
Preventing Sybil Attacks by Privilege Attenuation:
A Design Principle for Social Network Systems

Philip W. L. Fong
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

Email: pwlfong@ucalgary.ca

Abstract—In Facebook-style Social Network Systems (FSNSs),

which are a generalization of the access control model of

Facebook, an access control policy specifies a graph-theoretic

relationship between the resource owner and resource accessor

that must hold in the social graph in order for access to

be granted. Pseudonymous identities may collude to alter the

topology of the social graph and gain access that would otherwise

be forbidden. We formalize Denning’s Principle of Privilege

Attenuation (POPA) as a run-time property, and demonstrate

that it is a necessary and sufficient condition for preventing

the above form of Sybil attacks. A static policy analysis is

then devised for verifying that an FSNS is POPA compliant

(and thus Sybil free). The static analysis is proven to be both

sound and complete. We also extend our analysis to cover a

peculiar feature of FSNS, namely, what Fong et al. dubbed

as Stage-I Authorization. We discuss the anomalies resulted

from this extension, and point out the need to redesign Stage-I

Authorization to support a rational POPA-compliance analysis.

Keywords-access control; policy analysis; social network sys-

tems; Sybil attacks; Principle of Privilege Attenuation; soundness

and completeness of static analysis.

I. INTRODUCTION

One way of gauging the effectiveness of an access control
scheme is by carefully articulating the security property that
is enforced by the scheme. For example, by showing that a
protection mechanism has the noninterference property [1],
[2], one knows that the high-level information flow policy is
indeed enforced by the mechanism. When the target security
property is ambiguous, the access control mechanism adds
guards and mediations with no clear security goal.

The rise of social computing introduces the world to a
new paradigm of access control, in which the inter-personal
relationships between users are explicitly articulated in a social
graph that forms the basis of authorization decisions. Authors
have begun to refer to this emerging paradigm as Relationship-
Based Access Control (ReBAC) [3], [4], [5], [6]. For instance,
Fong et al. [7], [8] generalized the access control mechanism
of the popular Social Network System (SNS), Facebook, into
a family of access control systems known as Facebook-style
Social Network Systems (FSNSs). A distinctive feature of
FSNSs is that every access control policy specifies a graph-
theoretic relationship between the resource owner and the
resource accessor (e.g., the owner and accessor share k or
more common friends). Access is granted when the stated
relationship is realized in the social graph. A question one

must ask is the following: Exactly what is the security goal of
such a protection paradigm? That is, what security property is
enforced by this protection paradigm? This work is an attempt
to answer the questions above.

We demonstrate that some FSNSs, when improperly con-
figured, are amenable to Sybil attacks [9]. In a classical
Sybil attack, a malicious user of a peer-to-peer system creates
multiple pseudonymous identities, and uses their combined
influence to bypass the reputation system. In an FSNS, because
authorization decision is a function of the current topology of
the social graph, it is possible that a group of pseudonymous
identities may collude to manipulate the topology of the
social graph, with the effect of gaining privileges that would
otherwise be forbidden. (In this work, we concern ourselves
with “formal” Sybil attacks, in which malicious users add or
remove edges in the social graph without employing social
engineering. Sybil attacks involving social engineering, such
as Profile Cloning attacks [10], [11], [12], are beyond the scope
of this work.) The prevention of Sybil attacks is taken to be
a security goal of FSNSs in this work.

The articulation of the above security goal begs the question
of whether Sybil attacks can be prevented by a properly
designed FSNS. In early work on access control systems, Den-
ning formulated a design principle, the Principle of Privilege

Attenuation (POPA), to prevent privilege escalation caused by
the collusion of unprivileged users. In short, POPA demands
that a user may confer a privilege only when she already
has that privilege. It turns out that POPA can be adopted
in the design of FSNSs to effectively prevent Sybil attacks.
Specifically, this work is the first one to propose a policy
analysis that will allow an FSNS designer to statically certify
that the FSNS complies to POPA, and thus provably prevent
Sybil attacks at run time. Specifically, the following are the
contributions of this work:

1) We formalize POPA as a property of the set of execution
traces generated by an FSNS, in a manner akin to non-
interference [1], [2]. We show that this formulation
of POPA is a necessary and sufficient condition for
preventing Sybil attacks in FSNSs.

2) We define a static analysis that allows one to examine
only the current configuration (i.e., privacy settings)
of the FSNS, and determine if the FSNS complies to
POPA. We prove that the static analysis is sound: if

2011 IEEE Symposium on Security and Privacy

1081-6011/11 $26.00 © 2011 IEEE

DOI 10.1109/SP.2011.16

263

the current configuration of the FSNS passes the static
analysis, then Sybil attacks will not occur at run time.
This result can be further exploited so that an FSNS
designer can statically analyze the vocabulary of policies
supported by the FSNS, and certify the FSNS to be
POPA compliant under every possible configuration.

3) We show that the above static analysis is complete: if
the configuration of the FSNS complies to POPA, then
the static analysis will recognize it as such. This means
the analysis is precise.

4) We extend the static analysis to cover a peculiar feature
of FSNS. In an FSNS, a necessary condition for access
is that the accessor must “reach” the “search listing” of
the profile owner (see Section II-A for more details).
We illustrate the complexities and anomalies that will
arise from widening the scope of the policy analysis to
cover this feature. This motivates a need to redesign the
access control mechanism of FSNSs to facilitate POPA-
compliance analysis.

II. OVERVIEW

The kind of Sybil attacks studied in this work is distinct
from its counterparts in peer-to-peer systems [13], [14], repu-
tation systems [15] and recommendation systems [16]. Sybil
attack prevention in FSNSs is a novel research challenge that
has not been studied in the past. This section gives an overview
of this research problem and our solution approach.

A. Facebook-style Social Network Systems

We review here an analysis of Facebook’s access control
mechanism that was reported by Fong et al. [7]. We then
outline a family of SNSs that they identified to be Facebook-
style Social Network Systems.

1) Profile and Profile Items: Facebook allows each user to
construct a representation of herself in the form of a profile.
A profile displays such profile items as personal information
(e.g., favorite books), multimedia contents (e.g., pictures),
activity logs (e.g., status), or other user-authored contents (e.g.,
blog-like postings). Facebook users may grant one another
access to the profile items they own.

2) Search Listings and their Reachability: Access to profile
items is authorized in two stages. In Stage I, the accessing user
must reach the search listing of the profile owner. Then in
Stage II, the accessing user requests access to the profile, and
the profile items are selectively displayed. The search listing
of a user could be seen as a “capability” [17], [18] of the user
in the system, through which access is mediated. There are
two means by which a search listing may be reached in Stage
I — global name search and social graph traversal.

3) Global Name Search: A successful global name search
produces for the accessing user the search listing of the target
user. A profile owner may specify a search policy to permit
only a subset of users to reach her search listing through a
global name search.

4) Social Graph Traversal: A second means to reach a
search listing is by traversing the social graph. Facebook
allows users to articulate their relationships with one another
through the construction of friend lists. Every user may list a
set of other users as her friends. As friendship is an irreflexive,
symmetric binary relation, it induces a simple graph known as
the social graph, in which users are vertices and relationships
are edges. A user may traverse this graph by examining the
friend lists of other users. A user u may restrict traversal by
specifying a traversal policy, which specifies the set of users v
who are allowed to examine u’s friend list after v has reached
the search listing of u.

5) Profile Access: Once the search listing of a profile
owner is reached, the accessing user may elect to access the
profile, thereby initiating Stage II of authorization. Not every
accessing user sees the same profile items when a profile is
displayed. The owner may assign an access policy to each
profile item, dictating who can see that profile item when the
profile is accessed. This is the means through which a user may
project different representations of herself to different groups
of users.

6) Friendship Articulation: Articulating friendship involves
a consent protocol, whereby a user sends a friendship invi-
tation to another user, who may then accept or ignore the
invitation. Once a mutual consent is reached, that friendship
is recorded by Facebook as an edge in the social graph. Such
an operation is called befriending. Befriending invitation is
guarded in Facebook. To initiate a befriending invitation, the
inviting user must first reach the search listing of the invited
user (i.e., Stage I). Then, the acquaintance policy of the
invited user will determine if the inviting user can extend the
befriending invitation. On the other hand, defriending, that is,
the dissolution of friendship, is not guarded. It can be carried
out unilaterally by either end of the relationship.

7) Policies: We have seen in the above discussion that
various aspects of user activities are controlled by user-
specified policies (e.g., search policy, access policy, etc). This
is typical of a discretionary access control system [19], [20],
in which a user may grant access privileges to other users.
Facebook offers a fixed vocabulary of predefined policies
for users to choose from when they are to identify sets of
privileged users. These predefined policies identify user sets
not in terms of user identities, but rather in terms of how the
accessor and the owner are related to one another in the social
graph. For example, one may specify that a certain profile item
is accessible only by “friends” of the profile owner, or that
befriending invitation is only available to “friends of friends”.

8) Facebook-style Social Network Systems: Fong et al. [7]
proposed a generalization of the above access control mech-
anism, whereby the policy vocabulary may contain policies
that specify complex graph-theoretic relationships between the
owner and the accessor. For example, the policy vocabulary
of such an SNS may contain a policy that grants access
when the owner and the accessor share k common friends
(i.e., “friends of friends” is a special case with k = 1). As
another example, consider a policy that grants access when

264

Fig. 1. “Somewhat related” and “popular.”

the owner and the accessor belong to the same k-clique (i.e.,
“friends” is a special case when k = 2). A Facebook-style

Social Network System (FSNS) is an SNS that shares with
Facebook the same access control mechanism as described
above, but with its own vocabulary of policies. The family of
FSNSs effectively specifies a design space for Facebook-like
SNSs, so that the design space is parameterized by the choice
of policy vocabulary, where Facebook is but one point of the
design space. The goal of this work is to identify a design
criterion for selecting a “good” policy vocabulary.

B. Sybil Attacks in FSNSs

The normal assumption of a SNS is that every user is
represented by exactly one user account (i.e., one identity), and
thus each vertex of the social graph is controlled by a distinct
user. Typically this assumption is enforced by imposing terms
of use, by CAPTCHA, and by cross-referencing personal data
collected from users. There is, however, no “hard” mechanism
for strictly enforcing such a policy. It is entirely possible
for a user to assume multiple identities [10], [11], [12]. The
result is that the same human user could offer befriending or
defriending consent on behalf of multiple social graph vertices.

In FSNSs, accessibility is a function of the topology of the
social graph. By taking control of multiple user accounts, and
strategically initiating befriending and defriending actions, a
user can manipulate the topology of the social graph neigh-
bourhood that is dominated by the vertices she controls. A
Sybil attack [9] is resulted when a malicious user, through
setting up multiple accounts, coordinates the addition and
deletion of edges in the social graph, in such a manner that
allows her to gain privileges that otherwise she would not
possess.

