
PRISM: Program Replication and Integration for Seamless MILS

Chris Owen, Duncan Grove, Tristan Newby, Alex Murray, Chris North and Michael Pope

C3I Division, Defence Science and Technology Organisation, Edinburgh, Australia

Email: {Chris.Owen, Duncan.Grove, Tristan.Newby, Alex.Murray, Chris.North, Michael.Pope}@dsto.defence.gov.au

Abstract—We describe how to combine a minimal Trusted
Computing Base (TCB) with polyinstantiated and slightly aug-
mented Commercial Off The Shelf (COTS) software programs
in separate Single Level Secure (SLS) partitions to create Multi
Level Secure (MLS) applications. These MLS applications
can coordinate fine grained (intra-document) Bell LaPadula
(BLP) [6] separation between information at multiple security
levels. The untrusted COTS programs in the SLS partitions
send at-level file edits as diff transactions to the TCB. The
TCB verifies that BLP semantics will be observed and then
patches these transactions into its canonical representation of
the file. Finally, it releases appropriately filtered versions back
to each SLS partition for re-assembly into the COTS program’s
standard file format. Furthermore, by judiciously restricting
how the user can interact with the system the multiple SLS
instantiations of the COTS program can be made to appear
as if they are a single MLS instantiation. We demonstrate the
utility of this approach using Microsoft Word and DokuWiki.

Keywords-Computer security, Data security, Information se-
curity, Multilevel systems, Software architecture, Application
virtualization, Military computing, Data storage systems, File
systems, Information entropy

I. INTRODUCTION

Traditional Multi-Level Secure (MLS) information sys-

tems have labelled individual files with the highest secu-

rity level of information they contain, or relied on MLS

databases. The latter requires the entire database engine to

be trusted, which is well beyond the state of the art to prove

with any degree of formal credibility. The former precludes

trusted, fine grained (intra-document) labelling of content.

For example, Starlight [3] enforces strictly separate en-

claves for information at different security levels but then

provides mechanisms to access that information in the

isolated domains. Although highly secure, this stymies users

from combining information from different classifications,

thus discouraging fine grained information management and

inducing a fragmented user experience. The MYSEA ar-

chitecture [14] demonstrates a more integrated albeit much

less trustworthy approach using a wiki environment, but the

granularity for different security levels is still limited to a

page; a commercial MLS operating system is used to apply

a mandatory separation policy using security labelled pro-

cesses and files. Still other approaches like Compartmented

Mode Workstation (CMW) [5], [18] apply a high-water mark

model and “float” files up to the highest security level of

other processes that touch them. Unfortunately this over

classification quickly ratchets everything to the highest level,

constraining the availability of data and forcing users into

frustrating and risky upgrade/downgrade cycles.

Unlike these approaches, the system which we present in

this paper, PRISM, uses a minimal cross domain component

to provide trustworthy separation of security levels while

maintaining cross domain structure within individual files,

providing much finer-grained partitioning of MLS data.

In this respect our approach is similar to Galois’ Trusted

Services Engine (TSE) [12], although little detail has been

published about this system which makes it difficult to

understand exactly how it works and determine its useability

and security properties.

Notwithstanding this, the TSE is described as implement-

ing a trusted “read down” mechanism whereby low-level

data can be accessed from higher-level domains. A high

side user can then make high-level modifications to the

data, presumably using some form of copy-on-write seman-

tics. Separate TCB-mediated disks are used to store the

information at different security levels. Additional untrusted

“DocServer” software on the high side monitors the low

side file for modifications and merges those changes onto

the high-level version of the document – although no details

of how this is achieved are provided.

Using this approach, high-level edits that alter low-level

content (but within the high-level domain) are implicitly

allowed. This is clearly demonstrated in the TSE’s main

articulated use case, where high-level users are allowed

to edit both low- and high-level wiki content from the

same high-level workstation. This in turn drives the need to

introduce a fallible downgrading process into a user’s typical

workflow, where ostensibly low-level information entered

at a high security level needs to be examined, filtered and

resynchronised downwards to the low level.

Conversely, our PRISM system provides the user with a

simple mechanism for always editing MLS content at the

appropriate security level, thereby avoiding the need for

risky downgrade procedures. Furthermore, PRISM generates

fine grained edit transactions and “pushes” them, through

a TCB, to higher levels. In addition to providing the user

with the apparent synchronisation of data between security

levels, frequent, fine grained edit transactions help PRISM

avoid merge conflicts that are inevitable when using an

occasional heavyweight diffing process. Our interposed TCB

is also able to provide additional value adding steps. In

particular, it maintains a trusted, canonical MLS version of

2011 IEEE Symposium on Security and Privacy

1081-6011/11 $26.00 © 2011 Crown Copyright

DOI 10.1109/SP.2011.15

281

the file. This assists with the trusted labelling and tracking of

MLS information, which in turn simplifies release checking

procedures, and also allows our MLS documents to be

cryptographically sealed and exported for off-line use.

Section II lays out the architecture of our solution. Sec-

tion III explains the underlying MLS file format and Sec-

tion IV describes the trusted processing that it requires. For

completeness, Section V briefly presents the cross-domain

infrastructure that we relied on to develop our prototypes.

Sections VI and VIII demonstrate how we augmented Mi-

crosoft Word and DokuWiki to make them compatible with

our approach. Section VII shows how we built upon these

platforms to deliver a seamless user experience. Section IX

analyses the security properties of our solution, including

an analysis of potential covert channels and susceptibility to

other threats. We conclude with possible avenues for further

work.

II. THE PRISM ARCHITECTURE

The Multiple Independent Levels of Security (MILS)

architecture [2], [23] provides a robust framework for

separating untrusted code (typically Commercial Off The

Shelf (COTS) software) from trusted, security-critical code.

This enables complex yet highly assured applications to

be constructed by placing the large and complex parts of

applications in untrusted system-high partitions, while secu-

rity critical functions are separated out into small, trusted

components. This minimises the Trusted Computing Base

(TCB) comprising the security critical functionality and

greatly eases evaluation and certification effort. For example,

it substantially reduces the amount of formal mathematical

modelling required to achieve Common Criteria (CC) certifi-

cations of Evaluation Assurance Level (EAL) 6+ and above,

transforming an intractable problem to a manageable one.

The Annex Minisec device (versions 2 and 3) – on

which we aim to publish details soon [10] – applies the

MILS concept at both coarse and fine grained levels. At

the macroscopic level, a Minisec is composed of multiple

self-contained computing systems (including CPU, RAM,

storage, etc.) for running complete system-high COTS oper-

ating systems and associated software stacks. Each of these

self-contained systems – called a partition – is typically

associated with a distinct security level, and may also form

part of a wider network at that level – called an enclave. At

the microscopic level the Minisec’s dedicated Trusted Com-

puting Base (TCB) CPU runs an Annex Object Capability

Reference Monitor (OCRM), which is an updated version

of the Annex TCB described in [9] that we will describe

more fully in [13]. Layered on top of this is a suite of

objects implementing Multi-Level Security critical functions

that, in conjunction with the Minisec’s labelled networking

mechanism, dynamically mediate each partition’s access to:

(1) local I/O devices such as a screen, keyboard, mouse and

Figure 1. The PRISM Architecture.

audio; (2) partitioned networking services for communicat-

ing with corresponding partitions in the same enclave on

remote devices; and (3) between partitions (of inherently

different security levels) on the same device. This paper

focuses on interactions of the third kind.

As shown in Figure 1, our PRISM architecture uses

Program Replication and Integration for Seamless MILS

(PRISM). It combines a minimal TCB with polyinstan-

tiated and augmented COTS programs (rather than data)

in separate Single-Level Secure (SLS) partitions to create

MLS applications. The untrusted COTS applications in the

separate system-high partitions are augmented with un-

trusted PRISM add-in modules that facilitate communication

and synchronisation with trusted components in the TCB,

allowing coordinated fine grained (intra-document) editing

of MLS documents with Bell LaPadula (BLP) [6] separation

by single or multiple users operating at multiple security

levels.

