
The Complexity of Intransitive Noninterference

Sebastian Eggert∗, Ron van der Meyden†, Henning Schnoor∗, Thomas Wilke∗
∗Institut für Informatik, Kiel University

†School of Computer Science and Engineering, University of New South Wales
Email: {eggert,schnoor,wilke}@ti.informatik.uni-kiel.de, meyden@cse.unsw.edu.au

Abstract—The paper considers several definitions of
information flow security for intransitive policies from the
point of view of the complexity of verifying whether a
finite-state system is secure. The results are as follows.
Checking (i) P-security (Goguen and Meseguer), (ii) IP-
security (Haigh and Young), and (iii) TA-security (van der
Meyden) are all in PTIME, while checking TO-security
(van der Meyden) is undecidable. The most important
ingredients in the proofs of the PTIME upper bounds are
new characterizations of the respective security notions,
which also enable the algorithms to return simple counter-
examples demonstrating insecurity. Our results for IP-
security improve a previous doubly exponential bound of
Hadj-Alouane et al.

Keywords-noninterference, information flow, verification

I. INTRODUCTION

One of the fundamental methods in the construc-
tion of secure systems to high levels of assurance is
to decompose the system into trusted and untrusted
components, arranged in an architecture that con-
strains the possible causal effects and flows of in-
formation between these components. On the other
hand, resource limitations and cost constraints may
make it desirable for trusted and untrusted compo-
nents to share resources. For example, it is cheaper
for an intelligence analyst to handle high security
and low security information on a single desktop
machine than to use two physically separated ma-
chines. This leads to complex systems designs and
implementations, in which the desired constraints on
flows of information between trusted and untrusted
components need to be enforced in spite of the fact
that these components share resources. In order to
provide high levels of assurance of implementations
of this kind, it is desirable to have a formal theory of
systems architecture and information flow, so that a
design or implementation may be formally verified

to conform to an information flow policy. Moreover,
one would like, whenever possible, to automate the
verification that a system satisfies such a formally
defined policy. This motivates the problems we
consider in this paper. We study the complexity of
verification of a range of formally defined security
policies that specify how a system is architecturally
structured in terms of how information may flow
between its components.

Attack model: The problems we consider in
this paper address information flow and systems
implementation attacks. We work in the paradigm
of information flow security, where it is assumed
that a (passive) adversary may attack the system by
attempting to make subtle deductions from her pos-
sible observations of the system, exploiting covert
channels that may exist in the system, in order to
learn secrets that she is not authorized to possess.
The automated analyses we consider aim to provide
assurance that the system has been designed in such
a way that such attacks are not possible, or to
discover such attacks when they exist. The analysis
can be applied both in circumstances where it is
feared that a rogue systems developer may have
deliberately constructed the system so as to contain
such prohibited flows of information, as well as to
ensure that such flows of information have not been
inadvertently allowed to exist.

Policy model: Notions of noninterference—a first
definition was given by Goguen and Meseguer [1]—
are one approach to the formalisation of information
flow and causal relationships. Noninterference was
first proposed in the context of transitive information
flow policies (with transitivity following from the
partial order on security domains) but it was sub-
sequently noted [2] that systems architectures often
require intransitive policies. For example, a common
architectural pattern is to restrict information flow

2011 IEEE Symposium on Security and Privacy

1081-6011/11 $26.00 © 2011 IEEE

DOI 10.1109/SP.2011.30

196

from a high-level domain to a low-level domain
so as to be possible only via a trusted downgrader
(e. g., a declassification guard or encryption device).
This pattern motivates an intransitive information
flow policy, stating that information flow is permit-
ted from the high-level domain to the downgrader
and from the downgrader to the low-level domain,
but not directly from the high-level domain to the
low-level domain.

Goguen and Meseguer’s definition of noninterfer-
ence, based on a “purge” function, does not yield
the desired conclusions for intransitive policies.
Haigh and Young proposed a variant for intransitive
policies based on an “intransitive purge” function.
Rushby [3] later refined their theory and developed
connections to access control systems. Van der Mey-
den [4] has argued that the definitions of security for
intransitive policies in these works suffer from some
subtle flaws, and proposed some improved defini-
tions, TA-security and TO-security, that first build
an operational (full information protocol) model
of the maximal permitted information flow in the
system, and then compares the actual information
flow to this maximal permitted information flow.
The revised definitions can be shown to avoid the
subtle flaws in the intransitive purge-based defini-
tion, and lead to a more satisfactory proof theory
and connection to access control systems than in
Rushby’s work (e.g., yielding both soundness and
completeness results, whereas Rushby proved only
soundness.)

Verification: The goal of high assurance systems
development by formal verification motivates the in-
vestigation of techniques whereby a systems design
or implementation can be formally shown to satisfy
a formal definition of security. The technique of
unwinding relations [5], [3] provides a proof method
that has been applied to establish that a system
satisfies noninterference properties, but it requires
significant human ingenuity to define an unwinding
relation that forms the basis for the proof, and
typically also has involved manual driving (proof
rule selection) of the theorem proving tool within
which the proof is conducted.

A better alternative, more acceptable to engineers
when it can be applied, is for the property to be
verified by fully automatic techniques. There is a
substantial body of work on automated verification

techniques for transitive noninterference properties
(which we discuss in Section V), but there has been
significantly less work on automated verification
techniques for intransitive noninterference proper-
ties.

Contributions: Our contribution in this paper
is to provide a basis for automated verification
of definitions of intransitive noninterference, by
developing a characterization of the computational
complexity of deciding whether a given finite-state
system is secure with respect to an intransitive
information flow policy according to this definition.
In particular, we consider Goguen and Meseguer’s
purge-based definition, Rushby’s formulation of
Haigh and Young’s definition, and van der Mey-
den’s definitions of TA-security and TO-security.
We show that the last of these definitions is undecid-
able, but the others are decidable in polynomial time
and even in nondeterministic logarithmic space. We
give algorithms for the decidable cases and analyse
their complexity.

The structure of the paper is as follows. In
Section II we define the formal systems model that
we work with, and recall the formal definitions of
security for intransitive information flow policies
that we study. New characterizations of Haigh and
Young’s definition and van der Meyden’s notion of
TA-security are presented in Section III. Section IV
gives the complexity results for the four notions that
we consider. Our results are positioned within the
literature in Section V, where we discuss related
work. Section VI concludes with a discussion of
open problems and future research directions.

II. BASIC DEFINITIONS AND NOTATION

In this section, we introduce intransitive informa-
tion flow policies and describe their motivation. We
present a deterministic asynchronous systems model
in which such policies may be interpreted, and then
recall a number of different semantic interpretations
of such policies in this system model that have been
proposed in the literature.

A. Noninterference Policies

Noninterference policies are reflexive relations
� ⊆ D × D, where D is a set of “domains”.
The intuitive reading of u � v is that “actions of
domain u are permitted to interfere with domain v”,

197

or “information is permitted to flow from domain u
to domain v”. For any set U ⊆ D the image of U ,
denoted U�, is defined by U� = {v ∈ D|∃u ∈ U :
u� v}. For a singleton set {u} we also write u�

instead of {u}�.
The reason for the assumption of reflexivity is

that, intuitively, a domain should be allowed to
interfere with or have information about itself, since
this cannot usually be prevented. In early work on
noninterference [1], the relation � is also assumed
to be transitive. This follows from the interpretation
of domains as corresponding to security levels as-
sociated to classes of information and access rights,
which have generally been taken to be partially
ordered [6]. (In the classical multi-level security
models, this partial order is derived from a linear
order on security levels and the set containment
order on sets of labels.)