Example 1. Suppose an owner allows access to her dating-
ready photo only if the accessor is “somewhat related”,
and is a “popular” person. What is an access policy that
appropriately represents this privacy need? To ensure the
accessor is “somewhat related”, let us demand the accessor to
be of distance no further than three from the owner. To ensure
the accessor is “popular”, let us further demand the accessor
to have a vertex degree of one hundred or more (Figure 1).

Now suppose there is an attacker who is “somewhat re-
lated” (distance no more than three), but not “popular”
enough (degree less than a hundred). How can the attacker

launch a Sybil attack to gain access to the owner’s photo?
All she needs to do is to create enough fake accounts, and
befriend them accordingly. As she controls both her original
account and these fake accounts, she could offer consent to
any befriending requests.

Notice that the attack above can be launched in a slightly
different manner. Suppose the attacker does not create fake
accounts, but instead colludes with an appropriate number
of strangers by befriending them. She will then be able to
increase her vertex degree, and thus gain access as a result.
This observation leads to a core insight we would like to
highlight:

In FSNSs, there is no material difference between
Sybil attacks and the collusion of unprivileged users
to gain access.

Creation of pseudonymous identities is not the crux of the
problem. The crux of the problem is whether an SNS can be
configured to prevent unprivileged users from manipulating
the access control system into conferring to them privileges
that they do not rightly possess.

C. Principle of Privilege Attenuation
In early work on access control systems, Denning formu-

lated a design principle to avoid exactly this kind of problems.
Specifically, to prevent unprivileged users from colluding with
one another to gain access, Denning advocates the Principle

of Privilege Attenuation (POPA) [21, page 372]. A modern
paraphrase of POPA by Bishop [22, page 43] is the following:

A subject may not give rights it does not possess to
another.

In other words, the granter of a right must possess the right.
In FSNSs, there is no explicit granting of rights. Autho-

rization is the consequence of the social graph possessing a
particular topology. Granting and revocation of access occur
implicitly when befriending and defriending actions alter the
topology of the social graph. We adapt POPA to the context of
FSNSs, and devise below a formulation of POPA that prevents
Sybil attacks:

Every action (e.g., befriending or defriending) that
could cause an unprivileged subject to eventually
gain access must be initiated by (i.e., have the
consent of) a subject who already has access.

To see how POPA prevents Sybil attacks, note that both the
attacker’s original account and the new accounts she creates
lack the privilege to access the target profile item. Actions
initiated solely within this group of user accounts, according
to POPA, could never cause any of them to eventually gain
access. To gain access, they need the consent of users who
already possess the required access. (This informal argument
connecting POPA to Sybil attack prevention will be made
formal in Section IV-C.)

D. Our Approach
Promising as it is, the above statement of POPA leads to

two intellectual challenges. First, what precisely do we mean

265

when we say “an action causes a subject to eventually gain
access.” How does one formalize such a notion of causality,
which is foundational to POPA itself? Second, how does one
design or configure a FSNS to ensure it realizes POPA? To
the very least, is there a way for us to validate that an FSNS
is POPA compliant? The main contributions of this work
are concrete means to address these two challenges. We will
capture causality by a noninterference-style formulation of
POPA, and devise a static analysis to check if a given FSNS
design or configuration is POPA compliant. Specifically, our
plan is the following:

1) We will formalize POPA as a noninterference-style
property [1], [2] of the set of execution traces of a given
FSNS (i.e., a run-time property).

2) We will identify a structural property that can be im-
posed on the policy vocabulary of the FSNS to guarantee
POPA (i.e., a static property).

3) We will prove a soundness result: If the policy vocab-
ulary satisfies the static property in Step 2, then the set
of execution traces generated by the FSNS will satisfy
the run-time property of Step 1.

III. MODELLING FSNSS

This work is built on a formal model of FSNSs and a theory
of FSNS policies that were previously proposed in [7], [8]. In
the following, we review, adapt and extend these results.

A. Basic Notations
We write B to denote the set {0, 1} of Boolean values. Given

a set S, 2S is the power set of S, [S]k is the set of all size-
k subsets of S, and, when S is finite and non-empty, G(S)
is the set of all simple graphs with S as the vertex set (i.e.,
G(S) = { �S,E� | E ⊆ [S]2 }). Given e ∈ [V (G)]2, we write
G + e to denote the graph �V (G), E(G) ∪ {e}�. We write
G1 ⊆ G2 whenever graph G1 is a subgraph of graph G2 (i.e.,
V (G1) ⊆ V (G2) and E(G1) ⊆ E(G2)). We also write G1 ∪
G2 to denote the graph �V (G1) ∪ V (G2), E(G1) ∪ E(G2)�.
Fixing a vertex set V , we write G∅ for the empty graph �V, ∅�.
A vertex set V is a vertex cover of an edge set E iff V ∩e �= ∅
for every e ∈ E.

B. A Model of FSNSs
1) Policies: Fixing a set Sub of users, we model a policy

as a predicate (i.e., a Boolean function) with the signature
Sub × Sub × G(Sub) → B. Given a profile owner u ∈ Sub,
a profile accessor v ∈ Sub, and the current social graph G ∈
G(Sub), a policy predicate returns a Boolean value indicating
if access should be authorized.

Example 2. The policy predicates distk, cfk and cliquek are
defined as follows: distk(u, v,G) holds whenever there is a
path of length k or less between u and v in G; cfk(u, v,G)
holds iff either dist1(u, v,G) or else u and v share at least
k distinct common friends in G; cliquek(u, v,G) holds iff
either u = v or else u and v belong to a common clique
of size k in G. We write me, friend and fof as shorthands
for dist0, dist1 and dist2 respectively. We also write � and ⊥

to denote the constant predicates that always return true and
false respectively.

We write PP(Sub) to denote the set of policy predicates
sharing the signature Sub × Sub × G(Sub) → B.

2) Systems: An FSNS (or simply a system) N is a triple
�Sub,PV ,Pol�. The first component, Sub, is a finite set
of users1. The second component, PV , called the policy

vocabulary, specifies the set of legitimate policy predicates
supported by the FSNS. Let PT be the set {sch, tra, acc}
of identifiers denoting the three types of policies (i.e., search,
traversal and access). PV : PT→ 2PP(Sub) is a family of
policy sets indexed by the three policy types. Specifically,
PV (acc) is the set of policy predicates that a user can
legitimately use as an access policy, and the interpretation of
PV (sch) and PV (tra) is similar. Lastly, Pol , representing
the privacy settings of the users, is a function with signature
Sub × PT → PP (Sub), such that Pol(u, t) ∈ PV (t). That
is, Pol(u, sch), Pol(u, tra) and Pol(u, acc) are respectively
the search, traversal and access policy of user u. In this work,
we do not consider acquaintance policies.

3) States: A state of an FSNS is simply a social graph. We
write SN to denote the set G(Sub) of all states of N . In this
work, we do not consider the management aspect of an FSNS,
and thus we do not model user-initiated change of policies.

4) Queries: We model access as queries over states. Specif-
ically, we write the sequent G �N q whenever the social graph
G satisfies the query q. There are two types of query:

q ::= v reads u | v finds u

The sequent “G �N v finds u” holds whenever accessor v
can reach the search listing of owner u in state G of system
N . The sequent “G �N v reads u” holds whenever accessor
v is authorized to access the profile of owner u in state G.
Formally, the sequents are defined as follows:

N = � , ,Pol� Pol(u, sch)(u, v,G)

G �N v finds u
(F-SCH)

u = v

G �N v finds u
(F-SLF)

{u, v} ∈ E(G)

G �N v finds u
(F-FRD)

G �N v finds u� {u�, u} ∈ E(G)
N = � , ,Pol� Pol(u�, tra)(u�, v,G)

G �N v finds u
(F-TRV)

G �N v finds u
N = � , ,Pol� Pol(u, acc)(u, v,G)

G �N v reads u
(R-ACC)

1Rather than modelling a system with an evolving number of users and thus
complicating the model unnecessarily, we fix the number of users in a system.
User addition could be seen as certain dormant users becoming active. User
removal can be modelled in the opposite way.

266

In each of the queries “v reads u” and “v finds u”, we call
v the accessor of the query. Given query q, we write q(v)
to denote the query obtained from q by substituting v for the
accessor of q. For example, if q is “v reads u”, then q(v�)
is the query “v� reads u”. Accessor substitution constructs a
query that exercises the same right as the original query, but
now the right is exercised by a different user.

5) Transitions: There are only two types of transitions:
befriending and defriending, identified respectively by tran-

sition identifiers of the forms e and e, where e is the edge
in the social graph affected by the transition. A befriending
transition, identified by e, requires the consent of both parties
involved. A defriending transition, identified by e, can be
initiated unilaterally by either end of the edge e. Let TN be
the set of all transition identifiers.

The transition relation · ·−−→N · : SN × TN ×SN is defined
as follows:

G
e−−→N G+ e if e �∈ E(G)

G
e−−→N G− e if e ∈ E(G).

Notice that befriending is unmediated, meaning that everyone
can befriend everyone else. It is no longer necessary to reach
the search listing of the target user and seek authorization by
her acquaintance policy in order to initiate befriending (see
Section II-A). We call this simplifying assumption Unmedi-

ated Befriending.
6) Traces: A finite sequence from (TN)∗ is called a trace.

We generalize the transition relation to traces. Specifically,
we write G

�−−→N G, and, given τ,π ∈ (TN)∗, we write
G

τ ·π−−−→N G� whenever G
τ−−→N G�� and G�� π−−→N G�

for some social graph G��. A trace τ is feasible in G iff
G

τ−−→N G� for some G�. This feasible trace τ establishes q
in G whenever “G� �N q” holds but “G �N q” does not.

7) Discussion: We have significantly simplified the FSNS
model previously proposed in [7], [8]. The simplifications,
which are summarized below, have been instrumental in mak-
ing the results in this work feasible.

• A policy predicate is parameterized only by the owner,
the accessor and the social graph. The model in [7], [8]
allows a limited form of history information to affect
authorization decisions.

• All policies (i.e., traversal, search, and access) are fixed:
i.e., the privacy settings of users remain constant at run-
time. The model in [7], [8] captures the management
aspect of the access control system, and thus the change
of policies at run time.

• We use a single access policy to protect the entire
profile, thereby removing the need to track a different
access policy for each profile item. Extending the theory
to handing multiple profile items is a straightforward
exercise [7], [8].

• The only user actions in the model are befriending and
defriending. The model in [7], [8] permits a more com-
plex consenting protocol. Furthermore, the two actions

are atomic. Specifically, we model the multi-step protocol
of obtaining consent as a single transition in our model.

• Befriending is unmediated: everyone can befriend every-
one else.

C. A Theory of Policies
Recall that a policy predicate is a member of PP(Sub), the

set of predicates with the signature Sub × Sub × G(Sub) →
B. Fong et al. [7], [8] provided characterization of certain
families of policy predicates. These results are reviewed here.
We begin with the notion of birooted graphs, on which these
characterization results are based.