This fusion of COTS software running in MILS domains

under the policy control of a true MLS TCB delivers the best

of all worlds: the power of COTS, the security properties

of MILS and the usability of native MLS. While this

style of composition was clearly anticipated in early MILS

publications [2], [23], the modern concept of MILS appears

to have degenerated to Multiple SLS (MSLS) type systems

aimed at consolidating what are currently “air-gapped” guest

operating systems. We suggest that our fine grained PRISM

architecture is returning to MILS’ original roots, but propose

that “Multiple Integrated Levels of Security” might better

explain this type of architecture.

Figure 2 shows how an untrusted COTS Application in the

SLS partitions creates or edits a file. An untrusted but MLS-

aware Differ applies delta compression [11] to translate any

at-level modifications into diff transactions. These are com-

municated to the TCB where a tiny MLS Verifier trivially

checks whether BLP security semantics will be preserved by

282

Figure 2. Editing information with PRISM.

the modifications, and if so, the Patcher merges the changes

into the canonical version of the file. The canonical version

of the file may be maintained within the TCB partition,

stored in a dedicated MLS storage partition, or hosted in

what we term system-low mode as a TCB-encrypted file

on one of the untrusted partitions. A tiny MLS Releaser

then creates sanitised versions of the canonical file at each

security level, trivially stripping any higher-level content.

Each of these sanitised versions is communicated back to

the appropriate SLS partition, where an untrusted Assembler

uses the filtered canonical representation to reconstruct the

file into the COTS application’s standard file format.

This enables trusted separation of information at different

security levels without needing to trust the COTS appli-

cations or the operating system partitions in which they

reside. Our key insight was to combine program replication

with a delta compression interface in a MILS framework to

separate the untrusted editing application(s) from a minimal,

trustworthy update and coordination mechanism.

Furthermore, all data is permanently classified at the

security level of the edit session that created it. However,

by making data easily accessible from any security level

dominating partition, the need to upgrade and downgrade

information is completely avoided in everyday use. Instead,

upgrade and downgrade operations become rare, necessary

only when explicitly re-grading data to a different level.

III. THE MLSDOC FILE FORMAT

Our canonical container file format for storing MLS data,

called MLSDoc, prescribes a sequence of objects, each of

which is simply a byte sequence at a particular security level.

Where consecutive objects at the same classification occur –

due to at-level additions, or deletions of intervening higher-

level content – these become merged into a single object.

Consequently, each data byte of an MLSDoc is permanently

linked within a data structure at the security level of the

edit session that created it, resulting in strongly associated

security labels at byte-level granularity.

Conceived with hierarchically arranged national security

classifications in mind, the MLSDoc file format is ideally

Figure 3. Conceptual file structure

suited to storing application layer files that contain nested

collections of objects in a tree structure, like XML files.

Figure 3 depicts a conceptual example of such a file.

In general, we require that the root object be at the lowest

security level of the document, as it is required to place other

objects in context. Higher-level objects will exist near the

leaves of the tree, for example as annotations or additional

paragraphs, etc. At the byte level of the underlying canonical

representation these higher-level objects should appear to be

embedded within low-level neighbours.

Figure 4 shows the MLSDoc file structure for the con-

ceptual example in Figure 3. Data from each security level

is segregated into different Sections, with an Object Table

containing the information required to assemble the various

pieces from each section into the application file format.

Each row of the section table contains a pointer to the

start of data associated with that classification, the length of

that data and a version field. The version field, along with

the UUID contained in the header, is used to ensure that

patches are applied to the correct version of an underlying

MLSDoc. The rows of the object table indicate the sequence

of objects, their classifications and lengths; the pointers

shown in Figure 4 are implicit, as any object follows straight

after the previous one within any single security level.

Using a section based structure allows layered encryption

to be applied, safely and easily embedding higher-level

data within a single file. It also assists with storing the

information associated with any particular security level in

separate memory pages or disk blocks if desired.

IV. TRUSTED PROCESSING

We required the code on the TCB that maintains sep-

aration to be minimal to allow assurance to a high level.

Hence the trusted patching process does not have any

application file specific awareness. The TCB simply treats

each MLSDoc file as a sequence of objects, each represented

as a byte string, where each object belongs to a single

security level.

As indicated in Figure 2, several distinct components work

in concert to provide the trusted functionality within PRISM.

283

Figure 4. Actual file structure

The Verifier checks whether BLP security policy will be

preserved by a patch received from an SLS partition. If so,

the Patcher applies that patch to the canonical representation

of a file. This file may be stored within a dedicated MLS

file system or hosted using encryption in an SLS enclave.

The Releaser strips high-level content to produce sanitised

versions of a canonical MLSDoc that are appropriate for

any target security level. This life cycle is easiest to explain

starting with a trusted release.

Because the underlying MLSDoc file format separates the

classification structure of the document from the data itself,

trusted release to any particular security level is simple: the

TCB simply strips the sections and object table entries of

any higher-level objects. This mode, which we call paranoid

mode, permits coordinated MLS file editing with zero bit-

rate downwards covert channels. It provides at-level editors

with read-only visibility of lower-level content and keeps

them oblivious to higher-level content.

Although very usable, paranoid mode does leave the user

open to making ordering errors with higher-level content.

Instead, where security requirements are less stringent, the

trusted release mechanism can export files in convenience

mode, where higher-level content is instead replaced by in-

line markers indicating the presence of higher-level content.

This helps prompt the user to avoid damaging – or assists

them to mend – any higher-level structures altered by lower-

level edits. While these markers can introduce potential

covert channels or may draw unwanted attention to otherwise

innocuous statements, Section IX shows that the former can

be managed, while protective briefings could be useful where

the latter is of concern.

Lastly, the trusted releaser can export MLSDoc files in

what we call system-low mode. Here a signed and encrypted

copy of the entire canonical MLSDoc is coupled with a para-

noid mode file, potentially by embedding it in an application-

file specific comment field. This allows the document to

be hosted within the enclave, transported to and imported

through another TCB, or sent for off-line processing by

legacy systems elsewhere within the enclave. For example, a

system-low file may be emailed or even transferred via CD

or memory stick to someone else for editing on a system

not equipped with PRISM capability. When the MLSDoc

returns to a PRISM capable environment any changes can be

merged via the TCB into the embedded system-low version

of the canonical file.

In order to explain the trusted verification and patching

components it is necessary to first understand the structure

of the MLS-aware patches these components are designed

to receive from the untrusted diffing modules hosted in the

SLS partitions.

We have adopted BSDiff [15] as a base for our PRISM

patch format, since it matched our needs very well. BSDiff

provides a simple representation for encoding XOR based

differences (and hence copies in the degenerative case) and

insertions to binary executable files. To further reduce the

size of the trusted codebase, however, we constrained the

existing specification to disallow differences and permit only

copies and insertions.

Figure 5 shows the binary form including human readable

transliteration of the BSDiff formatted patch corresponding

to the delta between the Unclassified and Secret documents

depicted in Figure 6. The patch consists of a header section

identifying the MLSDoc and section version that the patch

284

0: 4d 4c 53 44 49 46 46 00 61 a0 61 84 df 28 c2 86 MLSDIFF.a.a..(..

10: 30 c3 8a 9b 01 16 48 1a 05 00 00 00 18 00 00 00 0.....H.........

20: 00 00 00 00 20 10 00 00 6c 0d 00 00 05 01 00 00l.......