One of the motivations for the consideration of
policies � that are not transitive is that classical
multilevel security policies are too restrictive for
practical purposes, allowing flow of information
from lower security levels to higher security levels,
but prohibiting flow in the opposite direction. Such
flows may be less frequent but are nevertheless
required, e.g., for distribution of battle plans, in
response to freedom of information requests, or for
transmission of encrypted content across an insecure
network. One of the ways this has been handled is
to allow the general policy to be violated by a spe-
cial downgrader component. A typical downgrader
policy is depicted in Figure 1. Here the usual (tran-
sitive) multi-level policy for domains Public, Secret
and Top-Secret is extended by the addition of two
domains DownS and DownP, that are responsible
for downgrading of information from Top-Secret
to Secret, and from Secret to Public, respectively.
These domains are trusted to enforce whatever
policy constraints apply to the downgrading of in-
formation. Note that it would not be appropriate to
apply an assumption of transitivity on this setting,
since then, e.g., the edges involving DownS would
imply that Top-Secret � Secret, i.e., a direct flow of
information from Top-Secret to Secret is permitted.

Subsequent work on intransitive noninterference
has taken a somewhat extended interpretation of
the term “domain,” treating this more as akin to
“component” in a systems architecture. Figure 2

Public

Secret

Top
Secret

DownP

DownS

Fig. 1. Downgrader Policy

shows a systems architecture, discussed in [3] and
[7], for a system in which messages are sent from a
high security (Red) domain through a low security
(Black) domain, with the global security policy stat-
ing that all content, except the message header, must
be encrypted, and uncontrolled flow of information
from Red to Black is prohibited. The architecture
proposes to achieve this goal by having the Bypass
component check a (more detailed) policy on the
allowed header structure and content, and by hav-
ing the Crypto component enforce a local policy
stating that all output must be encrypted. These
flows are recomposed into the encrypted message
(with header) at the Black component. Crypto and
Bypass are assumed to be trusted components of
low enough complexity that they can be verified to
enforce their local policies. Red (which may contain
Trojans) and Black (which is at a low security level)
are not assumed to be trusted. The argument for
security of the system is intended to follow from the
structure of the information flows in the architecture,
plus the assumption that the trusted components
correctly implement their local policies.

MILS security, as expounded in [7], proposes
to base development of certifiably secure systems
on design level arguments of this type, together
with implementations in which mechanisms such as
separation kernels or periods processing are used to
enforce the systems architecture. We refer to [7] for
a more detailed discussion of MILS security and the

198

Crypto

Red

Bypass

Black

Fig. 2. Policy for Encrypted Message Transmission

High-in High-out

Low-in Low-out

Fig. 3. A MILS Design Level Policy

proposed structure of the argument for security of
the system in Figure 2.

We note that intransitive information flow poli-
cies are intended to express just the architectural
structure of information flow, rather than encompass
all the details of security policy. One key point is
that implementations may involve resource sharing,
which may mean that it is not immediately apparent
that the design level architecture is enforced in the
implementation.

For example, Figure 3 illustrates a design level
policy for a system with multiple independent se-
curity levels that could be implemented, as shown in
Figure 4, by a trusted multiplexer component that
handles information from multiple security levels.
One of the issues in the verification of such systems
is to determine whether such a resource sharing
implementation correctly enforces the design level
architecture. The definitions in the following sec-
tions provide a number of distinct semantic interpre-
tations of information flow policies that have been
proposed to formalize what it means to implement

High-in High-out

Low-in Low-out

Trusted
Multiplexer

Fig. 4. A MILS Resource Sharing Implementation

the notion of correct enforcement.

B. State-Observed Machine Model

Several different types of semantic models have
been used in the literature on noninterference. (See
[8] for a comparison and a discussion of their
relationships.) We work here with the state-observed
machine model used by Rushby [3], but similar
results would be obtained for other models.

This model consists of deterministic machines of
the form 〈S, s0, A, step, obs, dom〉, where S is a set
of states, s0 ∈ S is the initial state, A is a set of
actions, dom : A→ D associates each action with an
element of the set D of security domains, step : S×
A → S is a deterministic transition function, and
obs : S × D → O maps states to an observation
in some set O, for each security domain. We may
also refer to security domains more succinctly as
“agents”. We write s · α for the state reached by
performing the sequence of actions α ∈ A∗ from
state s, defined inductively by s ·ε = s, and s ·αa =
step(s·α, a) for α ∈ A∗ and a ∈ A. Here, ε denotes
the empty sequence. For any string α, we say a
symbol a occurs in α if α = βaβ′ for some strings
β, β′. We define alph(α) as the set of all symbols
occuring in α.

C. The Purge Function

Noninterference is given a formal semantics in
the transitive case [1] using a definition based
on a “purge” function. Given a set E ⊆ D of
domains and a sequence α ∈ A∗, we write α�E
for the subsequence of all actions a in α with
dom(a) ∈ E. Given a policy �, we define the
function purge : A∗ ×D → A∗ by

purge(α, u) = α�{v ∈ D | v � u}.

199

d,l h,l h,d,l

h d

H

D

L

0

1

0

0 0

1

1

1

1

obs
obs

obs

Fig. 5. A system that is TO-secure but not P-secure

(For clarity, we may use subscripting of agent
arguments of functions, writing, e. g., purge(α, u)
as purgeu(α).) The system M is said to be secure
with respect to the transitive policy �, when,
for all α ∈ A∗ and domains u ∈ D, we have
obsu(s0 · α) = obsu(s0 · purgeu(α)). That is, each
agent’s observations are as if only interfering actions
had been performed. An equivalent formulation
(which we state more generally for policies that
are not necessarily transitive, in anticipation of later
discussion) is the following:

Definition 1 (P-security): A system M is P-se-
cure with respect to a policy � if for all sequences
α, α′ ∈ A∗ such that purgeu(α) = purgeu(α

′), we
have obsu(s0 · α) = obsu(s0 · α′).

This can be understood as saying that agent
u’s observation depends only on the sequence of
interfering actions that have been performed.

D. The Intransitive Purge Function
While P-security is a reasonable definition of

security for transitive information flow policies, it
works less well for intransitive policies. Figure 5
illustrates a system that is, intuitively, secure for
the downgrader policy H � D � L, but which
does not satisfy P-security. Here h, d, l are actions
of domains H,D,L, respectively, and the observa-
tions in each domain are depicted below the states.
Intuitively, the observations convey a single bit of
information: “has H ever performed the action h?”.
Domains H and D learn that H has performed
h as soon as this action is performed (by their
observations turning to value 1), but L does not
learn this until after D subsequently performs the
downgrading action d. Since the policy permits D to
transmit information about H , the system is secure.

However, this system does not satisfy P-security,
since we have purgeL(hdl) = dl = purgeL(dl) but
obsL(s0 ·hdl) = 1 6= 0 = obsL(s0 ·purgeL(dl)). In-
tuitively, P-security says that L observations depend
only on what D and L actions have been performed,
so cannot contain information about H , even though
the policy, intuitively, permits D to transmit such
information.