Definition 3. A birooted graph G(u,v) is a triple �G, u, v�
such that G is a simple graph and u, v ∈ V (G). The roots u
and v need not be distinct. We write B(S) = {G(u,v) | u, v ∈
S, G ∈ G(S)} to denote the set of all birooted graphs with
vertex set S.

G�
(u,v) is a (birooted) subgraph of G(u,v), written as

G�
(u,v) ⊆ G(u,v), iff G� is a subgraph of G. (Note the matching

roots.) We say that G(u,v) and G�
(u�,v�) are isomorphic iff

there exists a graph isomorphism φ : V (G) → V (G�)
between G and G�, such that φ(u) = u� and φ(v) = v�.
In this case we write G(u,v)

∼= G�
(u�,v�). We also write

G�
(u�,v�) � G(u,v) whenever there is a birooted graph G��

(u,v)

such that G��
(u,v) ⊆ G(u,v) and G�

(u�,v�)
∼= G��

(u,v).
Other than the above cases, when we apply graph-theoretic

languages to birooted graphs, we are essentially referring to
the underlying simple graphs.

Not all policies are equal. Some exhibit characteristics that
are security relevant.

Definition 4. A policy P is monotonic iff G(u,v) ⊆ G�
(u,v)

implies P (u, v,G) ⇒ P (u, v,G�). Policy P is topology-based

iff G(u,v)
∼= G�

(u�,v�) implies P (u, v,G) = P (u�, v�, G�).
Policy P is positive iff it is both monotonic and topology-
based.

With a monotonic policy, adding edges to the social graph
never diminishes accessibility. Similarly, removing edges from
the social graph never increases accessibility. With a topology-
based policy, topologically equivalent access scenarios, rep-
resented by isomorphic birooted graphs, produce identical
authorization decisions. In short, the individual identity of the
users involved are not considered in the authorization decision.
A topology-based policy therefore expresses a graph-theoretic
relation between two vertices.

Example 5. All policy predicates in Example 2 are monotonic,
topology-based and positive.

There are alternative ways to characterize monotonic and
positive policies.

Definition 6. Let B ∈ B(Sub) be a set of birooted graphs.
The policy monotonically induced by B is the predicate PM

B
for which

PM
B (u, v,G) iff ∃G�

(u,v) ∈ B . G�
(u,v) ⊆ G(u,v)

267

The policy positively induced by B is the predicate P+
B for

which

P+
B (u, v,G) iff ∃G�

(u�,v�) ∈ B . G�
(u�,v�) � G(u,v)

The following theorem provides an alternative characteriza-
tion to policies that are respectively monotonic and positive.

Theorem 7. Every monotonic (resp. positive) policy predicate
is monotonically (resp. positively) induced by a set of birooted
graphs. The minimal set of birooted graphs to monotonically
(resp. positively) induce a given predicate P is defined to be
the set B for which there exists no proper subset of B that
also monotonically (resp. positively) induces P . This minimal
set does not contain a pair of distinct birooted graphs G(u,v)

and G�
(u�,v�) such that G(u,v) ⊆ G�

(u�,v�) (resp. G(u,v) �
G�

(u�,v�)). Such a minimal set always exists, and is unique
(resp. unique up to birooted graph isomorphism).

The theorem has two versions, one regarding monotonic
policy predicates, the other regarding positive predicates. The
positive version of the theorem has been previously stated and
proved in [8]. The monotonic version is new, and its proof
follows that of the positive version closely.

Example 8. Let Sub = {u0, u1, . . . , un}, where n ≥ 2.
Consider the sets Bdistk , Bcfk , B⊥ and B� to positively induce
distk, cfk, ⊥ and � respectively (assuming 1 ≤ k ≤ n).

1) Bdistk = {Gi
(u0,ui) | 0 ≤ i ≤ k}, where the graph Gi

contains exactly the edges that form the path u0u1 . . . ui.
2) Bcfk = {G∅

(u0,u0), G
�
(u0,u1), G

�
(u0,uk+1)}, where

E(G�) = {{u0, u1}}, E(G�) = {{u0, ui} | 1 ≤ i ≤
k}∪{{ ui, uk+1} | 1 ≤ i ≤ k}.

3) B⊥ = ∅.
4) B� = {G∅

(u0,u0), G
∅
(u0,u1)}

We define policy combinators that allow us to create com-
plex policies from primitive ones (the combinators ∨ and ∧
were defined in [7], [8]; the combinators ◦ and ·�·� are new).

Definition 9. Given policy predicates P , P1 and P2, and
vertex u0, we define the composite predicates P1∨P2, P1∧P2,
P1 ◦ P2 and P �u0� as follows:

(P1 ∨ P2)(u, v,G) = P1(u, v,G) ∨ P2(u, v,G)

(P1 ∧ P2)(u, v,G) = P1(u, v,G) ∧ P2(u, v,G)

(P1 ◦ P2)(u, v,G) = (∃u� ∈ Sub . P1(u, u
�, G) ∧ P2(u

�, v,G))

P �u0�(u, v,G) = (u = u0) ∧ P (u, v,G)

The following proposition is new.

Proposition 10. Suppose policy predicates P , P1 and P2 are
monotonically induced by B, B1 and B2, and u0 is a vertex.
Then P1 ∨P2, P1 ∧P2, P1 ◦P2 and P �u0� are monotonically

induced by the following sets respectively:

B1 ∪ B2 (1)
{(G1 ∪G2)(u,v) | G1(u,v) ∈ B1 ∧G2(u,v) ∈ B2} (2)

{ (G1 ∪G2)(u,v) |
∃u� ∈ Sub . G1(u,u�) ∈ B1 ∧G2(u�,v) ∈ B2 } (3)

{G(u0,v) | G(u0,v) ∈ B} (4)

While the proof of the proposition is elementary, there are
two important corollaries that we will rely on in the sequel.
The first and obvious one is that monotonicity is preserved by
the four combinators. The second corollary is not as direct.
Suppose B, B1 and B2 are not just any sets to monotonically
induce P , P1 and P2, but the minimal ones to do so. Then,
by the proposition above, the minimal sets to monotonically
induce P1 ∨ P2, P1 ∧ P2, P1 ◦ P2 and P �u0� are respectively
subsets of the four sets identified above. This, in turn, means
that we know the “shape” of the members of the minimal
sets to monotonically induce the four composite policies. For
example, every member of the minimal set to monotonically
induce P1 ∧ P2 must be of the form (G1 ∪G2)(u,v), where
G1(u,v) and G2(u,v) are respectively members of B1 and B2.

IV. POPA FORMALIZED

We follow a two-step plan to devise a formal statement
of POPA. First, we will define the notion of “reduction”,
which allows us to “blame” certain transitions in a trace as
the causal enablers of access granting. Second, we will define
the notion of “rationalization”, which allows us to “explain”,
after the fact, how authority is conferred among the causal
enablers identified above, ultimately leading to the granting
of access. POPA is then expressed as a statement asserting
that it is possible to explain authority conferral among the
causal enablers in such a way that only privileged users may
confer privilege to unprivileged users. Lastly, we demonstrate
that this definition of POPA eliminates Sybil attacks.

In this section and in the rest of this paper, we will make
the following assumption.

Assumption 11 (Monotonicity). All policy predicates consid-
ered are monotonic.

In particular, this implies that each of PV (sch), PV (tra)
and PV (acc) contains only monotonic policies. Proposition
10 guarantees that policies constructed out of the policy vo-
cabulary using the policy combinators will remain monotonic.

A. Reduction

In a trace that establishes access, not every transition in the
trace is causally relevant to the eventual granting of access.
We want to be able to identify those that are relevant, and
impose on them constraints regarding conferral of privileges.
To this end, we define a notion of reduction in the style of
noninterference.

268

Definition 12. Suppose τ establishes q in G. A subsequence2

π of τ is a (G, q)-reduction (or simply a reduction) of τ
iff π also establishes q in G. Trace τ is minimally (G, q)-
reduced (or simply minimally reduced) iff τ is the only (G, q)-
reduction of itself. We call π a minimal (G, q)-reduction (or
simply minimal reduction) of τ if π is a (G, q)-reduction of
τ that is minimally (G, q)-reduced.

By definition, reducibility is reflexive, transitive and anti-
symmetric. That is, reduction imposes a partial ordering over
the set of traces.

Intuitively, a reduction π is a “simplified” version of τ ,
with the transitions inessential for establishing q removed.
A minimal reduction of τ is a reduction π that does not
contain another reduction as a proper subsequence. That is,
it contains the transitions that are essential for establishing
q. These transitions are considered to have “caused” q to be
established. Note that a feasible trace may have more than one
minimal reductions. Under Assumption 11 (Monotonicity), the
following observation can be made.

Proposition 13. Every transition of a minimally reduced trace
is a befriending transition (i.e., with a transition identifier e).

In short, defriending is never necessary for establishing
access when all policies are monotonic. By the observa-
tion above, a minimal reduction of length n has the form
e0e1 . . . en−1.

Under the assumption of Unmediated Befriending, every
user can befriend every other user at will (so long as consent
is granted by the other party). A consequence is the following
observation, which can be proved easily by contradiction.

Proposition 14. Every permutation of a minimally reduced
trace is also feasible and minimally reduced.

B. Rationalization
We define what it means for a minimally reduced trace to

properly observe the requirement of POPA.

Definition 15. Suppose τ = e0e1 . . . en−1 is a minimally
(G, q)-reduced trace for system N . Then τ is admissible

whenever:
1) G = G0

e0−−→N G1
e1−−→N . . . Gn−1

en−1−−−−→N Gn =
G�� for some social graph G�� ∈ SN , and

2) there is a sequence of vertices v0, v1, . . . , vn−1 such
that vi ∈ ei and Gi �N q(vi) for 1 ≤ i < n. Note that
the sequence may contain repeated vertices.

A trace π satisfying requirements 1 and 2 above establishes
q in a principled manner. Since befriending transition ei
furthers the establishment of q, we interpret the addition of ei
as a privilege conferral event. In accordance with the intuition
of POPA, such a privilege conferral event must be initiated
by someone who already possesses the conferred privilege.
As a befriending action ei is jointly initiated by both ends

2E.g., acb is a subsequence of abcba. As special cases, every sequence
is its own subsequence, and the empty sequence is a subsequence of every
sequence.

of the edge, we therefore require that one of its ends (i.e.,
vi ∈ ei) to already possess the conferred privilege. That is,
we require that, in the state Gi in which the privilege is
conferred, the initiator above already possess the privilege:
i.e., Gi �N q(vi). The sequence π therefore honors POPA in
the way it incrementally establishes q.

According to Proposition 14, every permutation of a mini-
mally reduced trace is also minimally reduced, and thus every
such permutation also establishes the query in question. Some
of these permutations may be admissible.