30: 00 00 00 00 af 01 00 00 00 00 00 00 00 00 00 00

MLS Patch file

Header:

magic: MLSDIFF

flags: 0x0

uuid: 61a06184df28c28630c38a9b0116481a

version: 5

ctrl: 24 (0x18)

diff: 0 (0x0)

file: 4128 (0x1020)

Control Table:

Diff Extra Skip

3436 261 0

431 0 0

Extra:

40: 3c 77 3a 70 3e 3c 77 3a 70 50 72 3e 3c 77 3a 73 <w:p><w:pPr><w:s

50: 70 61 63 69 6e 67 20 77 3a 61 66 74 65 72 3d 22 pacing w:after="

60: 31 30 30 22 20 77 3a 62 65 66 6f 72 65 3d 22 31 100" w:before="1

70: 30 30 22 2f 3e 3c 2f 77 3a 70 50 72 3e 3c 77 3a 00"/></w:pPr><w:

80: 72 3e 3c 77 3a 74 3e 28 53 29 20 4f 50 45 52 41 r><w:t>(S) OPERA

90: 54 49 4f 4e 20 46 4f 52 54 49 54 55 44 45 20 53 TION FORTITUDE S

a0: 4f 55 54 48 3a 20 54 68 65 20 46 69 72 73 74 20 OUTH: The First

b0: 55 53 20 41 72 6d 79 20 47 72 6f 75 70 2c 20 63 US Army Group, c

c0: 6f 6d 6d 61 6e 64 65 64 20 62 79 20 4c 74 2e 20 ommanded by Lt.

d0: 47 65 6e 2e 20 50 61 74 74 6f 6e 20 61 6e 64 20 Gen. Patton and

e0: 77 68 69 63 68 20 69 73 20 61 6d 61 73 73 65 64 which is amassed

f0: 20 69 6e 20 4b 65 6e 74 2c 20 77 69 6c 6c 20 63 in Kent, will c

100: 72 6f 73 73 20 74 68 65 20 45 6e 67 6c 69 73 68 ross the English

110: 20 43 68 61 6e 6e 65 6c 20 61 6e 64 20 6c 61 6e Channel and lan

120: 64 20 61 74 20 50 61 73 20 64 65 20 43 61 6c 61 d at Pas de Cala

130: 69 73 2e 3c 2f 77 3a 74 3e 3c 2f 77 3a 72 3e 3c is.</w:t></w:r><

140: 2f 77 3a 70 3e /w:p>

Figure 5. Example patch file based on difference between Secret and Top
Secret views in Figure 6

should be applied to, a control table specifying the list of

copies (as “diff”s with null bytes), insertions (“extra”) and

deletions (“skip”), and an extra section containing the strings

of data to be inserted.

In this case the patch translates as: (1) copy the first 3436

bytes from the original file; (2) insert the first 261 bytes

from the extra section; (3) delete the next 0 bytes that were

in the original; and (4) copy the remaining 431 bytes; with

no further insertions or deletions.

When a patch is received by the TCB, the trusted verifier

checks that any changes to the canonical document will

modify data only at the security level associated with that

partition, thus enforcing a BLP security policy with “strong

tranquillity” [5]. The content of lower or higher-level objects

may not be modified. At the canonical MLSDoc level,

however, lower-level objects may be split to make way for

insertions of higher-level objects, and higher-level objects

may be reordered as described below. Importantly, though,

when using paranoid mode none of the splits or reorderings

caused by an edit will be observable in the sanitised lower-

level versions of the file produced by the trusted releaser; the

lower-level views of a file will remain completely unchanged

and hence no covert data channels are introduced.

Conceptually, the verifier will allow any sequence of

objects (or parts of objects at the end points) at the security

level of the current edit session to be copied or moved

intact and embedded within an at-level or lower-level ob-

ject anywhere else in the canonical MLSDoc. Any higher-

level objects not actually present in the content of the diff

transaction will be included by the TCB when applying the

patch; hence higher-level objects will automatically follow

the lower-level object in which they are embedded if the

lower-level object is moved.

In paranoid mode, if the low-level bytes immediately

adjacent to both sides of a higher-level object are deleted,

then the higher-level object will be orphaned, as it is

assumed to be highly likely that the the lower-level object in

which the higher-level object resided has been deleted. These

orphans could be collected at the end of each security level’s

section, with the COTS add-in making them available for

review and recovery under interactive user control. The use

of convenience mode can avoid this problem, since the TCB

can be made explicitly aware of moved or deleted markers.

The patcher expands the original MLSDoc into a byte

array with two interleaved vectors, one containing the data

channel and the other containing the associated security

labels. Next it applies the MLSDiff to the data channel,

striding over the associated classification labels. Any data

copied into the updated MLSDoc remains bytewise labelled

by its original classification stream, while inserted data is

labelled by the security level of the incoming MLSDiff.

Despite the apparent complexity of this processing, it is

actually quite easy for the trusted verifier to test whether

BLP strong tranquility holds for any given edit. The BLP test

simply compares the before and after copies of the MLSDoc

to ensure that the data content in all lower-level sections

is identical; and that the order and length of object table

references for lower-level objects remains unchanged. This

test is required to prevent the high level from sending an

arbitrary message to low by copying low-level data bytes,

and ensures any reordering or deletion of low-level data is

initiated from the low level.

V. CROSS DOMAIN INFRASTRUCTURE

To provide a complete picture of the end-to-end pro-

cessing that PRISM requires, we briefly describe the cross

domain infrastructure that we used to prototype our solution

on an Annex Minisec platform; although other cross domain

transfer solutions such as those listed on the UCDMO Cross

Domain Baseline [1] could instead be used.

The Minisec based cross domain infrastructure is con-

structed from a chain of components with one end start-

ing in an untrusted partition and the other terminating in

the TCB. The untrusted modules include an application-

specific add-in or a file system monitor plus an application-

specific translator, a user-space file system module called

mlsfs and a communication module called xferd. The

TCB hosts a small collection of Annex OCRM objects to

marshal data and perform the requisite trusted processing.

This includes a low-level communication end-point called

ChannelManager, a partner xferd, a per-security level

285

EnclaveHAL that holds the authorities associated with a

particular untrusted partition, cryptographic support func-

tions, canonical file storage, and PRISM’s trusted verifica-

tion, patch and release modules.

The application-specific add-in fulfills two functions. It

translates incoming at-level canonical MLSDoc files into

an application readable format; and translates at-level edits

into outgoing MLSDiff patches. Both the incoming MLSDoc

files and outgoing MLSDiff patches are wrapped in simple,

well-formatted cpio archive files that are respectively read

from and saved to the mlsfs file system. The paired xferd

processes ferry these transactions, in whichever direction is

appropriate, between the untrusted partition and the TCB.

Using mlsfs to decouple the application-specific add-in

from xferd allows the add-ins to operate on top of a

filesystem based abstraction. This allows the untrusted cross

domain transfer code to be centralised in one place; and

to also be hosted on a server within an enclave, with the

untrusted add-ins interfacing to the cross domain transfer

mechanism from across the network via standard file system

sharing technologies like SMB or NFS.

VI. MS WORD SUPPORT

Using our PRISM architecture we were able to construct

an MLS document editing system using Microsoft Word as

the untrusted document editor hosted in the independent

system-high domains. This enables users to create fine

grained MLS documents using a highly familiar COTS

document editing system.

Microsoft Office 2003 introduced a single file XML

format for documents called WordprocessingML. We chose

this format as a basis for our work as it is human readable,

and because its use of XML made it both easy to interface

with MLSDoc and adaptable to future revisions of Microsoft

Office or similar software.

WordprocessingML files consist of a root element

w:wordDocument containing several schemata, whose

namespaces are referred to by short prefixes on element

names. The most common prefixes are w: (Word) and o:

(Office). The root element and its first-level sub-elements

need to appear in the document at all security levels, so

these should be located at the lowest security-level of the

document. Common first-level sub-elements include:

o:DocumentProperties

Contains document metadata common to Microsoft

Office applications such as author, title, word count

and edit time.

w:fonts

Contains the set of fonts used in the document.

w:styles

Contains the set of styles used in the document.

w:docPr

Contains document property metadata specific to

Microsoft Word.

w:body

This is where the main content of the document

appears and is therefore the part that most needs

to contain data at differing security levels. It is the

only essential component of the document.

The top-level metadata objects contained within the root

element maintain settings for features used in the rest of

the document. If these are treated as MLS there is the

possibility that a feature introduced at a high level first (for

example tables) but later used at the low level may result in

ambiguous duplication that might confuse Word’s operation.