To address this deficiency, Haigh and Young [2]
generalized the definition of the purge function
to intransitive policies. Intuitively, the intransitive
purge of a sequence of actions with respect to
a domain u is the largest subsequence of actions
that could form part of a causal chain of effects
(permitted by the policy) ending with an effect on
domain u. More formally (we follow the presenta-
tion from [3]), the definition makes use of a function
sources : A∗ ×D → P(D) defined inductively by
sources(ε, u) = {u} and, for a ∈ A and α ∈ A∗, if
there exists v ∈ sources(α, u) with dom(a) � v,
then

sources(aα, u) = sources(α, u) ∪ {dom(a)} ,

and else

sources(aα, u) = sources(α, u) .

Intuitively, sources(α, u) is the set of domains
v such that there exists a sequence of permitted
interferences from v to u within α. The intransitive
purge function ipurge : A∗ × D → A∗ is then
defined inductively by ipurge(ε, u) = ε and, for
a ∈ A and α ∈ A∗, if dom(a) ∈ sources(aα, u),
then

ipurge(aα, u) = a ipurge(α, u) ,

and else

ipurge(aα, u) = ipurge(α, u) .

The intransitive purge function is then used in
place of the purge function in Haigh and Young’s
definition:

Definition 2 (IP-security): A system M is IP-se-
cure with respect to a (possibly intransitive) policy
� if for all sequences α ∈ A∗, and u ∈ D, we have
obsu(s0 · α) = obsu(s0 · ipurgeu(α)).

Since the function ipurgeu on A∗ is idempotent,
this definition, like the definition for the transitive

200

h1
h2

h1

h1 d1

d1

h2

h2

d1 d1 d1

d2

d2

d2 d2 d2

Lobs =2

Lobs =1

H1 D1

L

H2 D2

M

policy:

Fig. 6. A system that is IP-secure but not TA-secure

case, can be formulated as: M is IP-secure with
respect to a policy � if for all u ∈ D and
all sequences α, α′ ∈ A∗ with ipurgeu(α) =
ipurgeu(α

′), we have obsu(s0·α) = obsu(s0·α′). It
can be seen that ipurgeu(α) = purgeu(α) when �
is transitive, so IP-security is in fact a generalisation
of the definition of security for transitive policies.

E. The ta Function

It has been noted by van der Meyden [4] that
IP-security classifies some systems as secure where
there is, intuitively, an insecure flow of information
that relates to a domain learning ordering informa-
tion about the actions of other domains that it should
not have.

Figure 6 depicts part of a system M and a policy
� such that M is IP-secure, but for which the
conclusion that the system is secure is questionable.
We sketch the argument for this here, and refer
the reader to [4] for a more rigorous presentation.
Intuitively, the system is comprised of two High
security level domains H1, H2, each with a down-
grader (D1, D2, respectively) to the Low security

domains L. The actions h1, h2, d1, d2 are associated
to the domains H1, H2, D1, D2, respectively, and
state transitions are depicted only when there is a
change of state. The observations of L are depicted
at two of the states; at all other states we assume
that L makes observation 0. All other agents may
be assumed to make observation 0 at all states.
Intutively, at the state where L observes 1, it is
possible for L to deduce that there has been an
occurrence of h1 followed by an occurrence of h2;
the state where L observes 2, it is possible for L
to deduce that these actions have occurred in the
opposite order.

We show that this system is IP-secure: Suppose
we have ipurgeL(α) = ipurgeL(β), and one of
obsL(s0 ·α) or obsL(s0 ·β) is 1 or 2, say the former
is equal to 1. Then this sequence must contain an
occurrence of h1 before an occurrence of h2, and
each is followed by d1 and d2, respectively. This
observation shows, in fact, that L knows the order
of the first h1 and h2 actions in the sequence α.
Because ipurgeL preserves h1 when it is followed
by d1, and similarly for h2 and d2, and also pre-
serves the order of actions that it retains, the same
statement must hold for β, and it then follows that
also obsL(s0 · β) = 1 = obsL(s0 · α). If neither
observation is in 1, 2, then both are equal to 0, and
again we have the required equality of observations.

On the other hand, the conclusion that the system
is secure is somewhat peculiar. Each of the down-
graders is individually permitted by the policy to
know only about activity in its associated High level
domain, and its own activity. Thus, individually,
neither D1 nor D2 can know the order of the first
two H1 and H2 actions. Moreover, since the system
is asynchronous, even if we were to combine all
the information that the downgraders are permitted
to know, we would still not be able to deduce the
order on the H1, H2 actions. We therefore have the
peculiar conclusion that the system is classified by
IP-security to be secure, but it allows L to learn in-
formation that would not be permitted to be known
to the two domains D1, D2, which are supposed to
filter all flow of information from H1, H2, even if
these domains were to combine their information.

To address this peculiarity, van der Meyden has
proposed some other interpretations of intransitive
policies. Both proceed by first defining a concrete

201

operational model of the maximal amount of infor-
mation that an agent is permitted to have after some
sequence of actions has been performed. Security
of the system is then defined by requiring that an
agent’s observation may not contain more than this
maximal amount of information.

In the first operational model, when an agent
performs an action, it transmits what it is permitted
to know to other agents, subject to constraints in the
policy. The following definition expresses this in a
weaker way than the ipurge function.

Given sets X and A, let the set T (X,A) be the
smallest set containing X and such that if x, y ∈
T and z ∈ A then (x, y, z) ∈ T . Intuitively, the
elements of T (X,A) are binary trees with leaves
labelled from X and interior nodes labelled from
A.

Given a policy �, define, for each agent u ∈ D,
the function tau : A∗ → T ({ε}, A) inductively by
tau(ε) = ε, and, for α ∈ A∗ and a ∈ A,

tau(αa)

=

{
tau(α) if dom(a) 6� u,
(tau(α), tadom(a)(α), a) otherwise.

Intuitively, tau(α) captures the maximal informa-
tion that agent u may, consistently with the policy
�, have about the past actions of other agents.
Initially, an agent has no information about what
actions have been performed. The recursive clause
describes how the maximal information tau(α)
permitted to flow to u after the performance of
α changes when the next action a is performed.
If a may not interfere with u, then there is no
change, otherwise, u’s maximal permitted informa-
tion is increased by adding the maximal information
permitted to dom(a) at the time a is performed
(represented by tadom(a)(α)), as well the fact that a
has been performed. Thus, this definition captures
the intuition that an agent may only transmit infor-
mation that it is permitted to have, and then only to
agents with which it is permitted to interfere.

Definition 3 (TA-security): A system M is TA-
secure with respect to a policy � if for all agents
u and all α, α′ ∈ A∗ such that tau(α) = tau(α

′),
we have obsu(s0 · α) = obsu(s0 · α′).

d,l h,l h,d,l

h d

H

D

L

0

1

0

0 0

1 1obs
obs

obs
0 0

Fig. 7. A system that is TA-secure but not TO-secure

Intuitively, this says that each agent’s observa-
tions provide the agent with no more than the
maximal amount of information that may have been
transmitted to it, as expressed by the functions ta.

