on the state of the OS when
the program is executed. To produce a program that works
correctly in all situations, we run the program repeatedly in
an instrumented environment and collect traces that record
all instructions executed by the program and operating
system. These execution traces are then analyzed and merged
together to produce an out-of-guest introspection tool that
can be used to reliably provide security-relevant information
for monitoring applications.

B. Analysis

Although the execution traces gathered in the training
phase contain all the instructions needed to compute the
introspection quantity, they also contain a large amount of
extraneous computation. This extra “noise” is present be-
cause our traces record the execution of the whole system: in
addition to computing the introspection quantity, the traces

Figure 3. A complete sample program that gets the name of a
process given its PID under Windows. Programs such as these are
easy to write from inside the operating system using documented APIs.
GetProcessImageFileName, OpenProcess, and malloc are stan-
dard API calls known to Windows programmers. vm_mark_buf_in and
out notify Virtuoso of input and output.

runs the translated instructions in a context that gives them
access to the resources (such as CPU registers and memory)
of the guest virtual machine without perturbing its state.

In particular, low-level operations that affect registers or
memory are wrapped so that they enforce copy-on-write
(COW) behavior. Whenever a write to memory occurs, it
is redirected to the COW memory space (shown in the
right panel of Figure 1); when a read occurs, it first checks
whether the data exists in COW memory. If so, it reads from
the COW space. Otherwise, the read is serviced directly from
guest memory. A similar scheme is used to handle register
access. This allows introspections to access the state of the
running system without interfering with its operation.

There is some subtlety to the question of how to obtain
values from the memory of the guest. Certain data seen
during training may be specific to the training program (for
example, static data such as strings), while other data may
be part of the system’s state as a whole. In the former
case, we would want to use the values seen in training (as
they may not be available in the environment in which the
introspection program is run), whereas in the latter we would
want to obtain the values from the guest itself (since the
point of introspection, after all, is to obtain the state of the
system). To differentiate between these two types of data,
we currently make the simplifying assumption that kernel
data seen during training is global, and should be read from
the guest, while userland data is specific to the training
program, and should be saved during training and re-used
at runtime. This reflects the nature of the introspections we
wish to capture, which obtain information about the state of
the system as a whole rather than any individual process.

When performing an introspection (even with hand-
generated tools), the guest CPU is paused in order to prevent

Figure 3. A complete sample program that gets the name of a
process given its PID under Windows. Programs such as these are
easy to write from inside the operating system using documented APIs.
GetProcessImageFileName, OpenProcess, and malloc are stan-
dard API calls known to Windows programmers. vm_mark_buf_in and
out notify Virtuoso of input and output.

small, in-guest programs that compute the data needed for
the introspection tool. This places a very minimal burden on
the programmer: because ordinary programs running inside
the target operating system need to query many of the
same kinds of information desired by introspection tools,
OS designers typically make rich APIs available for finding
out this information. Additionally, such APIs are generally
easy to use, stable, and well-documented, as they are the
primary interface through which programs talk to the OS.

A sample program that retrieves the name of a pro-
cess under Windows is shown in Figure 3. The pro-
gram, annotated with markers that indicate where to be-
gin and end tracing (vm_mark_buf_in and out), in-
vokes the Windows API functions OpenProcess and
GetProcessImageFileName to get the process name.
The annotations also record the addresses of input and output
buffers for the program; these will ground the data flow
analysis performed to help identify what portions of the sys-
tem’s execution are necessary to compute the introspection
quantity (in this case, the process name).

Even for simple programs like the one described above,
there may be a number of different execution paths taken
through the program depending on the state of the OS when
the program is executed. To produce a program that works
correctly in all situations, we run the program repeatedly in
an instrumented environment and collect traces that record
all instructions executed by the program and operating
system. These execution traces are then analyzed and merged
together to produce an out-of-guest introspection tool that
can be used to reliably provide security-relevant information
for monitoring applications.

B. Analysis

Although the execution traces gathered in the training
phase contain all the instructions needed to compute the
introspection quantity, they also contain a large amount of
extraneous computation. This extra “noise” is present be-

cause our traces record the execution of the whole system: in
addition to computing the introspection quantity, the traces
also contain unrelated events such as interrupt handling
and unrelated housekeeping tasks performed by the kernel.
Because we are only interested in the code that is necessary
for producing a working introspection program, we must
excise these extraneous parts of the traces. We accomplish
this by first throwing away or replacing parts of each trace
that we know a priorito be unrelated to the introspection,

such as hardware interrupts and memory management. Next,
we identify the instructions that actually compute the output
by performing a dynamic data slice [17] on each trace.
Finally, we merge the slice results across basic blocks and
traces, producing a unified program that can be translated
into an out-of-guest introspection routine.

In order to produce a working routine, the inputs and
outputs to the training program must be identified. To do
so, we look for places in the trace where buffers marked
as inputs are used. These instructions are marked as places
where input data is used so that, at translation time, we can
generate code that splices in the program inputs at these
points. Similarly, as the location of the output buffer may
change depending on the current environment (for example,
if the output buffer is on the stack, its location will change
depending on the value of ESPwhen the introspection

tool is run), the analysis determines which instructions are
immediately responsible for writing the data to the output
buffer. These “output-producing instructions” are marked;
the translator will handle such instructions specially, so that
the output data can be found independent of the runtime
CPU state.

Once the instruction trace has undergone slicing, merging,
input splicing and output instruction marking, the merged
traces are translated into an out-of-guest introspection pro-
gram. The programs generated by Virtuoso consist of a set
of basic blocks together with successor information. Within
a basic block, each individual instruction is implemented by
a small snippet of code in a high-level language. The use of
a high-level language allows our generated programs to be
usable in many different contexts: forensic memory analy-
sis, virtual machine introspection, and low-artifact malware
analysis.

In our example (Figure 1), we can see that the Trace
Analyzer and Instruction Translator together comprise the
analysis phase, and create the final introspection program
getpsfilefrom the instruction traces generated during
training.

C. Runtime Environment
The translated code, however, cannot be executed directly.

Instead, it must be provided with an appropriate runtime
environmentin which to execute. The runtime environment

(shown on the right in Figure 1), is installed on the host and
runs the translated instructions in a context that gives them
access to the resources (such as CPU registers and memory)
of the guest virtual machine without perturbing its state.
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In particular, low-level operations that affect registers or
memory are wrapped so that they enforce copy-on-write
(COW) behavior. Whenever a write to memory occurs, it
is redirected to the COW memory space (shown in the
right panel of Figure 1); when a read occurs, it first checks
whether the data exists in COW memory. If so, it reads from
the COW space. Otherwise, the read is serviced directly from
guest memory. A similar scheme is used to handle register
access. This allows introspections to access the state of the
running system without interfering with its operation.

There is some subtlety to the question of how to obtain
values from the memory of the guest. Certain data seen
during training may be specific to the training program (for
example, static data such as strings), while other data may
be part of the system’s state as a whole. In the former
case, we would want to use the values seen in training (as
they may not be available in the environment in which the
introspection program is run), whereas in the latter we would
want to obtain the values from the guest itself (since the
point of introspection, after all, is to obtain the state of the
system). To differentiate between these two types of data,
we currently make the simplifying assumption that kernel
data seen during training is global, and should be read from
the guest, while userland data is specific to the training
program, and should be saved during training and re-used
at runtime. This reflects the nature of the introspections we
wish to capture, which obtain information about the state of
the system as a whole rather than any individual process.