Definition 16. Suppose τ is a minimally (G, q)-reduced trace.
Then a permutation3 π of τ is a rationalization of τ whenever
π is admissible.

If a minimally reduced trace has a rationalization, it means
that we can explain, after the fact, by rearranging the transi-
tions in the trace, how privilege could have been incremen-
tally conferred in accordance to POPA. Not every minimally
reduced trace has a rationalization.

Definition 17. A system N is POPA-compliant iff, for every
G ∈ SN , every query q of the form “v reads u”, and every
τ ∈ (TN)∗ that establishes q in G, it is the case that every
minimal (G, q)-reduction of τ has a rationalization.

Note that POPA compliance is not a property of individual
traces, but rather an assertion regarding the correlation of
traces generated by the system (i.e., “if such a trace is
feasible then such other traces are also feasible” [23]). It
employs a noninterference-style condition [1], [2] to filter
away inessential transitions in a given trace, and then assert
the existence of an explanation of how individual transitions
could have been arranged such that at least one initiator of
each transition is authorized for access when the transition
occurs.

C. Sybil Attack Prevention

POPA compliance is a strong condition: it requires every
conferral of privilege to be initiated by a user possessing the
conferred privilege. An interesting question is whether such a
strong requirement is actually necessary for preventing Sybil
attacks. Intuitively, to prevent Sybil attacks, all we need is
that a group of unprivileged users cannot collude to gain
privilege (Section II-B). That is, the establishment of privilege
requires the cooperation of at least one privileged user. In the
following, we demonstrate that the two conditions are in fact
equivalent, and thus POPA compliance is not only sufficient
but also necessary for preventing Sybil attacks.

The following scenario constitutes a Sybil attack in system
N = �Sub,PV ,Pol�. Suppose q is a query of the form
“v reads u”, G ∈ SN is a state in which G �N q does
not hold, and τ ∈ (TN)∗ is a trace that establishes q in G.
Under Assumption 11, defriending transitions in τ are not
significant. We focus on the befriending transitions. A Sybil

3E.g., bcad is a permutation of abcd. As a special case, every sequence is
a permutation of itself.

269

attack has occurred if, for every befriending transition e in τ ,
and every initiator v� ∈ e, G �N q(v�) does not hold. That is,
none of those contributing to the establishment of q possesses
the established privilege in the initial state G. The following
definition captures the condition under which a system is not
susceptible to Sybil attacks.

Definition 18. A system N = �Sub,PV ,Pol� is Sybil free iff
the following holds: For every query q of the form “v reads u,”
for every state G ∈ SN in which G �N q does not hold, and
for every trace τ ∈ (TN)∗ that establishes q in G, there exists
a befriending transition e in τ , with an initiator v� ∈ e, such
that G �N q(v�).

Intuitively, the condition above requires that every trace that
establishes a privilege must contain a transition initiated by a
user who possesses the privilege before the trace is executed.
That is, it is impossible for a group of users who do not possess
a privilege to collude and cause one of them to gain privilege.

Theorem 19. A system is Sybil free iff it is POPA compliant.

This result is surprising, because POPA compliance is
apparently stronger than Sybil freedom. Yet it turns out that the
two are equivalent. This means POPA compliance is the not
only sufficient for preventing Sybil attacks, but also necessary.
As such POPA compliance gives us a tight condition for Sybil
attack prevention.

Proof: Let N = �Sub,PV ,Pol� be the system in
question. We begin with the “if” direction. Suppose N is
POPA compliant. Consider a query q of the form “v reads u”,
a state G ∈ SN such that G �N q does not hold, and a
trace τ ∈ (TN)∗ that establishes q in G. POPA compliance
(Definition 17) guarantees that there exists a rationalization
π for every minimal (G, q)-reduction of τ . We know that π
contains at least one transition, and that every transition in π
is a befriending transition (Proposition 13). Let e be the first
transition in π. Now, e also occurs in τ , and by Definition 15
we know G �N q(v�) for some initiator v� of e. Therefore, N
is Sybil free.

We now prove the “only-if” direction. Suppose N is Sybil
free. Consider a query q of the form “v reads u”, states
G,G� ∈ SN , and a trace τ ∈ (TN)∗ such that G τ−−→N G�.
Suppose further G �N q does not hold but G� �N q does.
Let π be any minimal (G, q)-reduction of τ . Our goal is
to construct a rationalization π� for π. We describe in the
following an inductive procedure for constructing π�.

We begin with the base case, in which π contains only one
transition e0. Sybil freedom guarantees that one of the initiator
v0 ∈ e0 is such that G �N q(v0). Thus we can simply take
π� = π to satisfy the requirement of admissibility (Definition
15).

In the induction step, consider π = e0e1 . . . en−1, for some
n > 1, such that:

G = G0
e0−−→N G1

e1−−→N . . . Gn−1
en−1−−−−→N Gn = G��

for some social graph G�� ∈ SN . Sybil freedom guarantees
that there exists a transition ei, 0 ≤ i < n, such that one of

its initiators vi ∈ ei satisfies G �N q(vi). Let π = π1eiπ2 for
some π1,π2 ∈ (TN)∗. Now consider the trace π� = eiπ1π2

obtained by moving ei to the front of the sequence, leaving
all the other transitions as is. By Proposition 14 the trace π�

is also a minimal (G, q)-reduction. Suppose

G
ei−−→N G� π1π2−−−−→N G��

We know that G� �N q does not hold, or else π� would not
have been a minimally reduced trace. This means π1π2 is also
a minimal (G, q)-reduction. By induction, we can construct a
rationalization π� of π1π2. We take π� = eiπ� to be the desired
rationalization of π.

V. A STATIC ANALYSIS

POPA compliance is a property of the set of feasible traces
generated by an FSNS. As such it is a dynamic property. Our
goal in this section is to devise a static analysis so that one can
ascertain that a given FSNS is POPA compliant without having
to examine all feasible traces of the system. To this end we
will formulate a static property regarding the policy vocabulary
of an FSNS. We will establish a soundness theorem, which
asserts that, if an FSNS has a policy vocabulary conforming
to the said static property, then the system is POPA compliant.
One does not generally expect such a static property to be
complete: i.e., every POPA-compliant system possesses such
a static property. To our surprise, the static property we are to
formulate is indeed complete.

A. Assumptions
In this section, we target our analysis on the last line of

defence of an FSNS: the access policies. This means we do
not consider Stage-I Authorization to be a proper component
of access authorization, but rather, merely as an idiosyncratic
means for, say, protecting the privacy of the users’ friend
lists. This narrowing of focus is captured in the following
assumption.

Assumption 20 (Unmediated Access). PV (sch) = {�}.

With this assumption, the only search policy that can be
adopted will be �. That is, global name search will always
succeed. The effect is that profile access is now guarded only
by the access policy, but not by the reachability of the owner’s
search listing, because the search listing is now rendered
always reachable. Essentially, we are replacing (R-ACC) by
the following inference rule:

N = � , ,Pol� Pol(u, acc)(u, v,G)

G �N v reads u
(R-ACC−)

The significance of this assumption can be understood in
terms of constraining the scope of “blaming”. Recall that
POPA compliance is defined in terms of reduction, which is a
means for discarding from consideration the set of transitions
that do not contribute to the establishment of access. By
removing from (R-ACC) the precondition of reaching the
owner’s search listing, we are essentially refusing to “blame”

270

a transition if it contributes only to making the owner’s search
listing reachable, but not to satisfying the owner’s access
policy.

B. The Substructure Property

We state the Substructure Property, which can be employed
as the basis for a static analysis that verifies if a given FSNS
is POPA compliant.

Definition 21. Suppose N = �Sub,PV ,Pol� is an FSNS, and
B is the minimal set of birooted graphs to monotonically in-
duce a predicate P ∈ PP(Sub). Then P has the Substructure

Property (SP) at u ∈ Sub iff the following holds:
For every G(u,v) ∈ B, there exists a non-empty, finite
sequence of distinct vertices v0, v1, . . . , vn = v from
Sub, and a corresponding sequence of graphs G0,
G1, G2, . . . , Gn = G from G(Sub), such that, for
0 ≤ i ≤ n, we have: (a) Gi ⊆ G, (b) Gi(u,vi)

is a member of B, and (c) the vertex set Vi is a
vertex cover for E(Gi), where V0 = ∅, and Vi =
{v0, . . . , vi−1} for 1 ≤ i ≤ n.

We say that P has SP iff P has SP at every u ∈ Sub.

Definition 22. An FSNS N = �Sub,PV ,Pol� has SP iff, for
every u ∈ Sub, the policy predicate Pol(u, acc) has SP at u.

In the sequel, we will show that an FSNS that has SP is
also POPA compliant, meaning that SP can serve as a static
analysis for verifying POPA compliance. In practice, it would
be inefficient to verify SP at every vertex, as the number of
users can be very large. The following corollary prescribes
a more tractable procedure for static analysis: one examines
the policy vocabulary of the system rather than the individual
privacy settings of users.

Corollary 23. An FSNS N = �Sub,PV ,Pol� has SP if every
policy predicate in PV (acc) has SP.

Note that the procedure above checks whether each access
policy as a whole has SP, rather than checking if some access
policy has SP at a specific vertex. Still, checking whether
a monotonic predicate has SP can be tedious, as there are
potentially many birooted graphs to consider in the minimal
set to monotonically induce the predicate. Fortunately, if a
policy is positive, then checking can be performed much more
efficiently, as there are usually only a few birooted graphs to
consider.

Corollary 24. Suppose N = �Sub,PV ,Pol� is an FSNS, and
B is the minimal set of birooted graphs to positively induce
a predicate P ∈ PP(Sub). Then P has SP iff the following
holds:

For every G(u,v) ∈ B, there exists a non-empty, finite
sequence of distinct vertices v0, v1, . . . , vn = v from
Sub, and a corresponding sequence of graphs G0,
G1, G2, . . . , Gn = G from G(Sub), such that, for
0 ≤ i ≤ n, we have: (a) Gi ⊆ G, (b) Gi(u,vi) is
isomorphic to a member of B, and (c) the vertex set

Vi is a vertex cover for E(Gi), where V0 = ∅, and
Vi = {v0, . . . , vi−1} for 1 ≤ i ≤ n.

As we saw in Section III-C, birooted graphs could be
used as a policy language for specifying the minimal set of
“patterns” to positively induce a policy predicate. Corollary
24 is therefore the preferred form to use when the static
analysis in Corollary 23 is to be performed. Note, however,
the definition of SP is based on the more primitive notion of
monotonic policies (instead of positive policies). As we shall
see in the sequel, this minimalist approach will pay dividend
when we work with policy predicates that are monotonic but
not topology based.

Example 25. Let Sub = {u0, u1, . . . , un}. The following are
examples and counter-examples of SP.