A simple, low-tech solution to this problem is to simply

create documents at the lowest level using a template that

contains any features that will be used.

A. MLSDiff Patch generation

To generate an MLSDiff patch for an updated Wordpro-

cessingML file, the untrusted add-in transforms the new

XML document into a canonical format and compares it with

the old one from the MLSDoc container that it originally

received from the TCB. Rather than using the BSDiff

algorithm to generate the patch directly, the untrusted add-

in uses an XML aware diff algorithm to detect changes and

then translate these into the simple MLSDiff patch format

for further processing by the TCB.

We adapted a C♯ .NET XML difference engine called

XML Diff [16] for this purpose. This implements an XML

tree edit distance algorithm that generates an XML Diff

Language (XDL) diffgram of the differences between the

two versions of an XML document. We selected this package

because it is able to represent subtree moves, compares

well with other algorithms in terms of performance and

precision [19], and because its .NET implementation is well

suited to incorporation in a Word add-in.

B. File Format Work-Arounds

Because of the cross-linked structure of Wordprocess-

ingML files, we did encounter several cases where user edits

initiated at a higher security level would modify formatting

instructions stored at lower security levels of the document.

These modifications would then become embedded in the

next MLSDiff patch sent to the TCB, causing a BLP policy

violation and patch rejection.

We found that these problems could be worked around

by simply filtering out, or otherwise modifying, problematic

XML tags and allowing Word to reconstruct these elements

at file load time. This was accomplished using only 100

lines of XSLT. Listing 1 shows a fragment of this XSLT

stylesheet containing representative templates for achieving

these transformations. While the modifications we discuss

consist of only a selection of the issues triggered by the test

documents and version of Word that we used in develop-

ment, we believe they are indicative of the types of issues

286

<!−− Remove un suppo r t ed t a g s −−>

<x s l : t emp l a t e match=” / w:wordDocument /
o :Documen tP r op e r t i e s / o :La s t S aved ” />

<!−− So r t w:wordDocument c h i l d r e n i n t o a
c o n s i s t e n t o rde r . In p a r t i c u l a r s o r t
o:Smar tTagType by name a t t r i b u t e . −−>

<x s l : t emp l a t e match=”w:wordDocument ”>
<x s l : c opy>

<xs l : f or−each s e l e c t =”@∗”>
<x s l : s o r t s e l e c t =”name () ” />
<x s l : c opy />

< / xs l : f or−each>

<xs l : f or−each s e l e c t =” o:Smar tTagType ”>
<x s l : s o r t s e l e c t =”@o:name” />
<xs l : copy−of s e l e c t =” . ” />

< / xs l : f or−each>

<xs l : f or−each s e l e c t =”∗”>
<x s l : i f

t e s t =”name () != ’ o:SmartTagType ’ ”>
<x s l : c opy>

<xs l : app ly− t emp la t e s />
< / x s l : c opy>

< / x s l : i f>
< / xs l : f or−each>

< / x s l : c opy>
< / x s l : t emp l a t e>

<!−− De f a u l t t emp l a t e j u s t c o p i e s e v e r y t h i n g
i n t a c t and s o r t s t h e a t t r i b u t e s −−>

<x s l : t emp l a t e match=”∗”>
<x s l : c opy>

<xs l : f or−each s e l e c t =”@∗”>
<x s l : s o r t s e l e c t =”name () ” />
<x s l : c opy />

< / xs l : f or−each>

<xs l : app ly− t emp la t e s />
< / x s l : c opy>

< / x s l : t emp l a t e>

Listing 1. XSLT Stylesheet fragment for transforming a Microsoft Word
2003 WordprocessingML formatted document into an MLSDoc compatible
form.

that would need to be dealt with to fully adapt Word for

MLSDoc compatibility.

Problem: Node /w:wordDocument/o:Document-

Properties has the following fields that are frequently

updated:

o:Created

When the user selects “save as”.

o:Revision

Incremented each time the document is saved.

o:LastSaved

Updated each time the document is saved.

o:LastPrinted

Updated with the last time the document was

printed if it was printed during an edit session.

o:TotalTime

Maintains the total editing time.

o:Characters

When the number of non-space characters in the

document changes.

o:CharactersWithSpaces

When the number of characters including spaces

in the document changes.

o:Words

When the number of words in the document

changes.

o:Paragraphs

When the number of paragraphs changes.

o:Lines

When the number of lines changes.

o:Pages

When the number of pages changes.

Solution: The o:Created tag should be created at the

lowest security level of the document. The o:LastSaved,

o:LastPrinted and o:TotalTime tags must be

deleted, or copied from the old version in all but the lowest

security-level copy of the document. The o:Revision tag

must be deleted prior to storage inthe MLSDoc container, but

the tag can be generated prior to loading the MLSDoc into

Word by substituting the revision numbers for each security

level in the MLSDoc file.

The other statistical properties tags are recalculated when

Word loads the document and may be safely removed for

storage in the MLSDoc container.

Problem: When editing text at a higher level,

any new styles or fonts that are added to the

document are added as /w:wordDocument/-

w:lists/w:listDef/w:lvl/w:pStyle and

/w:wordDocument/w:fonts/w:font. If the same

document is edited at a lower level and a new style added,

there is the possibility of a style name being used more

than once, possibly confusing Word and/or the user.

Solution: Add all styles at the lowest security level of

the document to ensure that they are available at all security

levels and avoid name clashes, for example using a template

as already discussed.

Problem: When Word loads and saves an XML docu-

ment, it sometimes alters the order of tags for some XML

entities. For example, as shown in Table I, we observed

a document containing a number of o:SmartTagType

entities as the first children of the w:wordDocument entity

being reordered when loading and immediately saving the

document using the “save as” option.

Solution: Define a canonical order for these elements,

and to transform the document into this order. XSLT code to

do this using alphanumerical ordering of SmartTag elements

according to their name attributes is included in Listing 1.

287

Table I
REORDERING OF SmartTagType TAGS DURING AN EDIT SESSION

o:name attribute original order saved order

PlaceName 1 2

PlaceType 2 3

Street 3 7

City 4 4

State 5 1

country-region 6 6

place 7 5

address 8 8

Problem: New metadata entity tags appear and disap-

pear from time to time when editing documents.

Solution: Optional tags, such as w:rsid and

w:proofState, should be deleted prior to MLSDiff gen-

eration for storage in an MLSDoc container.

Problem: The aml:annotation element represents

a tracked insertion, deletion, formatting change, comment, or

bookmark in a document. It contains the attribute aml:id

which is numbered sequentially in the document. Any in-

sertion or deletion of an aml:annotation element will

alter the numbering of all subsequent aml:annotation

elements, causing BLP policy violations and TCB patch

rejection.

Solution: The aml:annotation element’s aml:id

attribute can be stripped from these tags prior to in-

sertion into or diff against the MLSDoc file. When the

file is subsequently loaded and saved by Word, some

of these elements may be lost. For example, insertions

have a w:type attribute of "Word.Insertion" and

are retained by Word when the document is loaded and

saved again. A new aml:id attribute is generated if it

is missing from the source document. Bookmark tags with

a w:type attribute of "Word.Bookmark.Start" or

"Word.Bookmark.End", however, are not subsequently

saved by Word. These elements need to be removed from

the document prior to storage in an MLSDoc container.

Problem: Third party applications such as OpenOffice,

and even different versions of Word, typically write files

using different detailed representations of the information in

a file. For example, the order of entity and attribute tags is

not typically maintained, numerical values may be formatted

differently, and even XML structures may vary. Listing 2

shows three common ways that we have encountered for

representing empty XML tags.

<e n t i t y>< / e n t i t y>

<e n t i t y />
<e n t i t y />

Listing 2. Three common representations for empty XML tags

While these alternate representations are still semantically

valid and should be understandable by Microsoft Office and

other applications, the syntactic differences foil MLSDoc’s

strict byte based BLP policy checks.