Although this policy currently limits the type of introspec-
tions that can be generated to those that inspect systemwide
state, one could define other policies that make introspection
into specific processes possible. If Virtuoso were provided
with some means of locating the appropriate process context
at runtime, one could define a policy that reads all data
directly from the guest, allowing introspection into the
memory of a specific process.

When performing an introspection (even with hand-
generated tools), the guest CPU is paused in order to prevent
the contents of memory from changing during the introspec-
tion. It might seem that one could keep the CPU running,
improving performance by allowing the introspection to
be carried out in parallel with the guest’s execution. This
performance boost would come at the cost of reliability,
however, as changes to the underlying data examined by the
introspection tool would almost certainly cause it to crash
or report incorrect results. In addition, we have noticed that
most generated introspections must be run when the CPU is
in user mode. This is because the traces are recorded based
on a userland program, and so some assumptions may be
made about the state of global registers in userland that do
not hold in kernel mode. To ensure reliability, our runtime
environment polls for a user-mode CPU state and pauses the
guest before performing any introspection.3

3Rather than polling, it is also possible to set up a callback within the
guest whenever there is a transition from kernel to user mode, using the
techniques described by Dinaburg et al. [7].

Finally, the Instruction Translator has special handling
for instructions marked by the Trace Analyzer as inputs
or outputs. Instructions that require input are replaced with
equivalent instructions that explicitly take input from the
environment in which the introspection tool runs. Output-
producing instructions are translated so that their output is
placed in a special buffer at a known location; when the
program terminates, the contents of this buffer containing
the desired introspection quantity are returned so they may
be used by security tools. In our running example (Figure
1), we can see that the generated introspection program is
provided with the PID 384 as input, and produces the output
“chrome.exe”.

Note that the contents of the output may still need to
be interpreted (for example, by decoding the binary data
as a string or integer, or even more complex interpretations
such as displaying a timestamp in human-readable form).
We provide a basic facility by which the user can pro-
vide a function that interprets the output from the runtime
environment; however, we do not attempt to include this
functionality in the generated introspection tool itself. We
feel that this approach is justified, as the output will be
the same as that produced by APIs within the guest OS,
which we have assumed are well-documented. Therefore, the
format of their outputs will most likely also be documented
by the OS vendor.

V. IMPLEMENTATION

Having given a high-level view of our system, we now
turn to the details of its implementation. Virtuoso’s trace
logging portion is built on top of QEMU [4], a fast emulator
and binary translator. Our Trace Analyzer is written in
Python, and consists of 1,843 SLOC;4 the majority of this
code consists of the data flow transfer functions for each
QEMU micro-instruction. Finally, the Instruction Translator
and runtime environment are 431 and 1,095 lines of Python
code, respectively. These components, and their logical
relationship, are shown in Figure 1 on page 4. We will
discuss in detail the implementation of each component in
this section.

A. Trace Logging
Our trace logger, which is shown on the left in Figure 1, is

a modified version of QEMU. QEMU works by dynamically
translating each guest instruction to a series of operations
in a micro-instruction language. The micro-instructions are
implemented by small C functions, which are compiled to
host-level code and chained together to emulate the guest
code on the host.

To enable logging, we inserted small logging statements
into each micro-instruction’s implementation. These log-
ging statements record the current operation, along with its
operands and any dynamic information needed to enable
the data flow analysis (see Section IV-B for more details).

4Source line counts were generated using David A. Wheeler’s ‘SLOC-
Count’.
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Original x86 instruction:

MOV EDI, DWORD PTR [EBP+0x10]

QEMU micro-operations:

MOVL A0, EBP
ADDL A0, 0x10
LDL T0, A0 ; 0x1b1acf00
MOVL EDI, T0

Figure 4. An example of an x86 instruction and the corresponding logged
micro-instructions. The implicit pointer dereference has been made explicit,
and the referenced address has been recorded to enable data flow analysis.

Thus, when the guest code is translated by QEMU, the
generated code will be interleaved with logging functions
that record the micro-instructions executed. This interleaving
is necessary because accurate logging depends on dynamic
information that will only be available once the previous
instruction has finished executing.

Our logging functions record the current micro-operation,
its parameters, and concrete physical memory addresses
for each load and store instruction. Using the physical
address allows data flow to be reconstructed even when
multiple virtual addresses reference the same physical mem-
ory (this often occurs when a buffer is shared between
a user application and the kernel, for example). Finally,
we record the page table dependencies for each memory
operation. This is necessary because each memory load or
store implicitly depends on the addressing structures used:
if another instruction in the trace has modified the virtual to
physical address map, that instruction must also be included
in order for the resulting program to function correctly. By
recording the address of the page directory and page table
entries used in calculating the address of the load or store,
our dynamic slicing algorithm (described in Section V-C)
can automatically determine what page table-manipulating
code must also be included.

In Figure 4, we give an example of an x86 instruction and
the corresponding QEMU micro-operations that are recorded
by the Trace Logger. The x86 instruction is decomposed into
a series of simpler operations: first, a memory address is
computed by taking the value in the EBP register and adding
0x10 to it. Next, the LDL micro-op retrieves the value
from memory at that address and stores it in the temporary
register T0. Along with the micro-op, the logger records the
address the memory was read from to capture any data flow
dependencies. Finally, the value read is transferred to the
EDI register.

These micro-instructions provide a natural IR for our
analyzer. Not only are QEMU micro-ops simple to log, they
also satisfy the requirement of performing relatively simple
operations with few side effects. This greatly simplifies the
task of tracking data flow, as the data defined and used by
each micro-instruction is generally easy to understand.

Inside the guest, the training program (described in Sec-
tion IV-A) must be able to signal the Trace Logger and
inform it of the beginning and end of the introspection

# d e f i n e MAGIC IN 0 x d e a d b e e f

void vm mark buf in ( void ∗buf , i n t l e n ) {
void ∗b = buf ;
i n t n = l e n ;

/ / [ r e g i s t e r save o m i t t e d ]
asm MOV EAX, 0
asm MOV EBX, MAGIC IN
asm MOV ECX, b
asm MOV EDX, n
asm CPUID

/ / [ r e g i s t e r r e s t o r e o m i t t e d ]
}
Listing 1. In-guest code that signals the Trace Logger to begin tracing.
Code that simply saves and restores clobbered registers has been omitted.

address the memory was read from to capture any data flow
dependencies. Finally, the value read is transferred to the
EDI register.

These micro-instructions provide a natural IR for our
analyzer. Not only are QEMU micro-ops simple to log, they
also satisfy the requirement of performing relatively simple
operations with few side effects. This greatly simplifies the
task of tracking data flow, as the data defined and used by
each micro-instruction is generally easy to understand.

Inside the guest, the training program (described in Sec-
tion IV-A) must be able to signal the Trace Logger and
inform it of the beginning and end of the introspection
operation, as well as the location of the buffer where the
output has been placed. Our implementation accomplishes
this by co-opting the x86 CPUID instruction. When a magic
value is placed in the EBX register, our modified QEMU will
interpret CPUID as a signal to start or stop logging, and will
record the values of ECX and EDX as the buffer’s start and
size, respectively. This allows us to bound our trace so that
it includes only the operations relevant to introspection, and
also provides the Trace Analyzer with the locations of the
input and output buffers. The in-guest code that implements
the notification is given in Listing 1.

