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Abstract—We present Relational Hoare Type Theory (RHTT),
a novel language and verification system capable of expressing
and verifying rich information flow and access control policies
via dependent types. We show that a number of security policies
which have been formalized separately in the literature can
all be expressed in RHTT using only standard type-theoretic
constructions such as monads, higher-order functions, abstract
types, abstract predicates, and modules. Example security policies
include conditional declassification, information erasure, and
state-dependent information flow and access control. RHTT can
reason about such policies in the presence of dynamic memory
allocation, deallocation, pointer aliasing and arithmetic. The
system, theorems and examples have all been formalized in Coq.
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I. INTRODUCTION

Several challenges persist in existing work on specification

and enforcement of confidentiality policies. First, many practi-

cal applications require a combination of a number of different

classes of policies: authentication, authorization, conditional

declassification, erasure, etc. Yet, most existing systems are

tailored for enforcing specific classes of policies in isolation.

Second, where policy combinations have been considered

(e.g. [4, 7, 12]), policy conformance is typically formalized

for simple languages without important programming features

such as dynamic allocation, mutable state and pointer aliasing,

or without modern modularity mechanisms that aid program-

ming in the large. There has been little work on confidentiality

policies pertaining to linked data structures (lists, trees, graphs,

etc.), and even less work exists for structures that are heteroge-

neous; that is, structures that contain mixed secret and public

data as well as mixed secret and public links. Third, despite

their efficiency, enforcement mechanisms are often imprecise

in their handling of implicit information flow (that arises due

to program control structures such as conditionals or procedure

calls) and reject perfectly secure programs.
In this paper we revisit the foundations of information

flow — its specification as well as its static enforcement

— and address the above challenges of policy specificity,

language expressiveness and precision, simultaneously. The

key insight of our work is that all the three problems can be

addressed using standard linguistic features from dependent

type theory [24]: (a) higher-order functions, abstract data

types and modules, that provide for software engineering

concepts such as abstraction and information hiding, and (b)

a logic for higher-order assertions, including quantification

over predicates, that serves as the foundation for a rich policy

specification language. We additionally consider an extension

of dependent types with (c) general recursion, mutable state,

dynamic allocation, and pointer aliasing. We use the dependent

types as a policy specification language, and typechecking

(i.e., program verification) to enforce conformance of pro-

grams to policy. As is standard in type theory, we assume

that programs are typechecked before they are executed.

As our first contribution, we show that a number of security

policies which have been previously considered in isolation,

such as declassification [14, 39], information erasure [15, 16],

state-dependent access control [11, 12] and state-dependent

information flow policies [7], can be combined in the same

system using the mentioned type-theoretic abstractions. We

explain this point further below, and illustrate it through

several verified examples in the paper.

As our second contribution, we show that these policies can

be enforced in the presence of dynamic allocation, dealloca-

tion, and pointer aliasing, and in particular, over programs

involving linked, heterogeneous data structures. To achieve

this, we employ a semantic definition of what constitutes

confidential (high) vs. public (low) data, in contrast to most

related work where variables are syntactically labeled with a

desired security level [28, 45]. The semantic characterization

allows the same variable or pointer to contain data of different

security levels at different points in program execution, which

gives us the needed flexibility of enforcement. The semantic

characterization also facilitates precise specification of pro-

grams with implicit information flow such as procedure calls

or (possibly nested) conditionals.

Our third and technically central contribution is a novel

verification system, Relational Hoare Type Theory (RHTT),

that integrates a programming language and a logic into a

common substrate underlying all of (a)–(c) above. In more

detail, RHTT provides (a) and (b) by including the type

theory of the Calculus of Inductive Constructions (CiC) [25,

Chapter 4], as implemented in the Coq proof assistant. To

provide for (c), RHTT introduces a new type constructor

STsec, which classifies side-effectful computations similar

to Haskell monads [34], except that the STsec monad is

indexed with a precondition and a postcondition, as in a Hoare

triple. STsec types separate the imperative from the purely

functional fragment of the type theory, ensuring soundness of

2011 IEEE Symposium on Security and Privacy

1081-6011/11 $26.00 © 2011 IEEE

DOI 10.1109/SP.2011.12

165



their combination.