F. The to Function

In the definition of TA-security, the operational
model of information flow given by the function ta
permits a domain to transmit information that it may
have, even if it has never observed anything from
which it could deduce that information. Arguably,
this is too liberal.

Figure 7 shows a system for the downgrader
policy H � D � L, similar to that in Figure 5.
It can be argued that the system is TA-secure;
we leave the details to the reader. Again, when L
observes 1, it can deduce that H has performed
the action h, and indeed, this observation can only
occur after D has performed the action d, thereby
downgrading the information about H . On the other
hand, note that in this system, D’s observation is
always 0, so D cannot know, on the basis of its
observations, whether H has performed h. D is
therefore transmitting to L information that it does
not itself have.

Van der Meyden [4] therefore also considers a
variant operational model in which a domain trans-
mits only what it has actually observed. This yields
the alternate notion of TO-security.

The sequence of all observations and actions of a
domain is denoted as its view. Formally, the notion
of view is defined as follows. The definition uses an
absorptive concatenation function ◦, defined over a
set X by s◦x = s if x is equal to the final element of
s (if any), and s◦x = s ·x (ordinary concatenation)
otherwise, for every s ∈ X∗ and x ∈ X . Define

202

the view of domain u with respect to a sequence
α ∈ A∗ using the function viewu : A∗ → (A ∪ O)∗

(where O is the set of observations in the system)
defined by

viewu(ε) = obsu(s0), and
viewu(αa) = (viewu(α) · b) ◦ obsu(s0 · α) ,

where b = a if dom(a) = u and b = ε otherwise.
That is, viewu(α) is the sequence of all observations
and actions of domain u in the run generated by α,
compressed by the elimination of stuttering observa-
tions. Intuitively, viewu(α) is the complete record of
information available to agent u in the run generated
by the sequence of actions α. The reason we apply
the absorptive concatenation is to capture that the
system is asynchronous, with agents not having
access to a global clock. The effect of this operation
is to reduce any stuttering of an observation in the
run to a single copy. Thus, two sequences that only
differ from each other in repetitions of a single
observation are not distinguishable by the agent.

Given a policy �, for each domain u ∈ D,
define the function tou : A∗ → T ((A ∪ O)∗, A) by
tou(ε) = obsu(s0) and

tou(αa)

=

{
tou(α) if dom(a) 6� u,
(tou(α), viewdom(a)(α), a) otherwise.

Intuitively, this definition takes the model of the
maximal information that an action a may trans-
mit after the sequence α to be the fact that a
has occurred, together with the information that
dom(a) actually has, as represented by its view
viewdom(a)(α). By contrast, TA-security uses in
place of this the maximal information that dom(a)
may have. We may now base the definition of
security on the function to rather than ta.

Definition 4 (TO-security): The system M is
TO-secure with respect to � if for all domains
u ∈ D and all α, α′ ∈ A∗ with tou(α) = tou(α

′),
we have obsu(s0 · α) = obsu(s0 · α′).

It is possible to give a flatter representation of the
information in tou(α) that clarifies the relationship
of this definition to P-security. Define the possibly
transmitted view of domain u for a sequence of
actions α to be the largest prefix tviewu(α) of

viewu(α) that ends in an action a with dom(a) = u.
Then we have the following result, which intuitively
says that u’s observations depend only on (1) the
parts of the views of other agents which are permit-
ted to pass information to u that they have actually
acted to transmit, and (2) u’s knowledge of the
ordering of its own actions and the actions of these
other agents.

Proposition 1: (Characterization of TO-security
[4]) M is TO-secure with respect to a policy �
iff for all sequences α, α′ ∈ A∗, and domains u ∈
D, if purgeu(α) = purgeu(α

′) and tviewv(α) =
tviewv(α

′) for all domains v 6= u such that v � u,
then obsu(s0 · α) = obsu(s0 · α′).

The definitions introduced above are shown in
[4] to be related as follows: P-security implies
TO-security implies TA-security implies IP-security.
The converse of each of these implications does
not hold: Figures 5-7 provide counter-examples. In
the special case of transitive policies �, all these
notions are equivalent.

III. CHARACTERIZATION OF IP-SECURITY AND
TA-SECURITY

A. Characterization of IP-security
We present a new characterization of IP-security.

This characterization is the main tool for our later
algorithm that verifies IP-security in polynomial
time.

Intuitively, the ipurge function that defines IP-
security removes actions that should be irrelevant
for the domain u from its “visible trace.” This
leads us to the definition of the relation →irr

u : for
u ∈ D and α, α′ ∈ A∗, we define α →irr

u α′

if ipurgeu(α) = ipurgeu(α
′) and there exist

β, β′ ∈ A∗, and a ∈ A such that α = βaβ′ and
α′ = ββ′. That is, α →irr

u α′ if α′ is obtained from
α by removing a single action that is “irrelevant” in
the sense that (according to the information flow
allowed by the policy) u should not be able to
observe whether the removed action has occurred at
all. The symmetric closure of →irr is denoted with
↔irr.

Note that if ipurgeu(α) = ipurgeu(α
′), then

there exists a sequence α = α0 ↔irr α1 ↔irr . . .↔irr

αn = α′. If obsu(s0 · α) 6= obsu(s0 · α′), then we
must have obsu(s0 ·αk) 6= obsu(s0 ·αk+1) for some

203

k. Thus, directly from the definition of IP-security,
we obtain that a system is IP-insecure iff there exists
a domain u ∈ D, a reachable state q ∈ S, a ∈ A
and α ∈ A∗ such that ipurgeu(aα) = ipurgeu(α)
and obsu(q · aα) 6= obsu(q · α). We now state a
lemma that shows that we can put some restrictions
on α. The lemma shows that if a system is not
IP-secure, then an α and a as above exist such
that additionally, α does not contain any action c
whose domain dom(c) can be influenced by dom(a).
This allows us to reduce the search space for a
witness of insecurity significantly when designing
our algorithms.

In the following, we will always assume that
every state s ∈ S is reachable, i.e., there is a
sequence α ∈ A∗ such that s0 · α = s.

Lemma 1: A system M is IP-insecure iff there
exist u ∈ D, q ∈ S, a ∈ A and α ∈ A∗ such that

(i) ipurgeu(aα) = ipurgeu(α),
(ii) obsu(q · aα) 6= obsu(q · α), and
(iii) dom(a)� ∩ {dom(c)|c ∈ alph(α)} = ∅.

B. Characterization of TA-security

We present a new characterization of TA-security
that also makes precise its relationship to IP-
security. As seen earlier, the latter is concerned with
the question which actions an agent u may observe
at all, hence ipurgeu(α) is obtained from α by
removing from α actions that should be “unobserv-
able” for u, provided that information only flows
as specified by the security policy. The definition of
TA-security in [4] was motivated by the observation
that the security-relevant information that should
be unobservable to some agents is not just which
actions appear at all, but also information about the
order in which certain actions are performed. This
type of information-flow is not prohibited by the
definition of IP-security.

In this section we show that what separates the
definition of IP-security from that of TA-security is
the question how much information is known about
execution orders of actions. TA-security can essen-
tially be seen as IP-security plus the requirement
that an agent should only have access to “timing
information” (i.e., information about the order of
the occurrence of actions) insofar as permitted by
the security policy.