B. Preprocessing

As discussed in Section IV-B, the trace is preprocessed
before slicing and translation in order to remove hardware
interrupts and replace calls to memory-allocating functions
with function summaries. Filtering interrupts has two bene-
fits: it reduces the amount of code we need to analyze, and
it eliminates many accesses to hardware devices (which may
not be available at run time). Replacing memory allocation
functions (such as malloc and realloc), while not necessary
in theory, is currently required by our implementation, as
portions of the OS-provided memory allocation facilities are
carried out in the page fault handler, and we do not support
hardware exceptions in our runtime environment.

Interrupt filtering is performed in the obvious way, by
matching up pairs of interrupts (which are logged by the
Trace Logger) and iret instructions (which are used in

GET_ARG 2
MALLOC ; placeholder
MOVL A0, ESP
LDL T0, A0 ; 0x1e7beb4
ADDL ESP, 0x10
JMP T0

Figure 5. A malloc replacement that summarizes the effect of
RtlAllocateHeap in Windows. The summary reads the size of the
allocation from the stack, has a placeholder op for the actual allocation,
reads the return address, cleans arguments from the stack, and executes the
return.

the x86 architecture to return from an interrupt). Because
interrupts may be nested arbitrarily deep, we use a counter
to ensure that we have matched a given iret with the ap-
propriate interrupt. Once the outermost interrupt and iret
have been identified, they can be excised from the trace.

There are two exceptions to interrupt filtering, however.
First, software interrupts (i.e., those triggered by an int
instruction) are part of the code of the program and are
treated in much the same way as a standard function call.
Second, the x86 architecture, starting with the Pentium,
includes an Advanced Programmable Interrupt Controller
(APIC) unit, which gives the operating system more control
over how and when it receives interrupts. Among the capa-
bilities provided by the APIC is the ability to send interrupts
to other processors (including itself). When combined with
the ability to defer interrupts by setting the Task Priority
Register (TPR) on the APIC, this provides a mechanism that
can be used by the OS to perform asynchronous procedure
calls. Because these are effectively software interrupts (they
originate in OS code), we include them in our analysis and
in the generated program.

Finally, we provide replacements for the memory allo-
cation functions of some operating systems. To do so, we
make use of three pieces of domain knowledge about the
OS being analyzed: the virtual address of the function, the
number of argument bytes (to enable callee-cleanup, if the
calling convention requires it), and the position of the “size”
argument relative to the stack. With this information, one
can edit the trace and replace a call to (e.g.) malloc with a
summary that allocates memory on the host. A summary
for RtlAllocateHeap on Windows is shown in Figure 5.
We currently replace RtlAllocateHeap/RtlFreeHeap
[22] on Windows, and malloc/realloc/calloc/free
on Linux. In our testing, programs generated for the Haiku
operating system did not need malloc summaries.

C. Dynamic Slicing and Trace Merging

In order to extract the subset of the micro-instruction trace
that computes the desired information, our Trace Analyzer
uses executable dynamic slicing [16] to trace the flow of
information through the program, starting with the output
buffer specified in the log. For a detailed discussion of the
algorithm, refer to Korel and Laski [16]; however, we will

Figure 5. In-guest code that signals the Trace Logger to begin tracing.
Code that simply saves and restores clobbered registers has been omitted.

address the memory was read from to capture any data flow
dependencies. Finally, the value read is transferred to the
EDI register.

These micro-instructions provide a natural IR for our
analyzer. Not only are QEMU micro-ops simple to log, they
also satisfy the requirement of performing relatively simple
operations with few side effects. This greatly simplifies the
task of tracking data flow, as the data defined and used by
each micro-instruction is generally easy to understand.

Inside the guest, the training program (described in Sec-
tion IV-A) must be able to signal the Trace Logger and
inform it of the beginning and end of the introspection
operation, as well as the location of the buffer where the
output has been placed. Our implementation accomplishes
this by co-opting the x86 CPUID instruction. When a magic
value is placed in the EBX register, our modified QEMU will
interpret CPUID as a signal to start or stop logging, and will
record the values of ECX and EDX as the buffer’s start and
size, respectively. This allows us to bound our trace so that
it includes only the operations relevant to introspection, and
also provides the Trace Analyzer with the locations of the
input and output buffers. The in-guest code that implements
the notification is given in Figure 5.

B. Preprocessing

As discussed in Section IV-B, the trace is preprocessed
before slicing and translation in order to remove hardware
interrupts and replace calls to memory-allocating functions
with function summaries. Filtering interrupts has two bene-
fits: it reduces the amount of code we need to analyze, and
it eliminates many accesses to hardware devices (which may
not be available at run time). Replacing memory allocation
functions (such as malloc and realloc), while not necessary
in theory, is currently required by our implementation, as
portions of the OS-provided memory allocation facilities are
carried out in the page fault handler, and we do not support
hardware exceptions in our runtime environment.

Interrupt filtering is performed in the obvious way, by
matching up pairs of interrupts (which are logged by the

GET_ARG 2
MALLOC ; placeholder
MOVL A0, ESP
LDL T0, A0 ; 0x1e7beb4
ADDL ESP, 0x10
JMP T0

Figure 6. A malloc replacement that summarizes the effect of
RtlAllocateHeap in Windows using QEMU micro-ops. The summary
reads the size of the allocation from the stack, has a placeholder op for
the actual allocation, reads the return address, cleans arguments from the
stack, and executes the return.

Trace Logger) and iret instructions (which are used in
the x86 architecture to return from an interrupt). Because
interrupts may be nested arbitrarily deep, we use a counter
to ensure that we have matched a given iret with the ap-
propriate interrupt. Once the outermost interrupt and iret
have been identified, they can be excised from the trace.

There are two exceptions to interrupt filtering, however.
First, software interrupts (i.e., those triggered by an int
instruction) are part of the code of the program and are
treated in much the same way as a standard function call.
Second, the x86 architecture, starting with the Pentium,
includes an Advanced Programmable Interrupt Controller
(APIC) unit, which gives the operating system more control
over how and when it receives interrupts. Among the capa-
bilities provided by the APIC is the ability to send interrupts
to other processors (including itself). When combined with
the ability to defer interrupts by setting the Task Priority
Register (TPR) on the APIC, this provides a mechanism that
can be used by the OS to perform asynchronous procedure
calls. Because these are effectively software interrupts (they
originate in OS code), we include them in our analysis and
in the generated program.

Finally, we provide replacements for the memory allo-
cation functions of some operating systems. To do so, we
make use of three pieces of domain knowledge about the
OS being analyzed: the virtual address of the function, the
number of argument bytes (to enable callee-cleanup, if the
calling convention requires it), and the position of the “size”
argument relative to the stack. With this information, one
can edit the trace and replace a call to (e.g.) malloc with a
summary that allocates memory on the host. A summary
for RtlAllocateHeap on Windows is shown in Figure 6.
We currently replace RtlAllocateHeap/RtlFreeHeap
[22] on Windows, and malloc/realloc/calloc/free
on Linux. In our testing, programs generated for the Haiku
operating system did not need malloc summaries.