Solution 1: If transitioning to new application software

at all security levels, a one-off reconstruction of the docu-

ment can be achieved by transferring to the new application

at the lowest security level and migrating upwards through

each level, manually importing higher-level content.

Solution 2: An alternate approach would be to have

a much tighter canonical form that the document is trans-

formed to. This could be achieved by improving file format

standards, or with more extensive XML pre-processing.

Problem: High-level cross references to low-level ob-

jects will break if the low-level objects are renamed or

removed, which would be particularly problematic if low-

level labels were reused.

Solution 1: Similar to the discussion about orphaned

fragments in Section IV, the untrusted add-in could draw

any broken references to the user’s attention and assist them

to repair any broken associations.
Solution 2: A better solution would be for the low-level

add-in to encode remapping information into the document

for transmission to the high-level add-in which would enact

any necessary substitutions. This could perhaps be achieved

by an intelligent low-level differ, but a more powerful option

is canvassed in Section X on Future Work.

C. PRISM Add-in

We have developed a .NET based PRISM add-in for

Word using Microsoft VisualStudio Tools for Office (VSTO)

to automate MLSDoc processing within a standard “cre-

ation/load; edit; save” workflow. While the use of Mi-

crosoft’s COM XSLT processor appeared to be a natural fit

for our needs, in practise it interfered with XML formatting

so we instead used XMLStarlet for our XSLT processor.

The PRISM Word add-in provides a “create new doc-

ument” dialog box that allows the user to create a new

MLSDoc. It also provides an “open existing document”

dialog box that allows the user to open an existing MLSDoc

container. In this case, the MLSDoc is assembled into a

Word 2003 WordprocessingML file and loaded. The add-

in then makes use of Word’s standard document protection

mechanisms to insert read-only tags throughout the docu-

ment to prevent accidental alteration of lower-level data,

which would be subsequently rejected by the TCB.

A “save document as” dialog box is also provided, which

intercepts document save operations to first carry out the

following transformations: deletion of any problematic XML

entities; re-ordering attributes into a canonical alphanumeric

ordering; XDL diffgram generation by comparison with the

original assembled document; and MLSDiff patch genera-

tion from this XDL diffgram.

Following this the xferd process described in Section V

sends the MLSDiff patch to the TCB for verification, patch-

ing and redistribution. The Word add-in meanwhile monitors

288

the file system so that it can reload the updated MLSDoc

when it is received from the TCB in response to this, or

changes from another security level.

VII. A SEAMLESS USER EXPERIENCE

By judiciously restricting how the user can interact with

the system it is possible to make multiple SLS instantiations

of a COTS application appear to behave as a single MLS

instantiation, thus delivering a seamless user experience

almost indistinguishable from native MLS. Although we

demonstrate this in the context of using Microsoft Word to

edit an MLSDoc on an Annex Minisec platform, our method

is also suitable for integrating other COTS applications

that have been replicated inside a separation kernel or

virtualisation based isolation environment.

As introduced in Section II, the Minisec’s TCB me-

diates each MILS partition’s access to a display, mouse

and keyboard. In its current version, Minisec3, the TCB

instantiates three minimal VNC [17] clients in separate An-

nex OCRM objects, each connecting through the Minisec’s

labelled networking mechanism to a VNC server running

in a different hardware isolated MILS partition. Each VNC

client interacts with a separate, dedicated TCB-virtualised

frame-buffer, mouse and keyboard, only one set of which

is synced through to the real underlying hardware at any

point in time, depending on the state of the Minisec’s trusted

buttons. These LED-lit push-button switches, one per MILS

partition, provide a simple and secure means for the user to

unambiguously identify and/or alter the active partition with

which they wish to interact.

Coupled with our PRISM architecture, the Minisec’s

secure KVM-like functionality provides an excellent basis

for providing a seamless, MLS-like user experience. Figure 6

demonstrates this seamlessness in the context of editing a

Microsoft Word document in a national security classified

environment; the three separate sub-figures show the view of

a single document being edited at Unclassified, Secret and

Top Secret respectively.

A. Automatic sync-and-switch

We have extended a Minisec user’s ability to switch be-

tween partitions using a trusted button by first performing a

synchronisation step when they “double-press”. This causes

the the TCB to send a message initiating a document-save

in the original partition; switch the keyboard, mouse and

video as normal; and – when in convenience mode or when

changing to a higher level in paranoid mode – send another

message causing the document to be reloaded in the newly

active partition. Ideally the cursor would be repositioned so

that the user can continue editing either at or near where

they left off, although we have not yet implemented this

additional functionality.

Furthermore, by carefully pre-arranging a consistent win-

dow geometry between partitions – for example by using

Figure 6. Unclassified, Secret and Top Secret views of an MLS Word
document being edited in paranoid mode.

full-screen operation – switching security levels appears to

simply refresh which data is currently visible to the user. All

other user interface elements remain essentially intact and

consistent. In addition, though, our untrusted PRISM add-in

also applies thematic window colourisations (in sync with

289

the TCB lighting the appropriate trusted button) to help the

user quickly identify the new security level at which they

are now operating.

Our untrusted add-in also makes use of Word’s built-

in document protection methods to mark any text at the

current classification read/write, while other sections are

marked read-only. Word highlights the read/write sections in

yellow, which clearly identifies the at-level sections to the

user and helps them only edit those parts of the document

that the TCB-enforced BLP security policy verification step

will allow them to change.

These various indicators greatly decrease the cognitive

load placed on a user when switching domains, allowing

them to flit effortlessly between security levels with simply

the (double) press of a button.

B. MLS copy-and-paste

The VNC protocol’s cuttext message type [17] provides

a simple mechanism for sharing clipboard buffer contents

between an untrusted VNC server and its corresponding

VNC client. We used this to provide MLS copy-and-paste

between MILS partitions by developing an OCRM-protected

communication channel that permits BLP information flow

between each VNC instance’s clipboard.

After an object is copied into a VNC server’s clipboard

and received by the corresponding VNC client, the TCB

automatically copies the clipboard contents to all higher-

level VNC clients and hence to the VNC servers in the

corresponding MILS partitions. The user can then switch to

any higher-level partition and paste the updated clipboard

contents into any supported application. This provides a

highly convenient and intuitive mechanism for regrading

content and sharing it between unmodified COTS applica-

tions running at different security levels.

We have also developed an OCRM based downgrade

application, shown in Figure 7, that allows a user to view text

based clipboard contents in a trusted, TCB-hosted viewer

and manually regrade the content to a lower level.

This figure shows a user downgrading a fragment of secret

text (from Figure 6) to unclassified, so that it may be pasted

from the MLS clipboard into an unclassified document.

C. MLS Filing System

To help the users organise their MLS files, the mlsfs

module introduced in Section V manages several names-

paces to provide users with a secure and intuitive view of

where files originated and what higher levels of data have

been added to them.

To minimise user confusion, we aimed to provide a syn-

chronised namespace for all files across all levels. However,

in order to prevent filenames from being used as a covert

channel our TCB-enforced security policy insists that file

creation (or renaming) may only take place at the lowest

security level at which that file will exist. Lower levels

Figure 7. A trusted application facillitating user review and downgrade
of textual copy-and-paste information.

should remain oblivious of such a file’s existence, and

higher-level partitions may only embed further data content

within the file. These conditions resonate well with a BLP

security model with strong tranquillity and our requirement

that “the root object be at the lowest security level of the

document” from Section III.

With these restrictions in mind, mlsfs polyinstantiates

lower-level directory trees upwards to higher levels. For an

unclassified partition this results in a single directory tree,

tree1 rooted like this:

/mls/unclassified/<tree1> (data:rw, namespace:rw)

The view from a secret-level partition contains two trees:

/mls/unclassified..secret/<tree1> (data:rw, namespace:ro)

/mls/secret/<tree2> (data:rw, namespace:rw)

where tree1 is a polyinstantiation of the unclassified

tree. The root path unclassified..secret indicates

that the namespace is maintained by the unclassified

partition (and is hence read-only at this level), but that the

files may contain additional content ranging up to secret.