To formalize this, we require a few technical
definitions. The following definition captures the
situation in which an agent u should not have
information about the order in which certain actions
are performed, although it may know whether these
actions have been performed, and how often.

Definition 5 (swappable): Let α, α′ ∈ A∗ and
a, b ∈ A and u ∈ D. We write αabα′ ↔swap

u

αbaα′ iff dom(a)� ∩ dom(b)� ∩ {u, dom(c)|c ∈
alph(abα′)} = ∅. In this case, we call the actions a
and b swappable in αabα′.

For any relation →, we define =→ as the reflexive
closure of → and ∗→ as the reflexive, transitive
closure of →.

We will see later that definition 5 captures exactly
the issue mentioned above: If αabα′ ↔swap

u αbaα′,
then the action sequences αabα′ and αbaα′ should
be indistinguishable for agent u, even though it is
allowed to know whether actions a and b have been
performed. The reason why, intuitively, u should not
have access to this “timing information” is that only
agents w ∈ dom(a)�∩dom(b)� can directly observe
whether a or b is performed first. If no agent that
can observe this information directly performs any
action in α, then, after performing α, the agent u
should not have this information either (unless of
course, u is in the intersection.)

We call strings α, α′ ∈ A∗ order indistinguishable
for u, and write α ≡oi

u α
′, if α ∗↔

swap
u α′.

The following lemma shows that our definition
correctly captures the above intuition. It states that
information about the order of “swappable” op-
erations are indeed hidden from an agent by the
definition of TA-security.

Lemma 2: Let u ∈ D, α, α′ ∈ A∗ with α ↔swap
u

α′, then tau(α) = tau(α
′).

The following corollary combines the above
result and the fact that TA-security implies IP-
security:

Corollary 1: Let be u ∈ D and α, α′ ∈ A∗

with ipurgeu(α) ≡oi
u ipurgeu(α

′), then tau(α) =
tau(α

′).

We now state the result mentioned earlier: TA-
security is, in a very precise sense, IP-security plus
the requirement that agents should not be able to
distinguish between action sequences that are order

204

indistinguishable. The following theorem shows that
the information that an agent is not permitted to
have in the definition of IP-security, in addition to
information already forbidden to it by IP-security, is
exactly the information about the orders of actions
that are “swappable.”

Theorem 1: Let be u ∈ D and α, α′ ∈ A∗. Then
tau(α) = tau(α

′) if and only if ipurgeu(α) ≡oi
u

ipurgeu(α
′).

The characterization obtained by the above theo-
rem is now stated in the following corollary:

Corollary 2: A system M is TA-secure if and
only if it is IP-secure and for every state q, every
agent u, and every a, b ∈ A, α ∈ A∗, if a and
b are swappable in abα, then obsu(q · abα) =
obsu(q · baα).

IV. COMPLEXITY

In this section, we consider the complexity of
algorithmic verification of the notions we have
discussed, in the case of finite state systems.

We show that three of these notions (P-security,
IP-security, and TA-security) are decidable, and in
fact can be decided in polynomial time, and we
prove that TO-security is undecidable.

A. P-security
We show that P-security can be verified in poly-

nomial time. The proof uses a “doubling” con-
struction similar to those that have been applied
elsewhere [9] to show that verifying the simple
(transitive) policy L� H can be done in PTIME.

SC: If s ∼u t then s · a ∼u t · a,
LR: if dom(a) � u then s ∼u s · a.

(Here SC abbreviates “step consistency” and LR
stands for “left respect”) also satisfies “output con-
sistency” defined as

OC: If s ∼u t, then obsu(s) = obsu(t).
This characterization allows us to prove the follow-
ing:

Theorem 2: Given a finite system M = 〈S, s0,
A, step, obs, dom〉 and a (possibly intransitive) non-
interference policy �, it can be decided in time
O(|S|2·|A|·|D|) whether M is P-secure with respect
to �.

Proof: Let R be the smallest subset of S2×D
such that

1) (s0, s0, u) ∈ R
2) if (s, t, u) ∈ R and dom(a) � u, then (s · a, t ·

a, u) ∈ R,
3) if (s, t, u) ∈ R and dom(a) 6� u, then (s ·

a, t, u) ∈ R and (s, t · a, u) ∈ R.
Then we have (s, t, u) ∈ R iff there exists a
sequence α ∈ A∗ such that s = s0 · (α) and
t = s0 ·purgeu(α). Thus M is not P-secure iff there
exists (s, t, u) ∈ R such that obsu(s) 6= obsu(t).
The complexity bound is attained by a depth first
search following the construction of R.

B. IP-security
We present a polynomial time algorithm for veri-

fying IP-security. The algorithm uses the character-
ization of IP-security given by Lemma 1: It checks
if for any u ∈ D, q ∈ S, a ∈ A there is an α ∈ A∗
that leads to states with different observations and
α does not contain an action of a domain from
dom(a)�.

Theorem 3: Given a finite system M =
〈S, s0, A, step, obs, dom〉 and a policy �, it can be
decided in time O(|S|3 · |A|2 · |D|) whether M is
IP-secure with respect to �.

Proof: For any u ∈ D, q ∈ S and a ∈ A
we define the following deterministic finite-state
automaton:

A(u, q, a) = (A′, S × S, (q, q · a),∆, F)

where we set

A′ = A \ {b ∈ A | dom(a) � dom(b)}
∆ = {((s, s′), b, (t, t′))|b ∈ A′, s · b = t, s′ · b = t′}
F = {(s, s′)|obsu(s) 6= obsu(s

′)} .

Applying Lemma 1 it is sufficient to check empti-
ness of the language generated by A(u, q, a) for
every u ∈ D, q ∈ S, a ∈ A. For fixed u, q, a this can
be done in time linear in the number of transitions,
which are bounded by |S|2 · |A|.

Note that the above algorithm is essentially a
reduction to the reachability problem in directed
graphs. It is therefore easy to see that IP-security can
be verified in nondeterministic logarithmic space.
Analogous arguments hold for P-security and TA-
security. Since graph search trivially reduces to

205

these problems, verification of all three security
notions is complete for nondeterministic logarithmic
space.

C. TA-security

We show that, in a similar fashion as IP-security,
TA-security can be verified in polynomial time.
The algorithm relies on the characterization of IP-
security given in Section III-B.

Theorem 4: Given a finite system M =
〈S, s0, A, step, obs, dom〉 and a policy �, it can be
decided in time O(|S|3 · |A|3 · |D|) whether M is
TA-secure with respect to �.

Proof: We use the characterization of TA-
security given by Corollary 2. We first apply the al-
gorithm from Theorem 3 to determine whether M is
IP-secure. If this is not the case, then M also is not
TA-secure. It remains to verify that there is no state
q, actions a, b ∈ A, and sequence α ∈ A∗ that do not
satisfy the conditions from Corollary 2. To verify
this, we proceed in the same way as in the proof
of Theorem 3: For every choice of q, a, b and u
such that dom(a) 6� dom(b) and dom(b) 6� dom(a),
we consider the finite automaton that simulates two
copies of the system M in parallel, one starting in
the state q · ab and the other starting in q · ba. We
check whether in this automaton, there is a state
reachable (via the same action sequence α that does
not contain any element from dom(a)� ∩ dom(b)�)
that has different observations in the two copies.