1) The predicate distk has SP. To see this, recall from
Example 8 that the minimal set to positively induce distk
is Bdistk = {Gi

(u0,ui) | 0 ≤ i ≤ k}, where the graph Gi

contains exactly the edges that form the path u0u1 . . . ui.
For each Gi

(u0,ui), the vertex sequence u0, u1, . . . , ui

and graph sequence G0, G1, . . . , Gi satisfy the require-
ments of Corollary 24.

2) Predicate cfk has SP. Recall from Example 8 that
the minimal set to positively induce cfk is Bcfk =
{G∅

(u0,u0), G
�
(u0,u1), G

�
(u0,uk+1)}, where G� and G�

are defined in Example 8. For G�
(u0,uk+1), the three

requirements of Corollary 24 are satisfied by the ver-
tex sequence u0, u1, . . . , uk+1 and the graph sequence
G0, G1, . . . , Gk+1, where G0 = G∅, Gk+1 = G�, and
Gi = �Sub, {{u0, ui}}� for 1 ≤ i ≤ k.

3) The topology-based policies used in Facebook, including
⊥, me, friend, fof and �, have SP. To see this, note that
me, friend and fof are but shorthands for distk policies,
and ⊥ and � have SP by virtue of Proposition 27.1.

4) The policy predicate cliquek does not have SP at u for
every u ∈ Sub, nor does the policy in Figure 1

The following observation is immediate.

Lemma 26. In Definition 21, G0 is an empty graph.

Additional facts about SP are the following:

Proposition 27. The following statements hold:
1) Both constant policies � and ⊥ satisfy SP.
2) If P1 and P2 both have SP (at u), then P1∨P2 also has

SP (at u).
3) If P has SP (at u), then P �u0� has SP (at u).

The proof of this proposition can be found in the companion
technical report [24]. Statement 1 gives boundary examples of
SP. Statements 2 and 3 offer ways to compose complex SP-
satisfying policies from simpler ones. There are two versions
to each of Statements 2 and 3: one with the “at u” clauses,
the other without. Note that SP is not preserved by ∧ and ◦.

C. Soundness and Completeness
The connection between POPA as dynamic property and SP

as a static analysis is captured in a pair of theorems: Soundness

271

and Completeness. We begin with the main result of this work:

Theorem 28 (Soundness). If an FSNS has SP, then it is POPA
compliant.

The soundness theorem allows us to examine the privacy
settings of an FSNS, or more often its policy vocabulary
(Corollary 23), to determine if the system is POPA compliant.

Proof: Suppose the FSNS N = �Sub,PV ,Pol� has SP.
We show that N is POPA compliant.

Consider a social graph G ∈ SN , vertices u, v ∈ Sub, and
a query q of the form “v reads u”. Let P = Pol(u, acc).
Let B be the minimal set of birooted graphs to monotonically
induce P . Now, suppose ¬P (u, v,G), and G

τ−−→N G�

for some trace τ ∈ (TN)∗ and social graph G�, such that
P (u, v,G�). That is, τ establishes q in G. We construct in the
following the rationalization π required by the definition of
POPA compliance (Definition 17).

Because P (u, v,G�) but ¬P (u, v,G), there is at least one
birooted graph G�

(u,v) ∈ B such that G�
(u,v) ⊆ G�

(u,v) but
not G�

(u,v) ⊆ G(u,v). Let E = E(G�)\E(G). That is, E is
a minimal set of edges that can be added to G to establish q.
(The set E is minimal because B is assumed to be minimal.)
The trace τ must contain a subsequence τ � that correspond
to a permutation of the edges in E. The subsequence τ � is a
minimal (G, q)-reduction of τ . In fact, every (G, q)-reduction
τ � of τ corresponds to some permutation of an E constructed
as above from an appropriate choice of G� (in the general case
there may be multiple candidates for G�). Fixing one choice
of G�, E and τ �, we now show that there is a permutation π
of the edges in E that is admissible. This permutation π is a
rationalization of τ �, as required by the theorem.

We construct π as follows. As N has SP, P has SP at
u. Let v0, v1, . . . , vn = v and G0, G1, . . . , Gn = G�

be the vertices and graphs promised by Definition 21. We
start with π being an empty trace. We will go through n+ 1
rounds of construction. In each round, we draw a number of
(possibly zero) edges from E, and add them to the end of π.
Specifically, no edge is selected in round 0. Then, in round i,
i ∈ {1, . . . , n}, an edge e is selected from E iff one end of e
is vi−1, and the other end of e is one of vi, . . . , vn. Multiple
edges may be selected in the same round. In such a case, we
add the edges to the end of π in any arbitrary order. Note that
every edge from E is selected in exactly one round. Thus all
edges in E will have been added into π by the end of the
n+ 1 rounds.

We argue that π is admissible. Let πi be the trace we have
constructed by the end of round i. This trace πi is feasible
in state G, as every transition in πi is a distinct befriending
transition e where e is by construction absent from E(G).
Suppose G πi−−−→N G�

i for some social graph G�
i . We claim that

P (u, vi, G
�
i) is an invariant for the construction process. We

prove this claim by first considering the case for i = 0. Since
G�

0 is obviously a supergraph of the empty graph, monotonicity
and Lemma 26 guarantees that P (u, v0, G

�
0) holds. We now

consider the case when i > 0. By monotonicity, the claim
holds if Gi ⊆ G�

i . By SP, the vertex set {v0, . . . , vi−1} is a

vertex cover of E(Gi). This means every edge in Gi either (a)
is already in G, or (b) has already been added into πi in round i
or earlier. We thus have Gi ⊆ G�

i . So the claim holds. Now, we
use the invariant to prove admissibility. Let e be an arbitrary
befriending transition in π, and let i be the round in which e
is added into π. We know i > 0 because no edge is selected in
round 0. By construction, one end of e is vi−1. We know from
the invariant that P (u, vi−1, G

�
i−1). When π is executed from

G, in the social graph G� immediately before e is added, we
shall have P (u, vi−1, G�) by monotonicity (because G�

i−1 ⊆
G�). Admissibility of π is therefore guaranteed.

The second theorem to connect SP to POPA compliance is
the completeness theorem.

Theorem 29 (Completeness). If an FSNS is POPA compliant,
then it has SP.

Completeness asserts that the static analysis corresponding
to SP is precise, in the sense that it does not miss out any
opportunity to declare a system to be POPA compliant.

Proof: Suppose the FSNS N = �Sub,PV ,Pol� is POPA
compliant. We show that N has SP. That is, we show that, for
every user u ∈ Sub, the policy predicate Pol(u, acc) has SP
at u.

Let P be Pol(u, acc) for some arbitrary u ∈ Sub. Let B
be the minimal set of birooted graphs to monotonically induce
P . Consider an arbitrary member G(u,v) in B. We construct
for G(u,v) the sequences v0, v1, . . . , vn = v and G0, G1, . . . ,
Gn = G as required by Definition 21.

If G is an empty graph, then the sequence can be constructed
trivially by taking n = 0.

Suppose G contains at least one edge. Let q be the query
“v reads u”. Because P is monotonic, and B is minimal,
we know that no proper subgraph G� of G0 can satisfy
P (u, v,G�). Therefore, we have G �N q but not G∅ �N q. Let
τ be a trace such that G∅ τ−−→N G. The definition of POPA
compliance (Definition 17) guarantees that every minimal
(G, q)-reduction of τ has a rationalization. It is always possible
to select τ so that τ is that rationalization.

Let τ = e0e1 . . . em−1, where m ≥ 1. Definition 15,
together with the choice of v and G, guarantee the existence
of the vertex sequence u0, u1, . . . , um−1, um = v, and the
graph sequence G∅ = G�

0, G�
1, . . . , G�

m−1, G�
m = G such

that G�
i �N ui reads u for 0 ≤ i ≤ m. Note that the above

vertex sequence may contain repeated occurrences of the same
vertex, but the vertex v occurs exactly once as the last vertex
of the sequence (because τ is minimally reduced).

We construct in the following the sequence of distinct
vertices v0, v1, . . . , vn required by Definition 21. Suppose
there are n + 1 distinct vertices in the sequence u0, u1, . . . ,
um−1, um (we know that n ≥ 1, because um is distinct from
each of u0, . . . , um−1 and thus the sequence u0, u1, . . . ,
um−1, um contains at least two distinct vertices). We set vi
to be uj such that uj is the i’th vertex to occur for the first
time in the sequence. For example, if the sequence u0, u1, . . . ,
um is a, a, c, a, b, c, a, d, then v0 = a, v1 = c, v2 = b, and
v3 = d. This choice is also consistent with the requirement

272

that vn = v. Let G�
i be the graph G�

j such that j is the
smallest index for which vi = uj . Observe that the vertex
set Vi = {v0, . . . , vi−1} is a vertex cover for E(G�

i). This
is because Definition 15 guarantees that every edge in G�

i is
added by a befriending transition initiated by some vertex in
Vi. Since P is monotonically induced by B, there is a birooted
graph Gi(u,vi) ∈ B such that Gi ⊆ G�

i ⊆ G. The vertex set
Vi must therefore be a vertex cover for Gi as well.

Notice that the static analysis corresponding to Corollary
23, which examines the policy vocabulary rather than the
actual access policies, is conservative (i.e., incomplete). A
system with a policy vocabulary that contains SP-violating
policies, can be POPA compliant so long as none of those SP-
violating policies are actually adopted as access policies. In
practice, however, Corollary 23 is the appropriate means for
static analysis, as a system designer cannot anticipate which
of the policies in the vocabulary are actually adopted.

The formulation of SP presented in this Section is very
general, accommodating even policies that are not natural. The
companion technical report [24] identifies a class of natural
policies that we call proper policies. The report documents
additional results regarding this class, including an alternative
characterization of SP that is more convenient to use when the
policies in question are proper.

Before we move on, the reader should be reminded that
the results presented in this section apply only to an FSNS
under Assumption 20. This means the results apply when we
do not “blame” transitions in a trace that are responsible solely
for enabling reachability of the owner’s search listing, but not
responsible for satisfying the owner’s access policy.

VI. MEDIATED ACCESS

In this section, we relax Assumption 20 (Unmediated Ac-
cess), and devise a static analysis for the full model presented
in Section III. That is, we use (R-ACC) rather than (R-
ACC−) to model access, and we no longer assume that
PV (sch) = {�}. Consequently, Stage-I authorization comes
into full effect. In order to access the profile of user u, the
accessor v must first reach the search listing of u. That is, the
query “v finds u” must be satisfied in order for access to be
granted.

Incorporating Stage-I authorization into the analysis
amounts to widening the scope of “blaming”. Befriending
transitions that establish the reachability of the owner’s search
listing, but otherwise play no role in satisfying the owner’s
access policy, are also “blamed” for enabling access. An
important contribution of this section is to point out the
analytical complexities and anomalies that could arise from
this widening of “blaming” scope.