This arrangement permits MLS documents containing un-

classified information to include secret-level content. The

second tree, tree2 provides a mechanism for creating files

containing a minimum of secret-level data, and whose very

existence is even kept secret from lower levels.

The view from a top secret partition is similarly con-

structed:

/mls/unclassified..topsecret/<tree1> (data:rw, ns:ro)

/mls/secret..topsecret/<tree2> (data:rw, ns:ro)

/mls/topsecret/<tree3> (data:rw, ns:rw)

This enumeration of multiple hierarchical namespaces that

are rooted by an originating classification provides a secure,

clean and flexible abstraction on which larger scale MLS

document management can be easily managed by users or

higher-level PRISM-aware software.

290

Figure 8. The Top Secret view when editing an MLS DokuWiki.

VIII. DOKUWIKI SUPPORT

We have used PRISM’s MLS filing system to store fined-

grained MLS information within DokuWiki [8]. As with

all applications that could be built on top of PRISM, the

trusted processing remains the same; only a new untrusted

diffing component needed to be developed. However, our

careful choice of DokuWiki – which uses plain text XML

compatible files for wiki page storage – allowed us to reuse

much of the same untrusted diffing engine that we used for

the Microsoft Word add-in.

Using the mlsfs system to intercept application file

changes allowed us to avoid making any invasive changes to

the DokuWiki source code, demonstrating a greater degree

of decoupling between MLS infrastructure and the native

application than was the case with MS Word. When a mod-

ified wiki file is saved, the mlsfs system uses XMLStarlet

to convert any changes into MLSDiff patches and forwards

them on to the TCB for trusted BLP policy verification,

merging into the file’s canonical MLSDoc container and the

sanitised released back to all partitions.

On arrival in a partition the mlsfs system notifies the

DokuWiki plugin, which assembles the changes back into

DokuWiki native file format.

Figure 8 demonstrates a wiki version of the Top Secret

view of the MLS Word document shown in Figure 6.

IX. SECURITY PROPERTIES

This section provides a critical analysis of the security

properties of our PRISM architecture. Since data confi-

dentiality was our primary concern, we have paid partic-

ular attention to identifying and mitigating potential Covert

Channels (CC). Secondary concern for data integrity and

availability encouraged us to examine the potential suscep-

tibility of our system to Replay Attacks and classification

spoofing that might confuse the user. Finally, while some-

what beyond the scope of this paper, we briefly comment

on how implementing PRISM on top of the Minisec’s

Silicon Trojan resistant design provides further guarantees

for confidentiality, integrity and availability.

We finalise our discussion on security properties by argu-

ing the high tractability of certifying products based on our

architecture.

A. Covert Channels

The Trusted Computer Security Evaluation Criteria (TC-

SEC) [7] define two types of covert channel: storage chan-

nels and timing channels. Both aim to hide the transfer of

information between two entities, in either an unintended

side channel or encoded within an otherwise legitimate

data stream. Storage channels hide information by directly

modifying typically unused or redundant elements within

a data stream, while timing channels signal information

through the relative timing or ordering of events.

In this discussion we ignore any covert channels in

the underlying MILS or Annex separation kernel, since a

primary function of this kernel is to provide strong protection

against these, and focus only on additional channels relating

to the timing and content of file updates introduced by

distribution of the MLSDoc files.

PRISM’s susceptibility to such covert channels differs

depending on whether it is used in paranoid mode or

convenience mode, plus whether or not system-low storage

is used. In all cases, however, PRISM’s use of opaque data

streams restricts covert channels to modulating metadata

such as when files are synchronised, their path, their size

or the location of convenience mode markers. This drasti-

cally reduces PRISM’s susceptibility to high capacity covert

channels.

1) Paranoid Mode: Assuming the proper operation of the

TCB, PRISM’s paranoid mode without system-low storage

results in no high to low information flows of any kind;

hence there can be no covert channels.

2) Common to System-Low and Convenience Modes:

Both system-low and convenience modes involve updating

lower-level copies of an MLSDoc file.

A potential covert channel would exist if untrusted soft-

ware were allowed to control the timing of synchronisations,

thus creating a timing channel.

The potential capacity of such a channel can be approxi-

mated by modelling it as a discrete noiseless channel driven

by a Markov process where the entropy of the discrete ran-

dom variable X is given by H(X) = −
∑

x∈X p(x) log p(x)
[20]. A binary random variable then models the presence,

or otherwise, of a synchronisation occurring during a given

time slot of length τ seconds. If the rate of synchronisations

is limited to R per second where Rτ ≪ 1 per slot

then the probability of a synchronisation occurring within

a given time slot p(x = sync) ≈ Rτ , and conversely

p(x = !sync) ≈ (1−Rτ). Hence, the potential timing covert

channel capacity of 1

τ
H(X) bits per second is then:

CCtiming ≈ −
1

τ
(Rτ log2(Rτ) + (1 − Rτ) log2(1 − Rτ))

291

If the TCB enforced a timing resolution of 1 second and

a limit of 100 synchronisations per day (1.16 × 10−3 per

second), a covert timing channel could potentially transmit

up to 140 bytes per day.

However, rather than having the TCB blindly redistribute

high-level updates to lower levels, the sync-and-switch pro-

tocol from Section VII limits updates to whenever the user

wishes to synchronise content and switch to a different

domain. This prevents untrusted software from modulating

synchronisation operations and the timing channel is com-

pletely removed.

Further covert channels would exist if the untrusted soft-

ware were allowed to synchronise any filename in any order,

using the filename or ordering to contain or modulate a

hidden message. These can also be completely countered,

however, by TCB GUI software indicating the file being

synchronised and asking the user to confirm this action; an

example of such a system will follow shortly. The attempted

operation of a such a covert channel would become rapidly

apparent to the user if the system started trying to synchro-

nise files that were not being actively edited.

3) Unique to System-Low Mode: The use of system-

low storage potentially allows a high-level process to en-

code a message readable at the low level by modulating

the length EL bytes of an MLSDoc’s encrypted content.

However, the potential channel capacity of this scheme can

be extremely constrained by padding the encrypted section’s

length to a power of two, reducing the channel capacity to

log2(log2(EL)) bits per synchronisation. For example, for

files “limited” to between a 32 byte (25) cipher block and

2261 bytes of encrypted content (i.e. practically unlimited)

this results in a potential covert channel of one byte per

synchronisation. As above, trusted sync-and-switch can limit

the number of synchronisations, and TCB GUI software can

help flag wild file size variations to the user.

4) Unique to Convenience Mode: Convenience mode

introduces the most problematic potential covert channel. An

inherent side effect of the desirable functionality that conve-

nience mode affords is that there is also scope for malicious

untrusted software to modulate a covert channel using high-

level content markers between each byte of lower-level data.

This simple scheme could yield the transmission of one bit

of information per byte of low-level data synchronised.

This dangerously high capacity channel can be easily

constrained, however, by allowing for only a reasonable

number M of high-level marker insertions or deletions per

synchronisation. The potential capacity will then be bounded

by the entropy present in the variation of where high-

level markers can potentially be inserted in (or removed

from) low-level data. Given L bytes at the low security

level there are L + 1 locations where markers may be

inserted (or removed). Modifying m markers during any

individual synchronisation results in CL+1
m possibilities. The

total number of symbols that can be encoded is then the sum

Table II
UPPER BOUNDS IN BYTES PER SYNCHRONISATION OF POTENTIAL

COVERT CHANNEL WHEN IN CONVENIENCE MODE AND ALLOWING THE

MODIFICATION OF UP TO M MARKERS WITHIN L LOW-LEVEL BYTES

USING EQUATION 1.