RHTT’s preconditions specify constraints on the environ-

ment under which it is safe to run a program, and can

be used to enforce authentication and authorization policies,

even when they depend on state. RHTT’s postconditions are

relational assertions; they specify the behavior of two runs of a

program [1]. The relational formulation directly captures in the

types the notion of noninterference [18], a prominent semantic

characterization of confidentiality. Together with higher-order

type theory, this provides an architecture for uniform treatment

of all the policies mentioned above.

For example, we show that the fundamental linguistic ab-

stractions required to specify and implement declassification

are STsec types, modules and abstract predicates. A module

can be used to delimit the scope in which data is considered

public, by hiding the publicity of the data from module clients

via existential type abstraction [26]. Then declassification

amounts to breaking the abstraction barrier by an exported

interface method that reveals this in-module publicity. This is

orthogonal to revealing the data itself. The latter can always be

done even without declassification, but the clients will have to

use such data as if it were confidential. Declassification may

be unconditional or conditional [7], where the condition might

be stateful and involve, e.g., authentication.

In information erasure policies [15, 16] confidential data

may be released within a delimited scope, provided there is

a guarantee that such data will be erased upon exit from the

scope. We show that such policies can be specified using a

combination of higher-order functions with local state, mod-

ules and abstract predicates. The key facilitating component

here is that STsec types may appear in argument positions in

function types, which is similar to having Hoare logic where

one can reason about Hoare triples hypothetically wrt. the truth

of other Hoare triples. A similar combination of features can

be used to grant a method access to data only if the method

provably conforms with some desired confidentiality policy.

Finally, state-dependent information flow and access control

policies require abstract predicates combined with mutable

state. This allows expressing security policies that can change

with time due to state updates [43].

Our development of RHTT overcomes a number of techni-

cal challenges. First, for relational reasoning to be applicable

at all, the type system must give special status to instantiations

of a program e with high values. The special status is

needed so that the same postcondition of e can relate e’s

different instantiations. Our solution is to introduce new typing

and programming primitives for abstraction and instantiation

wrt. a number of variables, simultaneously (Section II). This

illustrates why our type system had to be developed hand-

in-hand with the associated relational verification logic, as

each must possess the requisite constructs to facilitate the

other. The second challenge concerns the semantic treatment

of allocation and deallocation, pertaining to dynamic data

structures. Existing techniques [1, 6] for modelling allocation

in the relational security setting cannot cope with deallocation;

hence the need for two different allocators — one for low and

another for high addresses (Section III).

In a companion technical report [29] (TR in the sequel)

we develop a logic for relational reasoning about RHTT pro-

grams, and a worked out verification of an example program.

Inference rules of the logic have been verified sound against

a semantic model, and are formally implemented as lemmas

in RHTT. The soundness of our program logic, the domain

theoretic implementation of our semantic model, as well as

all of our examples, have been fully and formally verified in

Coq. Additional technical difficulties arise in this process, but

we elide them here for readability. The interested reader is

invited to look at our Coq proofs, and the companion TR,

which are available at http://software.imdea.org/∼aleks/rhtt/.

II. RHTT BY EXAMPLES

Overview: As suggested by the introduction, this paper

assumes understanding of the following aspects of type theory:

(1) Dependent function types, used to specify how the body of

a function depends on the input arguments. To illustrate, con-

sider the type vector(n), of integer-storing arrays. This type

is dependent on the size parameter n . A function computing

the inner product of two vectors can be typed as

Πn:nat. vector(n)× vector(n)→ nat

capturing the invariant that that the argument vectors must be

of equal size. In RHTT, dependent function types naturally

arise when specifying any kind of program behavior. (2)

Module systems (including abstract types and predicates),
for information hiding, and as we show, declassification. (3)

Inductive types, for specifications of programs that manipulate

(possibly heterogeneous) data structures such as lists, trees,

etc.