C. Dynamic Slicing and Trace Merging

In order to extract the subset of the micro-instruction trace
that computes the desired information, our Trace Analyzer
uses executable dynamic slicing [16] to trace the flow of
information through the program, starting with the output
buffer specified in the log. For a detailed discussion of the

Figure 5. In-guest code that signals the Trace Logger to begin tracing.
Code that simply saves and restores clobbered registers has been omitted.

operation, as well as the location of the buffer where the
output has been placed. Our implementation accomplishes
this by co-opting the x86 CPUID instruction. When a magic
value is placed in the EBX register, our modified QEMU will
interpret CPUID as a signal to start or stop logging, and will
record the values of ECX and EDX as the buffer’s start and
size, respectively. This allows us to bound our trace so that
it includes only the operations relevant to introspection, and
also provides the Trace Analyzer with the locations of the
input and output buffers. The in-guest code that implements
the notification is given in Figure 5.

B. Preprocessing
As discussed in Section IV-B, the trace is preprocessed

before slicing and translation in order to remove hardware
interrupts and replace calls to memory-allocating functions
with function summaries (this is part of the analysis phase,
i.e., the middle portion of Figure 1). Filtering interrupts
has two benefits: it reduces the amount of code we need
to analyze, and it eliminates many accesses to hardware
devices (which may not be available at run time). Replacing
memory allocation functions (such as malloc and realloc),
while not necessary in theory, is currently required by our
implementation, as portions of the OS-provided memory
allocation facilities are carried out in the page fault handler,
and we do not support hardware exceptions in our runtime
environment.

Interrupt filtering is performed in the obvious way, by
matching up pairs of interrupts (which are logged by the
Trace Logger) and iret instructions (which are used in
the x86 architecture to return from an interrupt). Because
interrupts may be nested arbitrarily deep, we use a counter
to ensure that we have matched a given iret with the ap-
propriate interrupt. Once the outermost interrupt and iret
have been identified, they can be excised from the trace.

There are two exceptions to interrupt filtering, however.
First, software interrupts (i.e., those triggered by an int
instruction) are part of the code of the program and are
treated in much the same way as a standard function call.
Second, the x86 architecture, starting with the Pentium,
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GET_ARG 2
MALLOC ; placeholder
MOVL A0, ESP
LDL T0, A0 ; 0x1e7beb4
ADDL ESP, 0x10
JMP T0

Figure 6. A malloc replacement that summarizes the effect of
RtlAllocateHeap in Windows using QEMU micro-ops. The summary
reads the size of the allocation from the stack, has a placeholder op for
the actual allocation, reads the return address, cleans arguments from the
stack, and executes the return.

includes an Advanced Programmable Interrupt Controller
(APIC) unit, which gives the operating system more control
over how and when it receives interrupts. Among the capa-
bilities provided by the APIC is the ability to send interrupts
to other processors (including itself). When combined with
the ability to defer interrupts by setting the Task Priority
Register (TPR) on the APIC, this provides a mechanism that
can be used by the OS to perform asynchronous procedure
calls. Because these are effectively software interrupts (they
originate in OS code), we include them in our analysis and
in the generated program.

Finally, we provide replacements for the memory allo-
cation functions of some operating systems. To do so, we
make use of three pieces of domain knowledge about the
OS being analyzed: the virtual address of the function, the
number of argument bytes (to enable callee-cleanup, if the
calling convention requires it), and the position of the “size”
argument relative to the stack. With this information, one
can edit the trace and replace a call to (e.g.) malloc with a
summary that allocates memory on the host. A summary
for RtlAllocateHeap on Windows is shown in Figure 6.
We currently replace RtlAllocateHeap/RtlFreeHeap
[23] on Windows, and malloc/realloc/calloc/free
on Linux. In our testing, programs generated for the Haiku
operating system did not need malloc summaries.

C. Dynamic Slicing and Trace Merging
After preprocessing the trace, our Trace Analyzer uses

executable dynamic slicing [17] to trace the flow of in-
formation through the program, starting with the output
buffer specified in the log. For a detailed discussion of the
algorithm, refer to Korel and Laski [17]; however, we will
summarize the idea here. Note that because we do not have
access to the full program, our dynamic slicing algorithm
cannot calculate full control dependency information as in
the original dynamic slicing algorithm. Instead, we include
every control flow statement (and its dependencies) that was
observed to have more than one successor in the dynamic
control flow graph. This is safe (in the program analysis
sense of the word), but may over-approximate the dynamic
slice.

Dynamic slicing works backward through the trace, look-
ing for instructions that define the desired output data. For
each instruction, the set of data defined by the instruction is
examined. If the data it defines overlaps with the working
set, then the instruction handles tracked data, so we must add

Algorithm 1 Trace Merging Algorithm. P is the final,
merged program, which consists of a number of blocks and
corresponding successors. T is the set of traces. Each trace
t ∈ T consists of a sequence of ops. slice[t] is the subset of
ops in t that are needed, initialized with a dynamic data slice
on the output. dyn slice() is an instantiation of the dynamic
slicing algorithm, and find block() identifies a basic block
to which an op belongs.

1: slices← ∅, blocks← ∅
2: for t ∈ T do
3: slice[t]← dyn slice(t, t.output)
4: blocks[t]← split basic blocks(t)
5: end for
6: repeat
7: P.blocks← ∅, P.succs← ∅
8: for t ∈ T do
9: for op ∈ slice[t] do

10: op block ← find block(blocks[t], op)
11: if (op block ∈ P.blocks) then
12: p op block ← find block(P.blocks, op)
13: p op block.add(op)
14: else
15: P.succs[op block]← op block.succs
16: P.blocks← P.blocks ∪ new block(op)
17: end if
18: end for
19: end for
20: for block ∈ P.blocks do
21: if P.succs[block].size > 1 then
22: conds← find exit conds(block)
23: for t ∈ T, block ∈ t do
24: br ops← dyn slice(t, uses(conds))
25: slice[t]← slice[t] ∪ br ops
26: end for
27: end if
28: end for
29: for t ∈ T do
30: for op ∈ slice[t] do
31: for t′ ∈ T, t′ 6= t, op ∈ t′ do
32: slice[t′]← slice[t′]∪op∪dyn slice(t′, uses(op))
33: end for
34: end for
35: end for
36: until nothing changed

it to the slice. The working set is then updated by removing
the data defined by the instruction and adding the data used
by the instruction. The algorithm terminates when top of the
trace is reached. The output, an executable dynamic slice, is
precisely the sequence of instructions used to compute the
data in the output buffer.

Virtuoso builds the final introspection program from a
training set of more than one trace. This is crucial to
achieving reliability: except in the case of fairly trivial
introspections, a single trace is unlikely to include enough
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code to adequately cover all important functionality. Con-
sider the fact that many of the kinds of introspections we
want to support, such as enumerating running processes
or loaded modules, involve traversing collections such as
linked lists or arrays. Typically, the code that accesses these
data structures includes logic (and therefore multiple paths
through the program) to cover corner cases, such as when
the collection is empty. If we want our final introspection
tool to be able to handle these uncommon (but hardly
rare) situations correctly, we must build our program from
multiple traces. In practice, to ensure reliability, we generate
increasingly reliable programs iteratively: after generating an
initial program, it is tested on a variety of system states, and
the failing test cases are then used as new training examples.
Although this cycle of testing and training is currently done
manually, it could easily be automated.