L Markers, M

(bytes) 1 5 10 50 100 200 1000

100 0.83 3.29 5.54 12.5 12.6 12.6 12.6

1000 1.25 5.37 9.73 35.3 58.1 89.7 125

3873 1.49 6.59 12.2 47.7 83.2 141 398

10000 1.66 7.44 13.9 56.3 100 176 586

100000 2.08 9.52 18.0 77.0 142 260 1009

10
6 2.49 11.6 22.2 97.8 184 343 1425

8× 10
6 2.87 13.5 25.9 117 221 418 1800

10
7 2.91 13.7 26.3 119 225 426 1841

10
8 3.32 15.7 30.5 139 267 509 2256

10
9 3.74 17.8 34.6 160 308 592 2671

of possible marker combinations for all m ≤ M , leading to

a per-synchronisation potential covert channel (in bits) of:

CCconvenience = log2

(

M
∑

m=0

(L + 1)!

(L + 1 − m)!m!

)

(1)

This is easily computable in O(M) operations by starting

at m = 0, noting that CL+1

m+1 = L+1−m
m+1

CL+1
m and rescaling

if necessary to avoid overflow.

Alternatively, the covert channel can be estimated as per

the timing channel by modelling it as a Markov process

filling L + M slots with either a data byte (X=0) or marker

(X=1). The channel capacity in bits per synchronisation is

bounded by the entropy H as follows:

CCconvenience ≤ L log2

L + M

L
+ M log2

L + M

M

This is an overestimate because it allows for files con-

taining adjacent markers and for files with greater than M

markers, both of which are precluded by the TCB.

With trivial differences, applying either of these final

equations can give a theoretical upper limit for the potential

covert channel capacity of convenience mode. Upper bounds

for various combinations of M and L are given in Table II.

While these are theoretical limits, even simple signalling

schemes can achieve high efficiencies when M ≪ L,

especially when the preservation of legitimate user data

can be dispensed with – although the latter will obviously

destroy any chance of stealthy operation. For example, if

the low-level file were conceptually split into L
M

blocks,

the careful positioning of one marker in each block could

yield a total covert channel capacity of M × log2
L
M

bytes

per synchronisation. For an 8MB document limited by up

to 10 high-level content marker modifications at a time, this

scheme would yield 24.6 bytes per synchronisation, which

is 95% of the theoretical peak of 26 bytes.

292

Figure 9. A trusted application for displaying metadata and potential covert
channel implications associated with a particular synchronisation operation,
for user review and acceptance.

Since the TCB mediates all document synchronisations

it can easily monitor potential covert channels to maintain

them within policy based limits. Figure 9 shows a prototype

covert channel monitor that we have developed to demon-

strate the utility of this concept. While this uses the policy

limit for the number of markers per file to calculate the

potential information content it could be extended to provide

a tighter bound based on the actual data observed [21].

This shows a TCB produced dialog box of what the

user would see – if they were in convenience mode with

L = 3873 and M limited to 10 – after having just

entered the secret text shown in Figure 6 and then requested

synchronisation. The user should verify that the metadata

corresponds to the synchronisation action that they intended

to make, hence accepting or rejecting the operation.

In an intelligence community environment this trusted

application could enforce a covert channel policy demanding

the use of 0 bits per second paranoid mode; in other military

scenarios it may apply rate limiting to maintain potential

covert channel bitrates below an allowable threshold; while

in commercial settings where such sophisticated attacks are

less likely it might simply quantify the potential leakage and

present this to the user for monitoring purposes.

B. Replay Attack

A user or untrusted software may attempt to mount a

replay attack by forwarding to the TCB MLSDiff edits based

on an out of date version of an MLSDoc, attempting to

overwrite documents at other levels with old information.

Such an effort would be thwarted when not using system-

low mode, however, since the canonical MLSDoc contains

revision numbers that protect the version-integrity of each

security level’s section; a stale MLSDiff patch would not

match the current version of the canonical document and

the TCB would simply reject the changes. To counter this

problem in system-low mode the TCB would need to main-

tain a version identifier for each system-low file, although

the data remains elsewhere.

C. Classification Spoofing

A classification spoofing attack against PRISM involves

attempting to fool a user or untrusted software about the

classification of particular content by formatting it so that it

appears to belong to a different security level. For example,

top secret content may be formatted (in the top secret

domain) to appear as though it is unclassified in the hope that

the user may inappropriately treat it as such and re-divulge

that information at a lower level. Alternatively, unclassified

content may be formatted (in the unclassified domain) as top

secret in the hope that a high-level user or untrusted software

will inappropriately treat it as such and grant it more weight

than it deserves.

In all of these cases, however, it is important to re-

member that regardless of what formatting any untrusted

software in an SLS partition applies to the data entered

into it, MLSDoc’s trusted processing ensures that the data

(and formatting instructions) remain inextricably linked to

the security level at which they were created. Hence, the

example misattributed “unclassified” information held at the

top secret level and the “top secret” information found at

the unclassified level actually retain their confidentiality and

security-level integrity within the technical confines of the

PRISM system. If automated software becomes confused

and attempts to patch this data through MLSDoc to a differ-

ent security level, the changes will be rejected. As is the case

in existing system-high environments, an unconfined person

should remain on guard for these types of psychological

attacks; PRISM helps them identify such misinformation

by simply viewing the same document at different security

levels and noticing when information purporting to be of a

low security level disappears when switching down to that

level.

D. Silicon Trojans

There is a growing threat from Silicon Trojans that

contain malicious behaviour embedded in compromised

hardware [4]. This type of malware is arguably impossible to

counter with software based isolation mechanisms running

on COTS hardware. While PRISM does not counter this

threat directly, our implementation on top of the Minisec’s

hardware isolated MILS domains goes some way to reduc-

ing susceptibility to compromised hardware and untrusted

software alike. Even if data or processing within a SLS

partition is compromised, the effects cannot leak to lower

security-level enclaves other than by bounded covert chan-

nels through the TCB, and a high degree of confidentiality

and security-level integrity are preserved. These in turn

improve availability by frustrating an adversary’s ability

293

Table III
TRUSTED CODEBASE SIZE FOR PROTOTYPE AND OPTIMISED VERSIONS; AND UNTRUSTED CODEBASE SIZE FOR THE MS WORD USE CASE.

Component Language Lines of Code Total LOC

Untrusted PRISM add-in C 8200

C♯ 2750

XML Library C 195000

XML Diff Library C♯ 9000

Windows, Office, .NET framework C/C++/C♯ > 10,000,000

xferd C 1259

libfuse C 13974

mlsfs C 732 unimportant

Trusted Verify/patch/release C 1600

(Prototype) crypto C 27038

EnclaveHAL C 420

xferd C 1259

ChannelManager C 3375

Annex OCRM C 8616

Minisec3 VNC clients C 1264

OCRM based GUI C 5339

OCRM based downgrader C 399

OCRM based CC policy checker C 151

Linux kernel C > 1,000,000 kernel + 49,461

Trusted Verify/patch/release C 1600

(Minimal Optimised) certified crypto implementation C <2000

Communication C 250

Green Hills Integrity or seL4 C <10000 µkernel + crypto + 1850

to construct a robust command and control channel for

triggering a Denial of Service (DoS) attack.

E. Evaluation and Certification

PRISM relies on only a very a small amount of code in the

TCB to provide its security critical verification, patch and

release functionality. Furthermore, the same trusted codebase

is common for any MLSDoc based use case; the untrusted

add-in modules abstract away any application-specific file

format issues. This makes is both feasible and worthwhile

to evaluate PRISM’s trusted components to very high levels

of assurance.

Indicative code sizes for various parts of our PRISM

system are shown in Table III. The first group of components

covers the untrusted COTS operating system, application

software and custom cross domain infrastructure residing in

an SLS MILS partition. From a security perspective, these

untrusted elements are assumed to be capable of any possible

(mis)behaviour. From a modelling perspective the size of this

codebase is therefore unimportant.

The second group of components includes the code for

all trusted elements in our current Minisec based prototype

implementation. With the exception of the very large Linux

kernel – but not a standard Linux user-space, which is

replaced by the OCRM-hosted PRISM implementation – this

totals just 42,308 lines of trusted code. However, although 2-

3 orders of magnitude smaller than the untrusted code base,

even this is beyond the current reach of exhaustive formal

modelling techniques.