Let us formulate a high-level strategy of adapting the
analysis of the previous section to this more general situation.
A key observation is that, once the system N is fixed, the
sequent “G �N v finds u”, as defined by the inference
rules (F-SCH), (F-SLF), (F-FRD) and (F-TRV), induces a
policy predicate that takes an owner u, an accessor v and
a social graph G, and returns a boolean value indicating

reachability. Denote this predicate by Pfinds. (Note that Pfinds
is monotonic but unlikely to be topology based, as each user
may adopt a different search and traversal policy. This is
one of the reasons our previous analyses are formulated in
terms of monotonic rather than positive policies.) By (R-
ACC), the sequent “G �N v reads u” holds whenever the
policy predicate Pfinds∧Pol(u, acc) is satisfied by u, v and G.
This is equivalent to the set-up in which Unmediated Access
is assumed (i.e., (R-ACC−)), but the access policy of u is
Pfinds ∧Pol(u, acc) instead. In other words, if one can show,
through an appropriate static analysis, that Pfinds∧Pol(u, acc)
has SP at u, for each u ∈ Sub, then Theorem 28 guarantees
that the system N is POPA compliant. In addition, Theorem
29 guarantees that this analysis is precise. This is the approach
to be taken in this section.

Corollary 30. Suppose N = �Sub,PV ,Pol� is an FSNS.
Then N is POPA compliant iff the policy predicate (Pfinds ∧
Pacc) has SP, where the predicate Pfinds(u, v,G) holds when-
ever G �N v finds u, and the predicate Pacc is defined as
follows:

Pacc =
�

u∈Sub

Pol(u, acc)�u� (5)

There are two subproblems involved in assessing whether
(Pfinds ∧ Pacc) has SP. The first is to express Pfinds in terms
of the search and traversal policies of N . In the companion
technical report [24], we formulated a recurrence relation to
facilitate the systematic derivation of Pfinds. In this paper,
due to space limitation, we will derive Pfinds by first prin-
ciple. The second subproblem is to show that the conjunction
(Pfinds∧Pacc) has SP at every u ∈ Sub. Part of the problem has
to do with identifying the condition under which conjunction
preserves SP. It turns out that neither subproblem can always
be solved, meaning that once we begin to “blame” transitions
that are executed solely for the sake of establishing reachability
as causal enablers of access, POPA compliance can no longer
be guaranteed in many cases. In Sections VI-A and VI-B,
we examine two instantiations of our model to illustrate how
the above analytical approach unfolds. We then reflect on the
proper interpretation of negative results in Section VI-C.

A. Traversal Forbidden
The first instantiation of the model that we consider corre-

sponds to the following assumption.

Assumption 31. PV (tra) = {⊥}.

Under this assumption, the only traversal policy that can be
adopted by any user is ⊥. That is, the inference rule (F-TRV)
is essentially rendered inapplicable. An accessor may reach the
search listing of herself, a friend of hers, or someone reachable
via global name search. Therefore, we have the following:

Pfinds = Psch ∨ friend

where
Psch =

�

u∈Sub

Pol(u, sch)�u�

273

That is, the FSNS is POPA compliant if we can demonstrate
that, for every u ∈ Sub, the policy predicate (Psch ∨ friend)∧
Pol(u, acc) has SP at u. By Proposition 27.2, this holds when
both (Psch ∧Pol(u, acc)) and (friend∧Pol(u, acc)) have SP
at u. We know friend has SP. Suppose we know also that
all search and access policies have SP, can we then conclude
that the two conjunctive policies above have SP? In general,
conjunction does not preserve SP. A sufficient condition for
SP to be preserved by conjunction is the following.

Definition 32. Let B1, B2 and B be the minimal sets of
birooted graphs to monotonically induce P1, P2 and P1 ∧ P2

respectively. Suppose further that P1 and P2 both have SP
at u. Then P1 and P2, jointly, are said to have the Shared

Substructure Property (SSP) at u iff the following requirement
holds:

Suppose G(u,v) ∈ Bi is a birooted graph such that
there is a corresponding birooted graph G�

(u,v) ∈ B
for which G(u,v) ⊆ G�

(u,v). (Such a G(u,v) is said
to be realized.) The definition of SP (Definition
21) guarantees the existence of a certain vertex
sequence v0, v1, . . . , vn = v and graph sequence
G0, G1, . . . , Gn = G. It is required that Gj(u,vj)

∈
B for 0 ≤ j < n.

In addition, if P1 and P2 have SP, then we say that they
(jointly) have SSP when P1 and P2 have SSP at u for every
u ∈ Sub.

SSP is a property of an unordered pair of policy predicates.
A few subtleties of the definition shall be highlighted. First, a
birooted graph G(u,v) belonging to either B1 or B2 may not be
contained in a member of B at all. This means that a birooted
graph satisfying P1∧P2 may not contain G(u,v) as a birooted
subgraph. Those that do are the ones that are “realized”,
and those are the ones that further requirements are imposed.
Second, say G(u,v) belongs to one of B1 or B2. Because P1

and P2 have SP at u, the definition of SP guarantees that there
is a vertex sequence v0, v1, . . . , vn = v and graph sequence
G0, G1, . . . , Gn = G that satisfy requirements (a), (b) and
(c) of Definition 21. We now demand that the birooted graph
Gj(u,vj)

is not only a member of Bi (as required by Definition
21(b)), but also a member of B, the minimal set of birooted
graphs to monotonically induce P1 ∧ P2. This is demanded
only for 0 ≤ j < n, meaning that we do not demand G(u,v)

to be a member of B.

Theorem 33. If policies P1 and P2 each has SP (at u) and
jointly have SSP (at u), then P1 ∧ P2 has SP (at u).

Note that the theorem asserts two statements. One with the
“at u” clauses present, and the other without. The theorem
states that SP is preserved by conjunction when the two
policies involved have SSP.

Proof: We prove the version of the theorem with the
“at u” clauses. The version without the “at u” clauses follow
immediately.

Suppose P1 and P2 each has SP at u and jointly have SSP
at u. Let B1, B2 and B be the minimal sets of birooted graphs

to monotonically induce P1, P2 and P1∧P2 respectively. Our
goal is to show that P1 ∧ P2 has SP at u.

Consider G(u,v) ∈ B. By Proposition 10, G(u,v) can
be expressed as (G1 ∪G2)(u,v), where G1

(u,v) ∈ B1 and
G2

(u,v) ∈ B2. Note that both G1
(u,v) and G2

(u,v) are realized.
Definition 21 guarantees that there exists, for each i ∈ {1, 2},
a vertex sequence vi0, v

i
1, . . . , v

i
ni

= v and a graph sequence
Gi

0, G
i
1, . . . , G

i
ni

= Gi, such that, for 0 ≤ j ≤ ni, we
have: (a) Gi

j ⊆ Gi, (b) Gi
j(u,vi

j)
∈ Bi, and (c) the vertex

set V i
j is a vertex cover for E(Gi

j), where V i
0 = ∅, and

V i
j = {vi0, vi1, . . . , vij−1} for 0 < j ≤ n.
We now construct the required vertex sequence and

graph sequence for G(u,v). Let U = {v10 , v11 , . . . , v1n1
} ∪

{v20 , v21 , . . . , v2n2
}. (Recall that v1n1

= v2n2
= v.) Let n =

|U |. We construct a vertex sequence v0, v1, . . . , vn as fol-
lows. First, v0, v1, . . . , vn1−1 are simply v10 , v

1
1 , . . . , v

1
n1−1.

Next, vn1 , vn1+1, . . . , vn−1 are the vertices taken from
U\{v10 , v11 , . . . , v1n1

}, in the order they appear in the
vertex sequence v20 , v

2
1 , . . . , v

2
n2

. Lastly, vn = v. We
define the graph sequence G0, G1, . . . , Gn accordingly.
First, the graphs G0, G1, . . . , Gn1−1 are G1

0, G
1
1, . . . , G

1
n1−1.

Next, the graphs Gn1 , Gn1+1, . . . , Gn−1 are those graphs
among G2

0, G
2
1, . . . , G

2
n2−1 that correspond to the vertices

vn1 , vn1+1, . . . , vn−1 selected out of v20 , v21 , . . . , v2n2−1. Lastly,
we set Gn to G. The following can be observed. First,
Gj ⊆ G. This is because Gn = G by construction, and
Gj ⊆ Gi ⊆ G1 ∪ G2 = G for 0 ≤ j < n. Second,
Gj(u,vj)

∈ B. In the case of j = n, Gn = G ∈ B by
construction. In the case of 0 ≤ j < n, since Gi

n is a realized
member of Bi, thus by SSP Gj ∈ B. Third, the vertex set Vj is
a vertex cover for E(Gj), where V0 = ∅, and, for 0 < j ≤ n,
Vj = {v0, v1, . . . , vj−1}. This follows immediately from the
fact that V i

j is a vertex cover of E(Gi
j).

Example 34. Suppose PV (acc) = PV (sch) = {distk | k ∈
N }. (Recall friend is but a shorthand for dist1.) Then every
pair of such policies have both SP and SSP. The accessibility
predicate (Psch ∨ friend)∧Pol(u, acc) has SP at u, for every
u ∈ Sub. By Corollary 30, the FSNS is POPA compliant.

While the instantiation above motivates SSP, the next instan-
tiation illustrates the fact that we do not even need complete
information of Pfinds in order to determine if the system is
POPA compliant.

B. Boolean Traversal Policies
Let us apply our analysis to a slightly more complex FSNS,

through a relaxation of Assumption 31.

Assumption 35. PV (tra) = {⊥,�}.

Under this assumption, a user either allows every user to
examine her friend list, or deny friend list access categorically.
Although Assumption 35 appears to be a minor relaxation of
Assumption 31, we shall see that it results in a major increase
in the complexity of the analysis.

Our first order of business is to obtain a closed form for
Pfinds.

274

Suppose the FSNS is in state G. If there is a path v0v1 . . . vn
in G (n ≥ 0) for which Pol(vi, tra) = � holds for 0 < i ≤ n,
then we say that the path is a �-path from v0 to vn. Note that
we do not require that Pol(v0, tra) = �. Also, a length-zero
path (i.e., n = 0) is always a �-path. The intuition behind the
definition of a �-path is this: if a user can reach the search
listing of v, then that user can further reach the search listing
of u through n applications of (F-TRV) whenever there is a
�-path from u to v. At the heart of the above observation is
that, under Assumption 35, what determines whether v can
traverse through the friend list of u is not the whereabout of
v in relation to u, but the setting of Pol(u, tra) as ⊥ or �.

Define the policy predicate traverse such that
traverse(u, v,G) holds whenever there is a �-path (of
any length) from u to v in G. Note that traverse is a
monotonic predicate. More importantly, since every subpath
of a �-path is also a �-path, it is easy to show that traverse
has SP.

The following closed form for Pfinds can be shown:

Pfinds = traverse ◦ (Psch ∨ friend)

Intuitively, a search listing can be reached by applying one of
(F-SCH), (F-SLF) or (F-FRD), followed by applying (F-TRV)
for zero or more times.