The trace merging algorithm works as follows. First, a
merged control-flow graph is constructed from the control
flow graphs of the individual traces (lines 8–19 in Algo-
rithm 1). Second (lines 20–28), for each block which has
more than one successor (meaning there was a branch or
a dynamic jump), a slice is performed on the data necces-
sary to compute the branch condition (i.e., x86 status and
condition flags or the dynamically computed jump target);
this step ensures that both loops and branches are faithfully
reproduced in the generated program. Third, Virtuoso per-
forms a slice closure (lines 29–35): if an op is in some but
not all of the slices, then it is added to the other slices, and
a new dynamic slice is performed on the dependencies of
that op (this has the same effect, and is done for the same
reason, as Korel and Laski’s Identity Relation (IR) [17]).
Finally, because each of these steps may have introduced
new ops into the slices in ways that require recomputing
information in previous steps, we repeat the process until a
fixed point is reached.

1) Correctness: We argue the correctness of our trace
merging algorithm in two parts. First, the algorithm cer-
tainly reaches a fixed point and terminates within a finite
number of iterations. The traces used as input are finite in
number and length. This means that the number of micro-
operations initially marked as “in a slice” by the dynamic
slicing algorithm of Korel (which has, itself, been shown to
complete in a finite number of steps) is also finite. Thus, the
number of micro-operations as-yet unmarked is also finite.
With each iteration of the algorithm, we either add no new
ops to a slice, in which case we have reached a fixed point
and terminate, or we add some finite number of ops to some
slices and loop. Thus, the algorithm will, at worst, add one
op to each slice with each iteration, ending with every op
in every trace marked, but even this will happen in a finite
number of iterations of the algorithm.

Second, to see that our algorithm correctly merges mul-
tiple traces, consider combining traces T and T ′, each
of which (when we run our algorithm on it individually)
produces programs PT and PT ′ , which each have the correct
output given their respective input (we can assume this

because in this base case our algorithm is equivalent to that
of Korel and Laski [17]). By examining Algorithm 1, when
we produce a program P from the combination of T and
T ′, we can see that there are only two cases where P will
differ from PT or PT ′ :

Case 1: We include a branch statement that was not
included in T or T ′ by itself. But by including this branch,
we include the ops necessary to decide which way to go at
that branch. So when P is run with the inputs provided to T ,
the branch will evaluate as it did in T , and the successor will
be the same as for PT . The same argument applies when P
is run with the inputs for T ′.

Case 2: We include an op (and the ops necessary to
compute the dependencies of that op) that was in T and not
T ′ (or vice versa). Assume without loss of generality that
the op was in T and not T ′. Then the ops added to T ′ do not
affect the output value along the path taken by T ′ (or they
would have been added by the dynamic slice that initialized
slice(T ′)). So when P is run with the inputs for T ′, it will
produce the same output as PT ′ .

This argument extends by induction to show that given an
arbitrary number of traces {T1, . . . , Tn}, if the correspond-
ing programs {P1, . . . , Pn} are correct with respect to their
inputs, the merged program will be correct with respect to
all their inputs. We have also validated the correctness of our
algorithm experimentally, as we describe in Section VI-B.

2) Fortuitous Coverage Enhancement: We have demon-
strated that a merged program P can surely execute correctly
on guest states from one of its constituent traces. However,
aside from this additive effect, combining traces can also
allow the program to generalize better to guest states not
seen during training. To see why this is the case, consider
Figure 7, which depicts two program paths that are merged
by our algorithm. In addition to the two paths covered
by each individual trace (A → C → D → E → G
and A → B → D → F → G), the merged program
also covers paths A → C → D → F → G and
A → B → D → E → G). Depending on the relationship
between the branch conditions at A and D, these paths may
be infeasible, but in the best case, the merged program will
be able to generalize to guest states that differ from the
training states along these paths.

In our experience with Virtuoso, we have noticed several
instances of this “fortuitous” coverage improvement. For
example, while testing the pslist program for Windows (see
Section VI), we generated two versions of the program from
two different training runs. Out of three system states in our
testing corpus, we observed the following behavior:
• The first program worked correctly on states 1 and 2,

but not state 3.
• The second program worked correctly only on state 1.
• The merged program, generated from both training

runs, worked correctly on all three system states.
While this is an isolated example, it suggests that such non-
additive coverage improvements can boost the reliability of
the generated introspection programs. We hope to make
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Figure 7. An example of a non-additive coverage improvement from
combining two traces. Rather than the expected two paths covered, we in
fact cover four program paths.

this notion more rigorous in future work, and explore its
potential for producing more reliable introspection programs
in conjunction with static analysis.

D. Translation and Runtime Environment

Our Instruction Translator (shown below the Trace An-
alyzer in Figure 1) takes the sliced micro-op traces and
creates an equivalent Python program that can be run outside
the VM. Currently, the code produced takes the form of a
plugin for Volatility [32], a framework for volatile memory
analysis written in Python. Volatility was chosen because
it already provides certain facilities needed in our runtime
environment, such as x86 virtual address translation, and
the ability to analyze the memory of a virtual machine
running under Xen [2] (through the third-party extension
PyXa, included in the XenAccess library [26]). Moreover, it
features an API that makes it easy to layer new functionality
on top of existing address space objects, which we use to
implement copy-on-write semantics for the guest memory
(see below).

The translation of QEMU micro-instructions to host code
is fairly direct. The translation works one basic block at
a time, starting with the output of Algorithm 1. Each
individual op is mapped to a simple Python statement. At
the end of the block, if there is only one successor, an
unconditional jump to that successor is produced. Otherwise,
the appropriate conditional or dynamic jump is output.

The runtime environment itself, shown on the right in
Figure 1 is implemented as a plugin for Volatility. The
introspection tool is output by the trace analyzer as a
dictionary of blocks of Python code, keyed by the EIP of the
original x86 code. The plugin performs some initial setup,
and then loads and executes the block marked “START”.
When the block finishes, it sets a variable named label that

determines the successor (this variable can be set condition-
ally, unconditionally, or dynamically, to implement the three
successor cases outlined above). This process continues until
the successor returned is “EXIT”. At the end, the contents of
the output buffer are displayed to the user. The details of the
runtime environment, including input and output handling,
are presented below.

Registers are modeled as variables in the generated code;
thus, to implement copy-on-write behavior for registers, we
simply initialize the values of the register variables before
the generated code. Any references to a register that occur
before the generated code assigns to it will therefore retrieve
the value from the guest VM, as desired. Assignments
to registers, by contrast, will simply overwrite the Python
variable, and will not affect the running VM.

Access to memory is handled by translating load and store
operations into read and write operations on a copy-on-
write address space object in Volatility. The COW space is
initialized by passing it the currently active virtual address
space for the VM (on x86 guests, this boils down to using
the current value of the guest’s CR3 register to map virtual
addresses to physical). All reads and writes are then done
on this space, which implements copy-on-write as described
in Section IV-C.

The runtime environment also provides a host-side mem-
ory allocator for use with the malloc summaries described
in Section V-B. Before the program is run, the runtime
environment scans the guest page tables for an unused virtual
address range. It then adds page table entries (as always,
making changes to the copy-on-write space—the guest’s
state is not modified) to create a heap that can be addressed
as though it were actually inside the guest. To prevent
conflicts, the physical pages are reserved by choosing a
range above the amount of physical memory available to the
guest.5 Reads and writes to that physical range are redirected
to the host memory area.

Inputs to the program are represented by an array named
inputs. When the Instruction Translator comes across a
micro-op that is marked as reading input data, it translates
it into a simple assignment that takes the value from the
input array. For example, if a micro-op such as LDL T0,
A0 is marked as needing the first input parameter to the
program, the code produced will be T0 = inputs[0].
The inputs array is populated at runtime via a command
line option to the Volatility plugin.