To use RHTT in practice, it is further important to be

familiar with some implementation of type theory (our chosen

one is Coq [25], but others exist too), as one needs to

interact with the system to discharge verification conditions.

Our presentation in this paper does not include such interaction

aspects, and hence does not assume familiarity with Coq.

RHTT basics: types, specifications, opaque sealing: To

begin with, our types must be able to express at least noninter-

ference: that low outputs of a computation are independent of

high inputs. To illustrate, assume a function f :A2→A2, where

A2=A×A. Also, let e.1 and e.2 denote resp. the first and the

second component of the ordered pair e . Then, mathematically,

f ’s first output is independent of f ’s second argument iff

∀x1 x2 y1 y2. x1 = x2 → f (x1, y1).1 = f (x2, y2).1

In other words, in two runs of f , equal x inputs, lead to equal

f (x , y).1 outputs. This relational statement of independence

can be viewed as a definition of noninterference in terms

of f alone [1, 9], without recourse to outside concepts such

as security lattices [8, 17]. Consequently, inputs and outputs

related by equality in the two runs of f are considered low

(x and f (x , y).1 above), and the unconstrained values (y and

f (x , y).2) are by default considered high. So defined, the

notions of low and high security are intrinsic to the considered
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specification, rather than to the code itself; one is free to

consider statements about f in which the inputs and outputs

take other security levels.

In RHTT, program specifications are stated using a monadic
type STsecA (p, q), which classifies heap-manipulating, po-

tentially diverging computations e whose return value has type

A. e’s precondition p is a predicate over heaps, i.e., function

of type heap→prop. The reader can roughly think of prop as

type bool which in addition to the usual logical operations

supports quantifiers as well. The precondition selects a set of

heaps from which e’s execution will be memory-safe (e.g.,

there will be no dangling-pointer dereferences or run-time

type errors). This automatically provides a mechanism for

controlling access to heap locations, in a manner identical to

that of separation logic [35]: e may only access those locations

that are provably in all the heaps satisfying e’s precondition,

or that e allocated itself. We will illustrate access control via

preconditions in subsequent examples (see, e.g., Example 4).

The postcondition q relates the output values, input heaps

and output heaps of any two terminating executions of e . Thus

q has the type A2→heap2→heap2→prop. The postcondition

does not apply if one or both of the executions of e are

diverging. In that respect, our type system is termination
insensitive [38]. While p controls access to locations x , we

use q to implement information flow policies about x . This

is why q is a predicate over two runs. For example, q may

specify that x is low, so that e may freely propagate x ’s value.

Or x may be high, requiring that all x -dependent outputs of

e must be high too. Or x may be high but q may require all

of e’s final heap to be low, in which case e must deallocate

or rewrite any portion of its final heap that depends on x .

RHTT is implemented via shallow-embedding into Coq,

which it extends with STsec types. In the implementation

of STsec types in Coq, we rely on the ability of Coq

modules to perform opaque sealing [19, 22]; that is, hiding

the implementations of various values within a module, while

only exposing their types, thus forcing the clients of the

module to be generic with respect to implementations of the

module. Moreover, the actual implementations of opaquely-

sealed functions, types and propositions cannot be recovered

by clients, because RHTT does not contain constructs for

pattern-matching (i.e., making observations) on the structures

of such values.

We point out that our types can only describe the properties

of the input and output states of the program (via pre- and

postconditions), but not of intermediate states. Although this

is not a significant limitation for a sequential, non-reactive

language like RHTT, further work in this direction is left for

future work.