The third group of components represents our estimation

of the minimum sized code base that could implement

PRISM’s core functionality in paranoid mode using only

symmetric cryptography, optimising it for productisation.

This disables the identified covert channels along with the

requirement for monitoring them, and excludes public key

cryptography required for sharing files between TCBs. The

Linux kernel could be replaced with a highly certified COTS

separation kernel such as Green Hills Integrity or seL4. The

general purpose MLS middleware and cross domain infras-

tructure would be replaced by a minimal, single purpose

framework built for solely supporting a likewise minimised

PRISM implementation. Hence, we estimate the entire TCB

could be reduced to less than 10,000 lines of (pre-certified)

code for the µkernel base and crypto support, and less than

2,000 lines for PRISM application component.

A thorough security analysis of this optimised PRISM

implementation would be eminently achievable using current

state of the art modelling techniques. With careful imple-

mentation and evaluation, we believe that certification to

EAL6+ or beyond of PRISM’s extremely useful capability

would be a highly tractable proposition.

294

X. FUTURE WORK

Although we have already demonstrated the feasibility of

adapting complex COTS software to a high assurance MLS

environment, an improved approach would include building

MLS awareness (but not trust) into COTS applications. For

example, in order to assist the TCB to differentiate between

a copy/paste that may contain embedded high-level data

and an at-level insertion of new data, or to expose events

such as the renaming of low-level cross reference structures,

the patch should be constructed as a transaction of the

actual operation being performed by the application. These

types of extensions would encourage more frequent, smaller

transactions, help avoid ambiguous corner cases, and lead

to more robust operation. Sun et. al. [22] demonstrate an

adaptation layer for Microsoft Office that intercepts mouse

and keyboard input which could be used to implement this

type of facility. While this would add complexity to the

untrusted application, it is outside the TCB and would not

require difficult and expensive security evaluation.

Our discussion in this paper also glossed over crypto-

graphic mechanisms for signing, encryption and key distri-

bution. Although the Annex OCRM provides methods for

public and private key cryptography that are used for the

authentication and encryption of communication between

Minisec devices, we have not yet integrated the use of

these primitives for key agreement, signatures or encryption

within MLSDoc files. It is not difficult, however, to envisage

leveraging these facilities so that one Minisec’s TCB can

export an MLSDoc to another TCB by block encrypting the

MLSDoc with a random key and distributing that package

to the target TCB along with a public-key encrypted bulk

decryption key. A similar mechanism could be used to

protect canonical MLSDoc files stored in system-low mode

outside the TCB.

XI. CONCLUSION

We have shown how our Program Replication and Integra-

tion for Seamless MILS (PRISM) architecture can maintain

trusted, fine grained (intra-document) Bell LaPadula sepa-

ration between information at multiple security levels. The

security of our solution relies on only a tiny Trusted Com-

puting Base (TCB) to maintain the canonical representations

of Multi-Level Secure (MLS) documents and provide a

policy-verifying update and coordination mechanism. When

implemented on the Annex Minisec platform, these mech-

anisms provide strong guarantees on data confidentiality,

integrity and availability. All other functionality is provided

by Commercial Off The Shelf (COTS) software and file

formats, plus small untrusted add-ins for performing file

format translation. We presented the utility of our approach

using Microsoft Word and DokuWiki.

We also showed that by judiciously restricting user inter-

action, multiple Single-Level Secure (SLS) instantiations of

COTS programs can be made to appear to behave as a single

MLS instantiation, thus delivering a seamless user experi-

ence almost indistinguishable from native MLS. Although

we demonstrated this using the Annex Minisec platform, our

method is equally suitable for retrofitting MLS functionality

into other COTS applications using a Multiple Independent

Levels of Security (MILS) framework in any separation

kernel or virtualisation based isolation environment.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for their

helpful comments that assisted in clarifying aspects of the

paper.

REFERENCES

[1] UCDMO cross domain inventory version 3.4.0, June 2010.
http://www.ucdmo.gov/ (accessed 23 Sept 2010).

[2] Jim Alves-Foss, W. Scott Harrison, Paul Oman, and Carol
Taylor. The MILS architecture for high-assurance embedded
systems. International Journal of Embedded Systems, 2(3-
4):239–247, 2006.

[3] M. Anderson, C. North, J. Griffin, R. Milner, J. Yesberg, and
K. Yiu. Starlight: Interactive link. In ACSAC, pages 55–64.
IEEE Computer Society, 1996.

[4] M. Anderson, C. North, and K. Yiu. Towards countering the
rise of the silicon trojan. Technical Report DSTO-TR-2220,
DSTO Information Sciences Laboratory, 2008.

[5] Ross Anderson. Security Engineering. Wiley, first edition,
2001.

[6] D. E. Bell and L. J. LaPadula. Secure computer systems:
mathematical foundations and model. Technical Report M74-
244, The MITRE Corp., Bedford, Mass., May 1973.

[7] Department of Defense. Department of defense trusted
computer system evaluation criteria, December 1985.

[8] DocuWiki Community. DocuWiki, 2010.
http://www.docuwiki.org.

[9] D.A. Grove, T.C. Murray, C.A. Owen, C.J. North, J.A.
Jones, M.R. Beaumont, and B.D. Hopkins. An overview
of the Annex system. In Proc. Annual Computer Security
Applications Conference. IEEE, December 2007.

[10] D.A. Grove, C.J. North, A.P. Murray, T. Newby, M.R. Beau-
mont, M. Chase, S. Haggett, and C.A. Owen. The Annex
Multi-Level Secure computing architecture. DSTO technical
report, 2011.

[11] Joshua P. Macdonald. File system support for delta compres-
sion. Master’s thesis, University of California at Berkeley,
2000.

[12] Dylan McNamee, CDR Scot Heller, and Dave Huf. Building
multilevel secure web services-based components for the
global information grid. CrossTalk, pages 15–19, May 2006.

295

[13] T. Newby, D.A. Grove, A.P. Murray, C.A. Owen, and C.J.
North. The second generation Annex TCB. DSTO technical
report, 2011.

[14] Kar Leong Ong, Thuy Nguyen, and Cynthia Irvine. Imple-
mentation of a multilevel wiki for cross-domain collaboration.
Technical report, Naval Postgraduate School, 2008.

[15] Colin Percival. Naive differences of executable code.
http://www.daemonology.net/bsdiff, 2003.

[16] Neetu Rajpal. Using the XML diff and patch tool in your
applications, August 2002. http://msdn.microsoft.com/en-
us/library/aa302294.aspx.

[17] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R.
Wood, and Andy Hopper. Virtual network computing. IEEE
Internet Computing, 2(1):33–38, 1998.

[18] J.A. Rome and J.S. Tolliver. Multilevel architectures for elec-
tronic document retrieval. In National information systems
security conference. Oak Ridge National Lab., TN (United
States), 1997.

[19] Sebastian Rönnau, Geraint Philipp, and Uwe M. Borghoff.
Efficient change control of XML documents. In DocEng
’09: Proceedings of the 9th ACM symposium on Document
engineering, pages 3–12, New York, NY, USA, 2009. ACM.

[20] C. E. Shannon. A mathematical theory of communication.
The Bell System Technical Journal, 27:379–423,623–656,
1948.

[21] S. P. Shieh and V. D. Gligor. Detecting illicit leakage
of information in operating systems. Journal of Computer
Security, 4:123–148, 1996.

[22] Chengzheng Sun, Steven Xia, David Sun, David Chen,
Haifeng Shen, and Wentong Cai. Transparent adaptation of
single-user applications for multi-user real-time collaboration.
ACM Trans. Comput.-Hum. Interact., 13(4):531–582, 2006.

[23] W. Mark Vanfleet, R. William Beckwith, Ben Calloni, Jahn A.
Luke, Carol Taylor, and Gordin Uchenick. MILS: Architec-
ture for high-assurance embedded computing. The Journal of
Defense Software Engineering, August 2005.

296