The considered automaton has a state space of
cardinality |S|2, and has |S|2 · |A| many edges.
Hence a search for a single automaton requires time
|S|2 · |A|. Since the procedure has to be performed
for every possible choice of a, b, q, u, an additional
factor of |S| · |A2| · |D| occurs. Since this running
time dominates the running time of the algorithm
from Theorem 3, this concludes the proof.

D. TO-security

We now prove that TO-security is undecidable.
The proof also shows that the source of the unde-
cidability does not lie in using complex policies,
in fact the problem remains undecidable for a very
simple, small policy.

Theorem 5: It is undecidable whether M is TO-
secure with respect to �, even for a fixed policy
containing 4 domains.

Proof: We prove the undecidability of TO-
security by a reduction from the Post Correspon-
dence Problem [10]. An instance of this problem
consists of a pair of sequences U = U1, . . . , Un and
W = W1, . . . ,Wn of words over an alphabet Σ with
at least two letters. The problem PCP is the set of
such pairs (U ,W) such that there exists a sequence
of indices i1, . . . , ik with 1 ≤ ij ≤ n for each
j = 1, . . . , k, such that Ui1 . . . Uik = Wi1 . . .Wik .
We encode an instance of this problem as a machine
M(U ,W) for the (intransitive) policy for agents
A,B,C,D given by A� C, A� D, B � C and
C � D, such that (U ,W) ∈ PCP iff M(U ,W) is
not TO-secure with respect to �.

Intuitively, in the machine M(U ,W), agent A
guesses a word over Σ, and agent B chooses
whether this word is to be compared to a sequence
of Ui or Wi, and guesses a sequence of indices
used to make the comparison. Agent C observes the
indices guessed by B, and guesses when the word
being constructed is complete. Agent D observes
nothing until C declares the end of the construction,
and then observes whether the word guessed by A
does in fact correspond to the sequence of indices
guessed by B. The definition of TO-secure will be
guaranteed to hold with respect to agents A,B and
C, so the determination as to whether M(U ,W)
is TO-secure depends on how the observations of
agent D relate to the actions and observations of A
and C. More precisely, M(U ,W) has

1) states of the form (p, V, i, x), where
a) p ∈ {U,U ′,W} indicates whether the se-

quence of letters guessed by A is to be
compared with a sequence of Ui (when
p ∈ {U,U ′}) or as a sequence of Wi (when
p = W).

b) V is either a word over Σ which is a prefix
(possibly the empty word ε) of one of the
Ui or Wi, or >. Intuitively, this indicates a
part of the word guessed by A that will be
compared to an index guessed by B. The
case of > represents that an inconsistency

206

has been detected.1

c) i ∈ {0, . . . , n} is either 0 (no activity so far)
or the last index guessed by B,

d) x ∈ {0, 1} is used to represent the state
of the computation, with 0 meaning ongoing
and 1 meaning complete.

2) initial state (U, ε, 0, 0),
3) actions

a) of A: an action a for each a ∈ Σ, corre-
sponding to guessing the letter a

b) of B: an action w (corresponding to the
selection of W) plus an action gi for each
i ∈ {1, . . . , n} (corresponding to a guess of
the index i)

c) of C: an action end
d) of D: none

The transition function is defined as follows. For
all actions b and states s = (p, V, i, x), if x =
1 then we will have step(s, b) = s, i.e., once
the computation has terminated, no action changes
the state. We therefore confine the definitions be-
low to the case x = 0. We make use of two
functions G : {U,U ′,W} → {U,W} defined by
G(U) = G(U ′) = U and G(W) = W , and
F : {U,U ′,W} → {U ′,W} defined by F (U) =
F (U ′) = U ′ and F (W) = W .

In a state (p, V, i, x), the value G(p) captures the
choice of U or W with which to compare the word
being generated by A. Intuitively, both p = U and
p = U ′ represent that the word being processed
is to be compared with the U . This the default,
as indicated in the initial state. The reason for
including U ′ is that agent B is given an opportunity
to switch the system to comparing with W only in
the first step of a run. If it does not act, then the
choice remains with U for the remainder of the run.

In the case of action w, we define
step((p, V, i, 0), w) = (W,V, i, 0) if p = U
and step((p, V, i, 0), w) = (p, V, i, 0) otherwise.
This says that w switches the choice of comparison
to W . That the choice can be made only if
w is the initial action of a run is captured by
defining all other actions b 6= w so that if
step((p, V, i, 0), b) = (p′, V ′, i′, x′) then p′ = F (p).

1Throughout, we use ⊥ to represent undetermined information and
> to represent inconsistency.

For the actions a of A, we define
step((p, V, i, x), a) = (F (p), V ′, i, x), where
V ′ = V · a if V · a is a prefix of G(p)j for
some j, and V ′ = > otherwise. Intuitively, V is
used to collect a fragment of the sequence being
generated by A for comparison with the G(p)j .
We accumulate the fragment while it is a prefix of
such a string, and as soon as this is no longer the
case we flag the inconsistency.

For the actions gj of B, we define
step((p, V, i, 0), gj) = (F (p), V ′, j, 0), where

1) if G(p)j = V then V ′ = ε, and
2) if G(p)j 6= V then V ′ = >.

Intuitively, this captures that the effect of the action
gj is to compare G(p)j with the current fragment of
the string being generated by A. If they are equal,
we reset V to ε in order to check the next fragment.
Otherwise, we flag the inconsistency.

For the action end of C, we define
step((p, V, i, 0), end) = (F (p), V ′, i, 1), where

1) if V = ε then V ′ = ε, and
2) if V 6= ε then V ′ = >.

Intuitively, this action checks that the end is declared
at a time when there is no fragment currently being
processed, and flags an inconsistency otherwise.

The observations are now defined as follows. The
observations of A and B are trivial: obsA(s) =
obsB(s) = ⊥ for all states s. For C, we define

obsC((p, V, i, x)) =

i if V = ε

> if V = >
⊥ otherwise.

Note that this means that for the initial state s0 we
have obsC(s0) = 0. Intuitively, since i records the
last (successful) guess of index for a fragment of
the word being generated by A, we have that C
becomes aware of a guess whenever it is correct,
and can see from its observation ⊥ that a further
fragment is in the process of being constructed.

For D we define

obsD((p, V, i, x))

=

⊥ when x = 0,
G(p) when x = 1, and V = ε and i 6= 0

> when x = 1 and either V 6= ε or i = 0.

Intuitively, this means that D observes ⊥ until C
declares the end of the string, and learns whether

207

U or V fragments were being checked when a
decomposition has been successfully guessed. Oth-
erwise, it learns that the guesses do not match. This
completes the definition of the system M(U ,W).

It can be verified that this reduction is correct and
hence establishes undecidability of TO-security. It is
easy to check that the conditions for TO-security are
satisfied in M(U ,W) for the agents u = A,B,C.
For u = D, the definition is violated iff there exists a
sequence of indices i1, . . . ik such that Ui1 . . . Uik =
Wi1 . . .Wik .

We note that the undecidability result for TO-
security implies that there are no simple unwinding
conditions that are complete for this notion of se-
curity. In particular, any first-order set of conditions
on a collection of binary relations on states can be
checked in PTIME, hence cannot be both sound and
complete.