Finally, output-producing operations are translated into
two separate Python statements. The first performs the write
to memory normally, while the second writes the data into
a special output memory space and tags it with a label
that identifies which output buffer it was associated with.
Once the plugin has finished executing the translated code,

5Although this means that in a 32-bit environment we cannot support
guests with 4 gigabytes of RAM, we note that this is only a peculiarity of
our implementation; see Section VII for details of how we plan to remove
this limitation. Also, the move to 64-bit architectures will provide ample
physical address space for Virtuoso to use if needed.
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it dumps the contents of the output memory space. The user
can also optionally pass in a function to interpret the output
(e.g., by converting it from little-endian Unicode to a string,
or to interpret a 64-bit integer as a human-readable time).

VI. EVALUATION

In this section, we evaluate Virtuoso using a number of
different criteria: generality, reliability, security, and perfor-
mance. To evaluate the generality of Virtuoso, we look at
the diversity of operating systems and the different types
of programs for which introspections can be generated.
Next we discuss the reliability of the resulting introspection
programs—that is, their ability to function correctly when
examining a system at runtime. Finally, we examine the
resilience to attack of programs output by Virtuoso, and we
discuss their runtime performance.

A. Generality

Because Virtuoso uses very little domain knowledge about
the target OS, it is easy to generate new introspection
programs for operating systems that run on the x86 architec-
ture. To demonstrate this capability, we created six training
programs for three different OSes. These programs were
chosen because they represent common actions that might be
needed for passive and active security monitors: a security
system may need to list drivers to audit the integrity of
kernel code, or enumerate processes in order to scan them for
malicious code, and so on. Some of these functions are also
implemented for Windows targets in tools such as Volatility
[32]; however, our own tools required no reverse engineering
and were generated automatically.

The six programs performed the same function on all three
operating systems:
• getpid Gets the process ID of the currently running

process.
• gettime Retrieves the current system time.
• pslist Computes a list of the PIDs of all currently

running processes.
• lsmod Retrieves a list of the base addresses of all

loaded kernel modules.6

• getpsfile Retrieves the name of the executable associ-
ated with a given PID.

• getdrvfile Retrieves the name of a loaded kernel mod-
ule, given its base address.

The three operating systems used were Windows XP
SP2 (kernel version 5.1.2600.2180), Ubuntu Linux 8.10
(kernel version 2.6.27-11), and Haiku R1 Alpha 2 [12].
Windows and Linux were chosen because they are both
in common use,7 and thus represent practical, real-world
scenarios. Haiku, a relatively obscure clone of BeOS, was

6In the Linux version, this reads the contents of /proc/modules,
which contains both the names and base addresses of kernel modules, so
getdrvfile is not needed on Linux.

7Although use of OS X is also widespread, its design isolates the kernel
in a separate address space. Due to limitations in our current implementation
discussed in Section VII, we were unable to test OS X introspection.

OS Program Original Post Final

Windows

getpid 3549 106 12
gettime 7715 1081 233
pslist 302082 230366 75141
lsmod 195488 157440 84973
getpsfile 49588 23865 10074
getdrvfile 194765 157696 92109

Linux

getpid 133047 4055 1706
gettime 75074 3882 1592
pslist 6107214 2265667 1095963
lsmod 1936439 852299 414670
getpsfile 14752561 6323249 2913064

Haiku

getpid 18242 3985 1719
gettime 9982 585 237
pslist 362127 290078 160830
lsmod 850363 702277 423438
getpsfile 249663 152896 78107
getdrvfile 522299 399175 234527

Figure 8. Results of testing a total of 17 programs across three different
operating systems. “Original” refers to the size of the trace before any pro-
cessing, “Post” is the size after interrupt filtering and malloc replacement,
and “Final” gives the size of the program after slicing; all sizes given are
in number of IR ops. The numbers given refer to processing of a single
dynamic trace.

chosen for two reasons: (1) to our knowledge, we are the first
to do virtual machine introspection or memory analysis on a
Haiku target, making it a compelling example of Virtuoso’s
ability to deal with diverse operating systems; and (2) none
of the authors had any prior knowledge of the internals
of the Haiku kernel, so there was no way to “cheat” by
incorporating additional domain knowledge.

The results of our testing are shown in Figure 8. To verify
that each program worked correctly, we ran it on a sample
memory image taken at a different time from when the trace
was captured, and then verified the output by hand (with
help from existing in-guest tools). The numbers shown are
for programs generated from a single trace.

With one exception, the generated programs all worked
correctly—gettime for Haiku failed to obtain the correct
system time. Upon inspection, we determined that this was
due to the way Haiku keeps time: rather than continuously
updating some global location, Haiku stores the boot time
and then calculates the current time by calling rdtsc to
read the Time Stamp Counter (TSC), which contains the
number of cycles executed since boot. Because our runtime
environment does not have access to the TSC when operating
on a memory image, the time returned by gettime is
incorrect. However, we manually verified that when provided
with the correct TSC value, the generated program functions
correctly.

Figure 8 also shows the effect of preprocessing and
slicing on the size of the generated program. One clear
point emerges from examining these figures. Preprocessing
removed between 17% and 97% of the initial traces (it
removed 55% on average), and slicing reduced the number
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Figure 9. Results of cross-validation for the pslist program on
Windows. The error bars indicate the standard error of each sample.

of remaining instructions in the trace by 40%–89% (56% on
average). Because the resulting programs do, in fact, work,
we can conclude that a large portion of the computation seen
in the initial traces is irrelevant to the final output. Also, we
can observe that were we to run all the code seen in the
trace, the time required to run the introspection programs
would dramatically increase.

B. Reliability

Because our introspection programs are based on dynamic
analysis of the training programs, they do not, in general,
contain all the code needed to account for every eventuality
the introspection program may encounter. This limitation is
inherent to the use of dynamic methods and is a well-known
problem in program testing. In this section, we describe
the results of our experiments on the reliability of the
generated introspection programs, techniques for improving
their coverage, and the motivation behind our use of dynamic
analysis.

Testing: To empirically test the reliability of programs
generated using Virtuoso, we examined how the reliability
of a single program (pslist, described in Section VI-A)
was affected by training. We generated 24 traces of pslist
running under Windows XP, taking a trace once every five
minutes, starting just after the desktop appeared. During this
time, we did the following actions:
• Opened a connection to a remote machine with PuTTY.
• Browsed web pages with Google Chrome and Internet

Explorer.
• Played a game of Minesweeper.
• Closed a non-responsive instance of Internet Explorer,

and sent a crash report.
• Played a game of Solitaire.

No special effort was made to induce a wide variety of
system states such as low-memory conditions. Along with
each trace, we also captured a snapshot of the memory and
CPU state.

We then used cross-validation to estimate the reliability of
the program as a whole: for each k in the range {1 . . . 12}

we took 50 random subsets of size k from the set of all traces
captured,8 used these traces to generate an introspection
program, and then tested the reliability of the program on the
(24− k) images corresponding to the remaining traces. We
judged that the generated program had executed correctly if
it produced the same output as the training program for that
image. Figure 9 shows the results of this testing. Each point
represents the mean reliability of programs generated from
k traces.

We note that reliability appears to increase linearly with
the number of traces used; since the reliability is bounded
above by 1, it most likely approaches an asymptote as more
traces are added and the number of unexplored paths in the
program grows smaller. We also ran the generated programs
on their training images, and, as expected, achieved a success
rate of 100%, validating the correctness of our trace merging
algorithm.