Syntax, heaps, implicit flow: Consider the following

program, P1, adapted from Terauchi and Aiken [44], and

presented here in a Haskell-like notation. We use side-effecting

primitives such as write x y , which stores the value y into

the location x ; read x , which returns the contents of x ; and

x ← e1; e2, which sequentially composes e1 and e2, binding

the return value of e1 to x . In future examples, we will also

use alloc x , which returns a fresh memory location initialized

with x ; and dealloc x , which deallocates the location x from

the heap. Additionally, we use do to delimit the scope of the

side-effectful computations. Our actual syntax implemented in

Coq differs somewhat from the one here in the treatment of

variable binding, an issue we ignore for the time being but to

which we return in Section III. Further, we freely use all the

constructors inherited from CiC and Coq, such as for example,

functions (fun), and dependent function type constructor (Π).

P1 =̂ fun x y z lo hi :ptr.
do (write z 1; b ← read hi ;

if b then write x 1 else (w ← read z ;write x w);
u ← read x ; v ← read y ;
write lo (u + (v mod 10)))

Pointers x , y , z , lo store integers, and hi stores a boolean. The

policy is: contents of lo and y are low at program input and

output, while contents of x , z , hi are high. P1 satisfies the

policy because: (1) the value of y is not modified, and (2) the

value of lo is modified to store the sum of the contents of x
and the contents of y modulo 10, but this sum is independent

of high data: at the time of writing lo, x has been rewritten

by 1 in both branches of the conditional. Thus, P1 can be

ascribed the following dependent type, U .

U =̂ Πx y z lo hi : ptr. STsec unit
(fun i . ∃u v w c:nat. b:bool. j :heap.

i = x �→ u • y �→ v • z �→w • hi �→ b • lo �→ c • j ,
fun rr ii mm.
(ii .1 lo = ii .2 lo)→ (ii .1 y = ii .2 y)→
(mm.1 lo = mm.2 lo ∧mm.1 y = mm.2 y))

The precondition states that P1 must start in an initial heap i
containing the five pointers x , y , z , lo, hi , with appropriately-

typed contents. The heap i may be larger still; this is stated

by existentially quantifying over the heap variable j . Heaps

are (finite) maps from pointers to values; x �→ u is a singleton

heap containing only the location x storing value u; and • is

disjoint heap union. The precondition insists that i be a disjoint

union of smaller singleton heaps; hence there be no aliasing

between the five pointers. The postcondition binds over three

variables rr :unit2, ii ,mm:heap2 which are, respectively, the

pair of return values, the pair of initial heaps and the pair of

ending heaps for the two runs of P1. The postcondition states

that if the contents of lo and y in the two initial heaps are

equal (hence low), then they are low in the output heaps too.

Other types for P1 are possible too. For example, we may

specify that only the last digit of y is low, by replacing ii .1 y
with (ii .1 y) mod 10 in the postcondition, and similarly with

ii .2, mm.1 and mm.2. Or, the postcondition may state that

the contents of x and z are low at the end of P1, though

not at the beginning. RHTT (like [1]) can deem arbitrary

expressions as low, even though they may have high subparts.

The only requirement is that the values of the expressions

in two runs are the same. Because we are considering full

functional verification, which STsec type a program should

have is a matter of programmer’s choice. The system merely
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issues a proof obligation that the desired type is indeed valid,

to be discharged interactively, using the logic we outline in the

TR (Section 4). This proof obligation may not only be about

security but also may concern full functional correctness.
Opaque sealing: The ascription of STsec types in RHTT

is opaque, as mentioned earlier in this section. Even if program

execution makes more values low, this knowledge cannot be

utilized by clients if it is not exposed in the postcondition. For

example, using P1’s type U , program

P2 =̂ fun x y z lo hi . do (P1 x y z lo hi ; t ← read x ; return t),

cannot be given a type in which t is low, because the

postcondition in U does not expose the property that x is

low at the end of P1.
Local contexts: While the STsec type of P1 classifies the

security of the contents of x , y , z , lo, hi , it cannot classify the

pointer addresses themselves, as the latter requires discerning

the address names in the two different runs (e.g., x .1 and

x .2). We therefore extend the STsec constructor with a local
context, which is a list of types of the variables we consider

local to the computation. For example, the type for P1 in which

the five pointer addresses are high, even though the contents

of lo and y are low, can be written as follows, using the list

[ptr, ptr, ptr, ptr, ptr] as the local context.