V. RELATED WORK

The notion of noninterference was first proposed
by Goguen and Meseguer [1]. Early work in this
area was motivated by multi-level secure systems,
and dealt with partially ordered (hence transitive)
information flow policies. The simplest of these
is the two-domain policy with domains L and H
and L � H , but not H � L. Much of the
literature is confined to this simple policy. Even
with this restriction, there exists a large set of
proposed definitions of noninterference [11], [12],
[13], [14], [15]. These definitions generally agree
when applied to deterministic systems, and the dif-
ferences relate to how the definitions should behave
on nondeterministic systems. In addition to state-
observed systems model used in the present paper,
a variety of systems models have been considered,
including action-observed systems, trace semantics,
and process algebraic semantics (both CCS and
CSP flavours). A number of works have sought to
classify the definitions when formulated in a very
general process algebraic setting [14], as well as to
establish formal relations between definitions cast
in different semantic models [8].

The main point of overlap of our work with this
literature is to consider how our results concerning
P-security, when applied to transitive policies, relate
to other algorithmic verification approaches in the

literature for such policies. Our approach here is
similar to other work in the area. In particular, the
idea of running two copies of the system in parallel,
in order to compare two different runs, has been
used before [9]. Other approaches have been devel-
oped for automated verification of noninterference
based on process algebraic bisimulation techniques
[14], [16]. Mantel [17] has characterised many of
the existing definitions of noninterference as com-
positions of a set of Basic Security Properties. The
complexity of verifying these basic properties has
been studied [18]. A few works have considered
richer systems models than finite state systems, e.g.
pushdown systems [19]. We note that our results
in this paper, and in much of the literature, is con-
cerned with asynchronous systems in which agents
are unaware of the passage of time. Some of the
literature deals with synchronous systems, where a
similar spectrum of definitions of noninterference
exists for nondeterminisitic systems. Some recent
work has investigated verification of synchronous
notions of noninterference [20], [21].

Some work on development of tools based on
decidable cases of such definitions of noninterfer-
ence has been performed. Focardi et al. describe
a tool based on process algebraic techniques [22].
Whalen et al. [23] present an approach to model
checking noninterference that is in use at Rockwell
Collins for verification of MILS systems. Their
approach is a mix of model checking and static
analysis, in which a model checker is used to search
through an enriched version of the model in which
labels computed by static analysis are associated to
systems components. They formally prove it to be
sound with respect to a definition of noninterference
from work by Greve, Wilding and van Fleet [24].
While they discuss examples requiring intransitive
policies, they leave details of this for future work.

Since we have confined ourselves in this paper
to deterministic systems, but focus on richer intran-
sitive policies, much of the work discussed above,
which is confined to transitive policies and nonde-
terministic systems, is orthogonal to our concerns.
Algorithmic verification of intransitive noninterfer-
ence has had less attention in the literature. After
the work of Rushby [3], IP-security has generally
been taken to be the definition studied.

Pinsky [25] presents a PTIME procedure for

208

deciding IP-security that, in effect, generates a
relation that is claimed to satisfy Rushby’s un-
winding conditions for transitive noninterference
just when the system is secure. However, in fact
the relation may fail to satisfy the Output Consis-
tency condition, so this claim is incorrect. (Pinsky’s
argument supporting the claim that the relation
satisfies Output Consistency, in the corollary to
Theorem 2, states that SA(basisπ(z), α) is a subset
of view(state action(z, α)). This is correct for
transitive policies, but could be false for intransitive
policies.) That such an approach cannot work for
IP-security also follows from results in [4], where
it is shown that Rushby’s unwinding conditions are
sound also for TA-security, which is a stronger
notion than IP-security. Moreover, an example in
[4] shows that a system may be TA-secure, but no
Rushby unwinding exists on the system (although
one will exist on the infinite state unfolded system,
when the system satisfies TA-security).

Hadj-Alouane et al. [26] also present a decision
procedure for IP-security, but it has complexity
O(2|S|.2

|D|
), which is less efficient than our proce-

dure by two exponentials.
Roscoe and Goldsmith [27] have presented a

critique of IP-security (arguing that it is too liberal
in the information flows it permits), and have pro-
posed two alternate definitions cast in the process
algebra CSP, based on what they call lazy and
mixed abstraction operators. It has been shown by
van der Meyden [28] that the definition based on
lazy abstraction corresponds to P-security, and the
version based on mixed abstraction corresponds to
a definition closely related to TO-security. Roscoe
and Goldsmith give an informal discussion, without
precise complexity results or proof, of algorithms
for deciding “the generalised noninterference condi-
iton”. Based on van der Meyden’s characterization
of the definition based on the mixed abstraction as
related to TO-security, we would conjecture that
this definition is undecidable, and their comments
should be interpreted as concerned (like most of the
preceding content in their paper) just with the lazy
abstraction based definition, and hence comparable
to our PTIME result for P-security.

In practice, definitions of the kind we have stud-
ied are very liberal in the information flows that they
permit: when a (source) domain acts, everything

that it knows (in some sense of knowledge) may be
transmitted to any domain with which the source
is permitted to interfere. In practice, one generally
wants to limit the information that flows from
one domain to another to be just a subset of the
information available to the source.

Approaches to stating policies expressing such
limitations have been developed in the context of
language-based approaches to security, where they
are generally supported by means of sound but in-
complete static analyses [29], [30], [31], [32], [33].
In the existing work, the policy is generally taken to
be L � H with exceptions allowed to H 6� L, or
more generally, a partial order with exceptions. The
system is given by a single, typically deterministic
program, and the focus is on relating initial values
of input variables to final values of output variables,
rather than on what can be deduced from ongoing
observations in the state machine approach we have
considered here.

VI. CONCLUSION

In this paper, we have determined the compu-
tational complexity of verifying whether a finite-
state system satisfies an intransitive noninterfer-
ence security property. The polynomial-time upper
bounds build on new characterizations of two of
the four notion of noninterference dealt with. They
also allow counterexamples (which can be used to
improve the system in question) to be found when
the system is insecure.

We have considered only deterministic systems:
although there have been some attempts [27], [34],
to define intransitive noninterference in nondeter-
ministic systems would seem to require further
attention, particularly in view of issues raised in the
work of van der Meyden [4]. Another open ques-
tion is our conjecture that Roscoe and Goldsmith’s
mixed abstraction-based definition of intransitive
noninterference is undecidable.

It would also be desirable to investigate algo-
rithms and complexity for information flow policies
of the richer types studied in the literature on pro-
gramming languages approaches to declassification,
in order to obtain sound and complete approaches
for such specifications. Since intransitive noninter-
ference policies provide a format for specifying

209

architectural structure of a system, it would be inter-
esting to combine the strengths of the programing
languages perspective and the state machine model
approach we have followed in this paper.

Acknowledgments: Work supported by
Australian Research Council Discovery grant
DP1097203. The second author thanks the Courant
Institute, New York University, for hosting a
sabbatical visit during which this research was
initiated.

REFERENCES

[1] J. Goguen and J. Meseguer, “Security policies and security
models,” in Proc. IEEE Symp. on Security and Privacy, Oak-
land, 1982, pp. 11–20.