In examining the data more closely, however, we observed
that traces taken earlier in time (closer to system boot) were
more reliable. To test this effect, we created an additional
test data set of 24 images, again captured once every five
minutes starting shortly after system boot. We then generated
the pslist program from the first trace captured during
our cross-validation test and no others. To our surprise, we
found that this program had 100% reliability on our new test
data set.

By inspecting the source code to the Windows Research
Kernel [24], we determined that the Windows operating
system stores the image name of the process lazily, waiting
to generate the attribute until the first time some program
requests it. So the first trace includes all the code needed
to generate the process name, whereas later traces simply
read the already-initialized data. When programs produced
from these latter traces encounter a case where the process
name is not yet initialized, they will lack the code necessary
to do so. Thus, this caching effect may cause the cross-
validation numbers given above to overestimate the difficulty
of building reliable programs; in this case, the natural testing
strategy of booting the system and taking several traces
would have yielded a reliable program.

Improving Coverage: In any case where testing finds
that the generated program fails to function correctly, we can
take a new trace based on the failing snapshot that should
work correctly in that case. Although we will not be able to
run the program precisely from the point where the failure
occurred, in practice we have found that failing states tend to
persist long enough that we can take a new trace that covers
the failed snapshot. This allows us to iteratively improve
coverage based on gaps found during training, until we reach
a point where no further gaps are found. In future work, we
hope to explore how techniques from the software testing
community can help make this approach more rigorous. For
example, we may be able to perform static analysis of the OS
code to reveal missing branches, and then apply symbolic

8For k = 1 there are only 24 subsets, so our number of subsets in this
case is 24.
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or concolic execution to determine what system state is
necessary to go down that branch and improve coverage.

Static vs. Dynamic Analysis: A natural question is why,
given the coverage issues associated with dynamic analysis,
our approach does not make use of static analysis. Although
we considered static analysis, a number of difficulties make
it an unattractive choice in this context. First, static analysis
relies on the ability to reliably identify all the code associ-
ated with a piece of functionality. In the general case, accu-
rate disassembly of x86 code is undecidable [22], and even
on non-malicious code, it can be quite difficult. Second, our
slicing approach would be much less accurate if performed
statically, particularly in the presence of dynamic jumps
(which are common in kernel code, which makes extensive
use of function pointer-based indirection) and dynamically
allocated memory. Finally, static analysis requires much
more domain knowledge about the target operating system:
at minimum, the executable file format and the details of the
loader must be known just to find the code to analyze.

To demonstrate the reasons why static analysis is in-
appropriate in this case, it is useful to look at a recent
system, BCR (Binary Code Reutilization) [5], which also
attempts to extract portions of a binary program for later re-
execution, but does so using static analysis. First, we note
that BCR does not use a purely static approach: it relies
on dynamic analysis in its disassembly phase to resolve
the targets of dynamic jumps. The authors do not clearly
indicate how their system deals with any coverage issues
that may arise from this use of dynamic analysis. Second,
BCR employs significant amounts of domain knowledge to
perform its code analysis. The executable file format, system
API calls, and the mechanism by which imported functions
are resolved must all be known in order to extract assembly
functions. This reliance on domain knowledge both restricts
the generality of BCR and limits the kinds of code it can
extract—for example, BCR is unable to extract functions
that make system calls directly. Virtuoso, by contrast, relies
on no such domain knowledge and works with any code
constructs supported by the x86 architecture.

Even if it were possible in our case to statically find every
code path that could be taken by the program, it may not
be desirable. For example, consider the case of a program
written for Linux that retrieves sensitive information from
the /proc filesystem. At some point in the execution of
this program, the kernel will likely perform a check along
the lines of if (uid == 0). Although this check is a
valid part of the overall program, it does not actually affect
the value computed by the program. If we use dynamic
analysis and collect traces that succeeded, we will only ever
see the branch where this condition evaluated true, and the
check will not be incorporated into the resulting program.
Although this is, strictly speaking, incorrect, it has the side
effect of generalizing the program: whereas the original code
could only be executed in a context where the current user
was root, the generated introspection utility will be able to
compute the correct result from the context of any user.

Additional research is required to determine if these “un-
desirable” branches can be automatically eliminated using a
static approach.

C. Security

The main motivation in the design of Virtuoso is to enable
the rapid creation of secure introspection-based programs.
Were security and unobtrusiveness of no concern, it would
be sufficient to deploy an in-guest agent that queried existing
OS APIs and simply trust that they had not been compro-
mised. However, as security is a concern, we must test that
our system does, in fact, provide the hoped-for isolation from
malicious changes to the guest operating system.

To demonstrate that the generated programs are immune
to malicious changes in kernel code, we generated our Win-
dows process lister (pslist, described in Section VI-A)
on a clean Windows XP system. Next, we obtained the
Hacker Defender [9] rootkit, which (among many other
stealth techniques) hides processes by injecting into all
processes on the system and hooking API calls using inline
code modification. We configured it to hide any process
named rcmd.exe. We then renamed a copy of Notepad
to rcmd.exe, and infected the system. After infection,
we checked that rcmd.exe was no longer visible from
the Task Manager. We then ran our generated introspection
program, and found that it successfully listed both our
hidden process and the rootkit’s own userland component
(hxdef100.exe).

Beyond verifying that our program is immune to existing
rootkits that alter kernel code, we also need to consider the
possibility that someone might actively attempt to evade our
introspections. First, because Virtuoso attempts to faithfully
replicate the functioning of actual system APIs, vulnerabil-
ities that allow attackers to evade the standard APIs will
be reflected in the generated introspection programs. Data-
only attacks (i.e. Direct Kernel Object Manipulation, or
DKOM) also poses a challenge to our system, because in
this case even uncompromised OS APIs will report incorrect
results. For example, the standard Windows process listing
API can be evaded by rootkits that directly manipulate the
process data structure to unlink a malicious process, hiding
it from the EnumProcesses API. Careful combinations of
existing introspections can still thwart this attack, however:
by calling getpid every time the CR3 register changes and
comparing this list against the one returned by pslist, hidden
processes can still be detected. Further research is necessary
to see if such defenses can be found for other kinds of data-
only attack.

Second, an attacker may attempt to take advantage of
the fact that Virtuoso uses dynamic analysis to cause it to
malfunction. Specifically, he may attempt to set the free
variables used by the program in such a way as to cause
some conditional branch that does not have full coverage to
be exercised. The opportunity for evasion afforded by this is
minimal: if an attacker does find a way to reliably manipulate
the system into a state that causes an introspection program
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to fail, the fix can be generated quickly, as the attack
could be used for a new training run that would update the
existing introspection program. Extra care must be exercised
in this case, however: if the attack also alters code that
the introspection depends upon, updating the introspection
program could cause malicious code to be incorporated into
the generated program. Kernel code integrity checks (i.e.,
verifying that the code seen in training matches that found
in an uncompromised version of the OS) would help in this
scenario, but can be difficult to implement in practice, and
would require more domain knowledge than we currently
assume.

Additionally, we note that our dynamic slicing method
allows us to quantify precisely the set of global kernel
data that a given introspection depends on (note that data
from userland is read from the training data, and is not
available to the attacker for manipulation). Even within this
set of kernel data, only a subset may be susceptible to
attacker manipulation: as Dolan-Gavitt et al. [8] describe,
arbitrary modification of global kernel data can cause system
instability. Ultimately, this problem is best resolved by
improving training, and we hope to explore automated means
of improving coverage in future work.