Suppose we know that PV (sch) contains only policies that
have SP, and thus Psch has SP. We still cannot conclude that
Pfinds = traverse ◦ (Psch ∨ friend) has SP because SP is not
preserved by the ◦ combinator. The following example shows
us that in some cases, we may still show that Pfinds has SP,
but this is not true in general.

Example 36. Suppose PV (sch) = {⊥, connected,�},
where the predicate connected holds whenever there is a path
between the owner and the accessor. (Note that connected
has SP.) Consider Pfinds�u�. There are three cases. First,
if there is a �-path from u to a vertex u� for which
Pol(u�, sch) = �, then every user v can reach the search
listing of u by first reaching u� by global name search (which
will always succeed), and then traversing the �-path to reach
u. Therefore, Pfinds�u� = ��u�. Second, if the first case
does not apply, but there is a �-path from u to a vertex
u� for which Pol(u�, sch) = connected, then every user v
which is connected to u� can reach the search listing of u.
But these v are exactly those that are connected to u itself.
Therefore, Pfinds�u� = connected�u�. Third, if neither the first
nor the second case applies, then every vertex u� reachable
from u via a �-path is such that Pol(u�, sch) = ⊥. In
this case, either u� or a friend of u� can reach the search
listing of u. Thus, Pfinds�u� = traverse ◦ friend. In summary,
Pfinds�u� ∈ { (traverse ◦ friend)�u�, connected�u�,��u� }.

Let us consider two instantiations of this FSNS.

1) PV (acc) = {⊥, connected,�}. Then it can be
shown that Pfinds�u� ∧ Pol(u, acc) ∈ { ⊥, (traverse ◦
friend)�u�, connected�u�,��u� } has SP. Thus the
FSNS is POPA compliant.

2) PV (acc) = {distk | k ∈ N}. Then it is possible that
Pfinds�u� ∧ Pol(u, acc) = traverse�u� ∧ distk for some
k ∈ N, which can be shown not to have SP. (It is easy
to show that traverse and distk do not have SSP.) Thus
the FSNS is not POPA compliant.

Observe that our goal above is not to obtain a precise
closed form for (Pfinds ∧ Pacc): we do not even know what
traverse looks like. Instead, the main goal is to identify the
major subexpressions in (Pfinds ∧ Pacc), so that we know to
which policies and policy pairs we shall impose SP and SSP
respectively.

C. Interpretation of Negative Results

The second instantiation of Example 36 illustrates that there
are in fact FSNSs for which all search, traversal and access
policies have SP, but the FSNSs themselves are not POPA
compliant. The reason for this is that we now demand the
conjunction (Pfinds ∧ Pacc) to have SP (Corollary 30), rather
than requiring simply that Pacc has SP (Theorem 28). The
failure of the conjunction to satisfy the requirements of SP
may be caused by at least two reasons. First, if the reachability
predicate Pfinds has SP, the requirement of SSP may not be
satisfied by the relevant policy pairs (e.g., second instantiation
of Example 36). Second, Pfinds may not have SP. The structure
of Stage-I authorization is designed in such a way that SP is
not a condition we can expect to hold by Pfinds except for a few
special cases. In fact, as the next example illustrates, so long
as PV (tra) contains non-constant predicates, it is unlikely that
Pfinds has SP.

Example 37. Suppose PV (sch) = PV (tra) = PV (acc) =
{⊥,me, friend, fof,�}. (Note the resemblance between this
policy vocabulary and that of Facebook.) Pacc has SP (Exam-
ple 25), but neither Pfinds nor Pfinds ∧ Pacc has SP.

This situation demands us to be very careful in interpreting
negative results. Suppose N is an FSNS for which Pacc has
SP, but (Pfinds ∧Pacc) does not have SP. By Corollary 30, we
would conclude that N is not POPA compliant, and thus Sybil
attacks are possible in N (Theorem 19). But then exactly what
is the nature of these Sybil attacks? It turns out such a Sybil
attack is caused by befriending transitions which (i) establish
the reachability of the owner’s search listing, (ii) play no role
in satisfying the owner’s access policy, and (iii) involve no
initiator that already has access. Yet the assumption is that the
access policies have SP. This means in the start state of the
Sybil attack, the accessor and her colluding partners already
satisfy the access policy of the owner. The reason they do not
have access to begin with is because they cannot reach the
owner’s search listing in the start state. That means all that
the offending transitions achieve is to turn the owner’s search
listing from unreachable to reachable by the accessor and her
colluding partners.

The crux of the problem is how we are to perceive Stage-I
Authorization. Suppose we do not consider Stage-I Autho-
rization to be a proper component of access authorization

275

(Section V-A). That is, friend lists are no different than other
profile items, and thus traversal policies are merely access
policies for friend lists. Then so long as we demand that the
traversal policies have SP, the FSNS is POPA compliant, and
the above anomaly disappears. Suppose, however, we consider
Stage-I Authorization to be a proper component of access
authorization, such that the search listings are capability-like
entities, the reachability of which is a necessary condition for
access. The analysis of this section implies that, except in a
few special cases, POPA compliance is not achievable. Our
conclusion is that the current design of Stage-I Authorization
does not support a rational static analysis for POPA compli-
ance. As we will point out in Section VIII, a redesign of Stage-
I Authorization to facilitate POPA-compliance analysis is a
pressing research challenge.

VII. RELATED WORK

Recent years have seen the proposal of novel authorization
schemes for Relationship-Based Access Control (ReBAC) [3],
[4], [5], [6]. In the access control models of Kurk et al.
[25] and Carminati et al. [26], [27], access control policies
identify the existence of a directed path between the owner
and the accessor in the social network, consisting of edges
of a particular relationship type, within a certain length, and
with aggregate trust weighting above a certain threshold.
Carminati et al. [28], [29], [30] later refined their model to
use a trust metric for decentralized authorization. In [31],
[32], Carminati et al employed Semantic Web technologies to
encode access control information of a ReBAC system. Fong et
al. [7], [8] proposed a formal model for Facebook-style Social
Network Systems (FSNSs), which is a generalization of the
access control model behind Facebook. Although this model
does not support directed relationships, relationship types,
and trust levels, it supports a uniquely novel feature missing
from previously proposed models, namely, the use of arbitrary
graph-theoretic relations as access control policies. Fong [5]
later devised a ReBAC model that adds support for relationship
types and access contexts on top of graph-theoretic policies.
A modal logic is employed as its policy language, rather than
birooted graphs. The expressiveness of this policy language
and its extension are studied in [6]. Squicciarini et al. [33]
proposed a scheme for automatically deriving access control
policies for the users of an SNS. The present work is an
attempt to identify a security property, namely, Principle of
Privilege Attenuation, that the above authorization schemes
shall strive to guarantee.

To the best of our knowledge, this work is the first to
propose a policy analysis for verifying that an SNS complies to
a global security property. Comparable to our goal is the work
of Squicciarini et al. [34], [35], which studied the collaborative
management (or co-ownership) of resources in SNSs. Game-
theoretic analysis is employed to ensure fairness and other
global properties in their protocol.

Traditional defences against Sybil attacks begin with (direct)
identity validation [9], [36], [37], [38], the goal of which is to
prevent large-scale injection of pseudonymous identities by

a small number of malicious users. Douceur [9] proposed
the use of computational challenges to validate that the user
behind an identity indeed possesses certain computational
resources (e.g., communication, storage, computing power). A
malicious user forging multiple, pseudonymous identities will
fail to meet these challenges. Similar use of client puzzles for
admission control were found in [36], [37], [38]. CAPTCHA
[39] is a popular variation of this approach to tell human users
apart from computational agents. In the light of the feasibility
of Profile Cloning attacks [10], [11], [12] in popular SNSs
(including Facebook), partly made possible by circumventing
CAPTCHA, this work accepts as an axiom that pseudonymous
identities are not avoidable in FSNS. Instead, the goal of this
work is to explore how an FSNS can be designed to prevent
Sybil attacks even in the presence of pseudonymous identities.

In recent years, major headway has been made to develop
near-optimal or optimal defence mechanisms against Sybil
attacks in peer-to-peer networks [13], [14] and recommenda-
tion systems [16]. Particularly notable are SybilGuard [13]
and its successor SybilLimit [14], which provide randomized
protocols for a node (the verifier) in a peer-to-peer system to
determine if it should engage in a transaction with another
node (the suspect). The verification step of both protocols
involves performing randomized routing in a stationary social
graph defined over all nodes. Exploiting a certain property
(“fast-mixing”) of social graphs, one can guarantee that, with
arbitrarily high probability, the verifiers will accept only
logarithmically many Sybil nodes, and turn away arbitrary few
honest nodes. A recommendation system rates objects based
on the previous assessment of these objects by a population
of users. Sybil attacks occur when a number of malicious
users or pseudonymous identities collude to influence object
ratings. DSybil [16] is a recommendation system that comes
with recommendation quality guarantee even in the presence
of Sybil attacks. Specifically, an upper bound for bad recom-
mendations made by the system in the worst case is established
alongside a matching lower bound. The above works are
related to our work in that they all accept pseudonymous
identities as an unavoidable reality, and provide protection
against Sybil attacks, with provable guarantee in the quality of
protection. The similarity, however, ends here. First, our work
studies Sybil attacks in the novel context of a Relationship-
Based Access Control system (i.e., FSNS), rather than peer-
to-peer or recommendation systems. Our goal is to prevent
pseudonymous identities from manipulating the topology of
the social graph in order to gain access. Second, our solution
approach is a static analysis on the policy vocabulary, from
which users may freely adopt their own policies, rather than
the imposition of a single policy. Third, our guarantee (Sybil
freedom via a soundness theorem) is absolute rather than
probabilistic, and is not based on assumptions regarding the
topology of social graphs.

Cheng and Friedman [15] studied characteristics of reputa-
tion functions that are Sybilproof. A reputation function maps
an edge-weighted graph and a vertex to a reputation value for
that vertex. They showed that Sybilproof reputation functions

276

cannot be “symmetric”, meaning that the reputation value is
invariant under graph isomorphism. Their result does not apply
to our topology-based policies, for which the authorization
decision is invariant under birooted-graph isomorphism4.

VIII. SUMMARY AND FUTURE WORK

In this work, we examined the challenge of preventing
Sybil attacks in Facebook-style Social Network Systems. We
formulated a version of the Principle of Privilege Attenuation
for FSNSs, and showed that it is the necessary and sufficient
condition for preventing Sybil attacks. We then devised a
static policy analysis for verifying if an FSNS is POPA
compliant. The analysis is both sound and complete. Lastly, we
demonstrated the complexities and anomalies that would arise
from incorporating Stage-I Authorization into the analysis.