[2] J. Haigh and W. Young, “Extending the noninterference version
of MLS for SAT,” IEEE Trans. on Software Engineering, vol.
SE-13, no. 2, pp. 141–150, Feb 1987.

[3] J. Rushby, “Noninterference, transitivity, and channel-
control security policies,” SRI International, Tech.
Rep. CSL-92-02, Dec 1992. [Online]. Available:
http://www.csl.sri.com/papers/csl-92-2/

[4] R. van der Meyden, “What, indeed, is intransitive noninter-
ference?” in European Symposium On Research In Computer
Security (ESORICS), ser. Lecture Notes in Computer Science,
J. Biskup and J. Lopez, Eds., vol. 4734. Springer, 2007, pp.
235–250.

[5] J. Goguen and J. Meseguer, “Unwinding and inference control,”
in IEEE Symp. on Security and Privacy, 1984.

[6] D. E. Denning, “A lattice model of secure information flow,”
Communications of the ACM, vol. 19, no. 5, pp. 263–243, 1976.

[7] C. Boettcher, R. DeLong, J. Rushby, and W. Sifre, “The MILS
component integration approach to secure information sharing,”
in Proc. 27th IEEE/AIAA Digital Avionics Systems Conference,
Oct. 2008, pp. 1.C.2–1–1.C.2–14.

[8] R. van der Meyden and C. Zhang, “A comparison of semantic
models for noninterference,” Theoretical Computer Science,
vol. 411, no. 47, pp. 4123–4147, Oct. 2010.

[9] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information
flow by self-composition,” in CSFW. IEEE Computer Society,
2004, pp. 100–114.

[10] E. Post, “A variant of a recursively unsolvable problem,”
Bulletin of the American Mathematical Society, vol. 52, 1946.

[11] D. Sutherland, “A model of information,” in Proc. 9th National
Computer Security Conf., 1986, pp. 175–183.

[12] J. T. Wittbold and D. M. Johnson, “Information flow in non-
deterministic systems.” in IEEE Symposium on Security and
Privacy, 1990, pp. 144–161.

[13] D. McCullough, “Noninterference and the composability of
security properties,” in Proc. IEEE Symp. on Security and
Privacy, 1988, pp. 177–186.

[14] R. Focardi and R. Gorrieri, “Classification of security properties
(Part I: information flow),” in Foundations of Security Analysis
and Design, FOSAD 2000, Bertinoro, Italy, September 2000,
ser. LNCS, R. Focardi and R. Gorrieri, Eds. Springer, 2001,
vol. 2171, pp. 331–396.

[15] P. Ryan, “Mathematical models of computer security,” in
Foundations of Security Analysis and Design, FOSAD 2000,
Bertinoro, Italy, September 2000, ser. LNCS, R. Focardi and
R. Gorrieri, Eds. Springer, 2001, vol. 2171, pp. 1–62.

[16] R. Focardi and R. Gorrieri, “Automatic compositional verifi-
cation of some security properties,” in Proceedings of Second
International Workshop on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’96), ser. Springer
LNCS, vol. 1055, 1996, pp. 167–186.

[17] H. Mantel, “A uniform framework for the formal specication
and verication of information flow security,” Ph.D. dissertation,
Universitat des Saarlandes, 2003.

[18] D. D’Souza, K. R. Raghavendra, and B. Sprick, “An automata
based approach for verifying information flow properties,”
Electr. Notes Theor. Comput. Sci., vol. 135, no. 1, pp. 39–58,
2005.

[19] D. D’Souza, R. Holla, J. Kulkarni, R. K. Ramesh, and B. Sprick,
“On the decidability of model-checking information flow prop-
erties,” in ICISS, ser. Lecture Notes in Computer Science,
R. Sekar and A. K. Pujari, Eds., vol. 5352. Springer, 2008,
pp. 26–40.

[20] B. Köpf and D. A. Basin, “Timing-sensitive information flow
analysis for synchronous systems,” in Proc. European Symp. on
Research in Computer Security, ser. Springer LNCS, vol. 4189,
2006, pp. 243–262.

[21] F. Cassez, R. van der Meyden, and C. Zhang, “The complex-
ity of synchronous notions of information flow security,” in
FoSSaCS 2010, 13th International Conference on Foundations
of Software Science and Computation Structures, ser. Springer
LNCS, vol. 6014, 2010, pp. 282–296.

[22] R. G. Riccardo Focardi and V. Panini, “The security checker: a
semantics-based tool for the verification of security properties,”
in Proceedings of Eighth IEEE Computer Security Foundations
Workshop (CSFW’95), 1995, pp. 60–69.

[23] M. W. Whalen, D. A. Greve, and L. G. Wagner, “Model check-
ing information flow,” in Design and Verification of Micropro-
cessor Systems for High-Assurance Applications, D. Hardin, Ed.
Springer-Verlag, Berlin Germany, March 2010.

[24] D. Greve, M. Wilding, and M. Vanfleet, “A separation kernel
formal security policy,” in Proc. Fourth International Workshop
on the ACL2 Theorem Prover and Its Applications, 2003.

[25] S. Pinsky, “Absorbing covers and intransitive non-interference.”
in Proc. IEEE Symp. on Security and Privacy, 1995, pp. 102–
113.

[26] N. Hadj-Alouane, S. Lafrance, F. Lin, J. Mullins, and M. Yed-
des, “On the verification of intransitive noninterference in mul-
tilevel security,” IEEE Trans. on Systems, Man and Cybernetics,
Part B, vol. 35, no. 5, pp. 948– 958, Oct. 2005.

[27] A. W. Roscoe and M. H. Goldsmith, “What is intransitive
noninterference?” in IEEE Computer Security Foundations
Workshop, 1999, pp. 228–238.

[28] R. van der Meyden, “A comparison of semantic models for in-
transitive noninterference,” Dec 2007, unpublished manuscript,
available at http://www.cse.unsw.edu.au/∼meyden.

[29] H. Mantel and D. Sands, “Controlled declassification based on
intransitive noninterference,” in Proc. Asian Symp. on Program-
ming Languages and Systems, ser. LNCS, vol. 3302. Springer-
Verlag, Nov. 2004, pp. 129–145.

[30] A. Sabelfeld and D. Sands, “Dimensions and principles of
declassification,” in Proceedings of the 18th IEEE Computer
Security Foundations Workshop. IEEE Computer Society
Press, 2005, pp. 255–269.

[31] S. Chong and A. C. Myers, “Security policies for downgrading,”
in 11th ACM Conf. on Computer and Communications Security
(CCS), Oct 2004.

[32] A. Banerjee, D. A. Naumann, and S. Rosenberg, “Expressive
declassification policies and modular static enforcement,” in

210

IEEE Symposium on Security and Privacy. IEEE Computer
Society, 2008, pp. 339–353.

[33] A. C. Myers, A. Sabelfeld, and S. Zdancewic, “Enforcing robust
declassification,” in CSFW. IEEE Computer Society, 2004, pp.
172–186.

[34] D. von Oheimb, “Information flow control revisited: Noninflu-
ence = Noninterference + Nonleakage,” in Computer Security
– ESORICS 2004, ser. LNCS, vol. 3193, 2004, pp. 225–243.

211