The general problem of defending against malware that
is VMI-aware, and has the ability to tamper with kernel
data structure layouts and algorithms, remains open. Such
malware, which would affect most current VMI solutions,
has been discussed in other work [1], and defending against
it is a difficult problem. Although we consider this problem
out of scope for Virtuoso, we hope to explore more general
defenses in future work.

Finally, if a vulnerability is found in the APIs that support
the introspection, an attacker may attempt to compromise the
security of the monitor by causing it to execute malicious
code. Because the runtime environment has no facility for
translating new code, it is effectively a Harvard architecture,
so standard code injection techniques are not possible against
programs generated by Virtuoso. However, in recent years
a new technique, return-oriented programming [29], has
demonstrated that malicious computation can be performed
by chaining together snippets of code linked by dynamic
jumps (e.g., returns), and subsequent work has shown that
this allows for exploitation of Harvard architecture devices
[6]. Despite these developments, we believe that the rela-
tively small size of our programs (the largest in our test set
has only 4030 basic blocks, and only 140 of these contain
a dynamic jump), combined with the fact that the runtime
environment executes code at the granularity of a basic block
(i.e., it is not possible to execute only part of a block), will
make it impossible to construct the necessary set of gadgets.
More work, however, is necessary to prove this intuition
definitively.

D. Performance

Performance results for the programs described in Section
VI-A are shown in Figure 10. The tests were carried out

OS Program Time (ms)

Windows

getpid 0.2
gettime 1.5
pslist 450.2
lsmod 698.1
getpsfile 59.8
getdrvfile 751.9

Linux

getpid 9.6
gettime 9.6
pslist 6394.1
lsmod 2437.0
getpsfile 20723.9

Haiku

getpid 33.7
gettime 1.8
pslist 712.1
lsmod 3351.7
getpsfile 479.6
getdrvfile 1901.0

Figure 10. Runtime performance of generated programs. Times given are
in milliseconds, and are averaged over 100 runs.

on a Intel R© CoreTM 2 Quad 2.4 GHz CPU machine with
4 gigabytes of RAM running Debian/GNU Linux unstable
(kernel 2.6.32-amd64). Each test was run 100 times, and the
results were averaged.

Of the three operating systems shown, the results for
Linux stand out as being particularly slow. We investigated
this result further and found that the overhead was caused by
the interface Linux uses to retrieve system information. In
contrast to Haiku and Windows, which have specific system
calls to inspect the state of the system, Linux exposes these
details through the /proc filesystem. This means that the
code that implements tools such as pslist needs to open
files, list directories, and so on, all of which results in much
more code being executed than on Windows and Haiku.

Although the times shown are not currently fast enough
to enable online monitoring, we stress that our current
implementation is unoptimized and translates the x86 code
to Python, which it then runs in an environment that is also
written in Python. One performance improvement would be
to port the runtime to C and generate x86 binary code that
can be run on the host (after transforming potentially dan-
gerous instructions into safe equivalents, redirecting memory
loads and stores to the guest VM, and so on). We expect that
this would provide performance at least on par with QEMU,
which uses similar techniques in its whole-system emulation.
It is also worth noting that even unoptimized, the programs
generated by Virtuoso are fast enough for use in forensic
analysis of memory dumps.

VII. LIMITATIONS AND FUTURE WORK

Although Virtuoso currently supports many useful intro-
spections on a variety of operating systems, there are still
a number of areas in which it could be extended. In this
section, we describe the current limitations of Virtuoso and
how we might deal with these cases.
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Multiple address space support: Perhaps the most sig-
nificant limitation of Virtuoso is its inability to correctly
handle traces that span multiple virtual address spaces (that
is, traces in which another process than the training program
appears). In the simplest case, the other processes do no
work related to the introspection at hand, but they are
difficult to filter out because the trace will also contain
portions of scheduler code to switch to the other process,
and identifying and removing this code automatically is
difficult. Virtuoso currently sidesteps this issue by running
its training programs with high priority (e.g., using start
/realtime on Windows and chrt on Linux).

More difficult, however, is the problem of analyzing and
extracting programs that make use of interprocess communi-
cation (IPC). Solving this problem is particularly important
for supporting introspection of microkernel architectures,
where many tasks are performed by collections of coop-
erating processes. The major challenge here is that although
we may be able to extract the relevant code running in each
process, there will be data from other processes that must
be read from the guest operating system at runtime. The
generated program, then, will need to have some way of
finding the appropriate cooperating process at runtime in
order to read this data; this is likely to require significant
domain knowledge. More research is required to determine
the extent to which this can be automated.

Self-modifying code: As we mention in Section VI-C, the
runtime environment of Virtuoso is effectively a Harvard
architecture machine, with no facility for loading new code.
This means that we do not support self-modifying code.
Although this has not caused problems with any of our
introspections (operating systems rarely make use of self-
modifying code), such support is necessary for working with
malicious code, an area we hope to explore in the future.

Relocation and ASLR: Currently, Virtuoso assumes that
the modules containing the data it needs have not been re-
located. This assumption may not hold in general, however:
modules may be loaded at different base addresses for a
variety of reasons, including security (i.e., Address Space
Layout Randomization, or ASLR).9 If this occurs, data read
from those modules will be found at a different address,
and the introspection program may not be able to locate it
correctly. Although this problem can be resolved by incor-
porating more domain knowledge (such as the mechanics
of the executable loader), doing so would make supporting
new operating systems more difficult. One possible solution
to this problem is to attempt to relocate portions of the
generated program at runtime by scanning the memory of
the guest operating system for the relevant code and then
applying the appropriate offset for accesses to memory.

Aside from improving the analysis capabilities of Vir-
tuoso, we also hope to examine its use in areas outside

9The alert reader will note that the version of Linux used enables ASLR
by default. However, this did not affect our introspections, as the only
libraries randomized are in user space, and we take userland data references
from training.

the realm of introspection. For example, by tracing calls
made by programs such as ls, we might be able to produce
programs that can understand the format of undocumented
filesystems without relying on native filesystem drivers. Such
analysis capabilities could aid significantly in cross-platform
interoperability efforts.

Finally, there are some minor implementation details that
could be improved. In particular, we could do away with
needing to know the details of malloc for specific operating
systems by adding support for x86 hardware exceptions and
extracting the page fault handler. As we already detect page
faults in our runtime environment (they currently raise an
exception), we would just need to extract the page fault
handler code and cause memory exceptions to trigger this
code (similar to the way the TPR is currently handled—see
Section V-B for details). This would eliminate the only piece
of OS-specific knowledge used by Virtuoso, allowing it to
generalize to any x86-based operating system.

VIII. CONCLUSION

We have presented Virtuoso, a system for automatically
generating introspection tools that can retrieve semantically
meaningful information based on low-level data sources. By
applying a novel whole-system executable dynamic slicing
technique, Virtuoso turns a task which once took hours or
weeks of reverse engineering by an expert into one that
requires only a small amount of effort by a programmer of
modest skill and a few minutes of computation time—and in
doing so, helps ensure that introspection programs exactly
model the behavior of the operating system. Moreover, its
analysis capabilities are operating system-agnostic, remov-
ing the need for developers to constantly play catch-up as
OS vendors release new versions of their products. These
contributions help narrow the semantic gap, and should
remove a significant roadblock in the areas of forensic anal-
ysis, virtualization-based security and low-artifact malware
analysis.
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