To address the anomalies surrounding Stage-I Authoriza-
tion, two research questions present themselves. The first is to
devise a better characterization of those policy vocabularies
that guarantee POPA compliance even in the presence of
Stage-I Authorization. The second is to redesign Stage-I Au-
thorization to facilitate a rational POPA-compliance analysis.

The results in this work apply only to monotonic policies. A
future direction is to explore how the analysis can be extended
to cover policies that may not be monotonic. Also implicit in
the current work is the assumption of a particular consent
protocol: befriending requires the consent of both parties, but
defriending can be initiated unilaterally. Our preliminary ex-
perience with nonmonotonic policies suggests that alternative
consent protocols may be required in order for the static
analysis to become feasible in the midst of nonmonotonic
policies.

While this work focuses on static policy analysis, a natural
question is whether POPA compliance can be achieved by
coupling static analysis of policy vocabulary with dynamic
checks performed at run time. A challenge will be to minimize
the run-time and storage overhead required for such a scheme.

In this work, Sybil attack prevention is taken as a security
goal of ReBAC. It is worthwhile to explore alternative security
goals for ReBAC, or relaxations of the present security goal.
An example of the latter option is to impose lower bound for
the “cost” of launching a Sybil attack (e.g., the number of
colluding users required [40], etc).

ACKNOWLEDGMENT

This work is funded in part by an NSERC Strategic Project
Grant, and has benefited from the in-kind support of Security
Resource Group Inc.

REFERENCES

[1] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in Proceedings of the 1982 IEEE Symposium on Security and Privacy
(S&P’82), 1982, pp. 11–20.

[2] J. Rushby, “Noninterference, transitivity, and channel-control security
policies,” Computer Science Laboratory, SRI International, Tech. Rep.
CSL 92-02, 1992.

4It is also worthwhile to point out that there is a flaw in the proof of their
Theorem 1, which incorrectly claims that the social graphs before and after
a Sybil attack are isomorphic.

[3] C. E. Gates, “Access control requirements for Web 2.0 security and
privacy,” in IEEE Web 2.0 privacy and security workship (W2SP’07),
Oakland, California, USA, May 2007.

[4] B. Carminati and E. Ferrari, “Enforcing relationships privacy through
collaborative access control in web-based social networks,” in Pro-
ceedings of the 5th International Conference on Collaborative Comput-
ing: Networking, Applications and Worksharing (CollaborateCom’09),
Washington DC, USA, Nov. 2009.

[5] P. W. L. Fong, “Relationship-based access control: protection model and
policy language,” in Proceedings of the First ACM Conference on Data
and Application Security and Privacy (CODASPY’11), San Antonio, TX,
USA, Feb. 2011, pp. 191–202.

[6] P. W. L. Fong and I. Siahaan, “Relationship-based access control policies
and their policy languages,” in Proceedings of the 16th ACM Symposium
on Access Control Models and Technologies (SACMAT’11), Innsbruck,
Austria, Jun. 2011.

[7] P. W. L. Fong, M. Anwar, and Z. Zhao, “A privacy preservation model
for Facebook-style social network systems,” in Proceedings of the 14th
European Symposium on Research In Computer Security (ESORICS’09),
ser. LNCS, vol. 5789. Saint Malo, France: Springer, Sep., pp. 303–320.

[8] M. Anwar, Z. Zhao, and P. W. L. Fong, “An access control model
for Facebook-style social network systems,” Department of Computer
Science, University of Calgary, Calgary, Alberta, Canada, Tech. Rep.
2010-959-08, Jul. 2010, submitted for review.

[9] J. R. Douceur, “The Sybil attack,” in Proceedings for the First Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS’02), ser. LNCS, vol.
2429. Cambridge, MA, USA: Springer, Mar. 2002, pp. 251–260.

[10] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda, “All your contacts are
belong to us: Automated identity theft attacks on social networks,” in
Proceedings of the 18th International Conference on World Wide Web
(WWW’09), Madrid, Spain, Apr. 2009, pp. 551–560.

[11] L. Jin, H. Takabi, and J. B. D. Joshi, “Towards active detection of
identity clone attacks on online social networks,” in Proceedings of the
First ACM Conference on Data and Application Security and Privacy
(CODASPY’11), San Antonio, TX, USA, Feb. 2011, pp. 27–38.

[12] G. Kontaxis, I. Polakis, S. Ioannidis, and E. P. Markatos, “Detecting
social network profile cloning,” in Proceedings of the 3rd IEEE In-
ternational Workshop on Security and Social Networking (SESOC’11),
Seattle, WA, USA, Mar. 2011.

[13] H. Yu, M. Kaminsky, P. B. Gibbons, and A. D. Flaxman, “SybilGuard:
Defending against Sybil attacks via social networks,” IEEE/ACM Trans-
actions on Networking, vol. 16, no. 3, pp. 576–589, Jun. 2008.

[14] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, “SybilLimit: A near-
optimal social network defense against Sybil attacks,” in Proceedings of
the 2008 IEEE Symposium on Security and Privacy (S&P’08), Oakland,
CA, USA, May 2008, pp. 3–17.

[15] A. Cheng and E. Friedman, “Sybilproof reputation mechanisms,” in
Proceedings of the 2005 ACM SIGCOMM Workshop on Economics of
peer-to-peer systems (P2PEcon’05), Philadelphia, PA, USA, Aug. 2005,
pp. 128–132.

[16] H. Yu, C. Shi, M. Kaminsky, P. B. Gibbons, and F. Xiao, “DSybil:
Optimal Sybil-resistance for recommendation systems,” in Proceedings
of the 2009 IEEE Symposium on Security and Privacy (S&P’09),
Berkeley, CA, USA, May 2009, pp. 283–298.

[17] J. B. Dennis and E. C. V. Horn, “Programming semantics for multipro-
grammed computations,” Communications of the ACM, vol. 9, no. 3, pp.
143–155, Mar. 1966.

[18] M. S. Miller, K.-P. Yee, and J. Shapiro, “Capability myths demolished,”
System Research Lab, Department of Computer Science, The John
Hopkins University, Baltimore, Maryland, USA, Tech. Rep. SRL2003-
02, 2003.

[19] G. S. Graham and P. J. Denning, “Protection: Principles and practices,”
in Proceedings of the 1972 AFIPS Spring Joint Computer Conference,
vol. 40, Alantic City, New Jersey, USA, May 1972, pp. 417–429.

[20] N. Li and M. V. Tripunitara, “On safety in discretionary access control,”
in Proceedings of the 2005 IEEE Symposium on Security and Privacy
(S&P’05), Oakland, California, USA, May 2005, pp. 96–109.

[21] P. J. Denning, “Fault tolerant operating systems,” ACM Computing
Surveys, vol. 8, no. 4, pp. 359–389, Dec. 1976.

[22] M. Bishop, Computer Security. Addison Wesley, 2002.
[23] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” in Proceedings

of the 21st IEEE Computer Security Foundations Symposium (CSF’08),
Pittsburch, Pennsylvania, USA, Jun. 2008, pp. 51–65.

277

[24] P. W. L. Fong, “Preventing Sybil attacks by privilege attenuation: A
design principle for social network systems,” Department of Computer
Science, University of Calgary, Calgary, Alberta, Canada, Tech. Rep.
2011-995-07, Mar. 2011.

[25] S. R. Kruk, S. Grzonkowski, A. Gzella, T. Woroniecki, and H.-C.
Choi, “D-FOAF: Distributed identity management with access rights
delegation,” in Proceedings of the First Asian Semantic Web Conference
(ASWC’06), ser. LNCS, vol. 4185. Beijing, China: Springer, Sep. 2006,
pp. 140–154.

[26] B. Carminati, E. Ferrari, and A. Perego, “Rule-based access control
for social networks,” in Proceedings of the OTM 2006 Workshops, ser.
LNCS, vol. 4278. Springer, Oct. 2006, pp. 1734–1744.

[27] ——, “A decentralized security framework for web-based social net-
works,” International Journal of Information Security and Privacy,
vol. 2, no. 4, pp. 22–53, Oct. 2008.

[28] ——, “Private relationships in social networks,” in Proceedings of
Workshops in Conjunction with the International Conference on Data
Engineering – ICDE’07, Istanbul, Turkey, Apr. 2007, pp. 163–171.

[29] B. Carminati and E. Ferrari, “Privacy-aware collaborative access control
in web-based social networks,” in Proceedings of the 22nd Annual
IFIP WG 11.3 Working Conference on Data and Applications Security
(DAS’08), ser. LNCS, vol. 5094. London, UK: Springer, Jul. 2008, pp.
81–96.

[30] B. Carminati, E. Ferrari, and A. Perego, “Enforcing access control in
web-based social networks,” ACM Transactions on Information and
System Security, vol. 13, no. 1, Oct. 2009.

[31] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and B. Thurains-
ingham, “A semantic web based framework for social network access
control,” in Proceedings of the 14th ACM Symposium on Access Control
Models and Technologies (SACMAT’09), Stresa, Italy, Jun. 2009, pp.
177–186.

[32] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and B. Thu-
raisingham, “Semantic web-based social network access control,” Com-
puters and Security, vol. 30, no. 2–3, pp. 108–115, Mar. 2011.

[33] A. Squicciarini, F. Paci, and S. Sundareswaran, “PriMa: An effective
privacy protection mechanism for social networks,” in Proceedings of the
5th ACM Symposium on Information, Computer and Communications
Security (ASIACCS’10), Beijing, China, Apr. 2010, pp. 320–323.

[34] A. C. Squicciarini, M. Shehab, and F. Paci, “Collective privacy man-
agement in social networks,” in Proceedings of the 18th International
Conference on World Wide Web (WWW’09), Madrid, Spain, Apr. 2009,
pp. 521–530.

[35] A. C. Squicciarini, M. Shehab, and J. Wede, “Privacy policies for shared
content in social network sites,” The VLDB Journal, 2010, to appear.

[36] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach,
“Secure routing for structured peer-to-peer overlay networks,” in Pro-
ceedings of the 5th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’02), Boston, MA, USA, Dec. 2002.

[37] N. Borisov, “Computational puzzles as sybil defenses,” in Proceedings
of the 6th IEEE International Conference on Peer-to-Peer Computing
(P2P’06), Cambridge, UK, Sep. 2006, pp. 171–176.

[38] H. Rowaihy, W. Enck, P. McDaniel, and T. L. Porta, “Limiting Sybil
attacks in structured P2P networks,” in Proceedings of the 26th IEEE In-
ternational Conference on Computer Communications (INFOCOM’07),
Anchorage, Alaska, USA, May 2007, pp. 2596–2600.

[39] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford, “CAPTCHA:
Using hard AI problems for security,” in Proceedings of the 22nd Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT’03), ser. LNCS, vol. 2656. Warsaw, Poland:
Springer, May 2003, pp. 294–311.

[40] L. Snyder, “Theft and conspiracy in the take-grant protection model,”
Journal of Computer and System Sciences, vol. 23, no. 3, pp. 333–347,
1981.

278