STsec [ptr, ptr, ptr, ptr, ptr] unit
(fun x y z lo hi :ptr. i :heap.
∃u v w c:nat. b:bool. j :heap.

i = x �→ u • y �→ v • z �→w • hi �→ b • lo �→ c • j ,
fun xx yy zz llo hhi :ptr2. rr :unit2. ii mm:heap2.
ii .1 llo.1 = ii .2 llo.2→ ii .1 yy .1 = ii .2 yy .2→
mm.1 llo.1 = mm.2 llo.2 ∧mm.1 yy .1 = mm.2 yy .2)

The type of the precondition (and similarly for postconditions)

now changes to ptr5→heap→prop, so that we can bind

additional names for the pointers x , y , . . . in the precondition,

and pairs of pointers xx , yy , . . . in the postcondition. The

program syntax changes too, as the local variables now have to

be bound within the scope of do. In other words, our program

now looks like P3 =̂ do (fun x y z lo hi .write z 1; . . .).

Remark 1. Ordinary function arguments, corresponding to the

→ and Π-types, can be viewed as a special kind of STsec-local

arguments, where the security level is low by default. Indeed,

any function f :Πx :A. STsec Γ (p x , q x ) can be transformed

into

do (fun x γ1 . . . γn . f x γ1 . . . γn) :
STsec (A::Γ) B
(fun x γ1 . . . γn . p x γ1 . . . γn ,
fun xx γγ1 . . . γγn yy ii mm.

xx .1 = xx .2→ q xx γγ1 . . . yy ii mm)

Here, the variables γ1, . . . , γn are typed with types from the

local context Γ, and the postcondition explicitly declares x to

be low, by inserting the hypothesis xx .1= xx .2. To summarize,

function arguments are always low, whereas variables in local

contexts may be low, high, or subject to a more precise security

specification, depending on the postcondition.

Example 1 (Nested conditionals). The following program is

adapted from Simonet [40]. It uses low arguments a, b, c, u, v ,

and a high argument x which is declared in the local context

but is unrestricted by the postcondition. It nests two condition-

als to compute the final result, but the result is independent

of x , and hence is low. Owing to the non-trivial implicit

control flow, however, most security type systems will not

be able to establish this independence and typecheck the

example accordingly. Simonet’s type system for sum types can
typecheck the example using types annotated with matrices

containing security levels. In contrast, in RHTT the type can

precisely describe the final result, y , as a function of the inputs:

y =̂ (a = c) || (b= c) || u || v . Clearly y does not depend on

x and we prove that y is low by proving that yy .1 = yy .2 in

the postcondition.

P4 : Πa b c u v :bool. STsec [bool] bool
(fun x i .True,
fun xx yy ii mm. yy .1 = yy .2 ∧mm = ii ∧
yy .1 = (a = c) || (b = c) || u || v) =̂

fun a b c u v .
do(fun x . t ← if u then

if x then return a else return b
else

if v then return a else return c;
return ((t = a) || (t = b)))

Example 2 (Access control through abstraction). What if we

want to allow read access, but not write access to some data

(or vice-versa), or that access should be made conditional

upon successful authentication? To enforce this kind of access

control, we employ the standard abstraction mechanisms of

type theory, such as abstract types, predicates and modules.

The data to be protected can be hidden behind module

boundaries, so that it can be accessed only via dedicated

methods that enforce access control. For example, let Alice be

a module storing some integer data, say salary, whose integrity

should be enforced: Alice allows the salary to be readable

globally, but only Alice herself can update it, to keep the

value coherent with promotions at work. Thus, she exports

unconstrained functions for creating new instances and for

reading the salary, but the function for writing requires a check

against a password that is also stored locally. The signature,

AliceSig in Figure 1, presents the specifications that Alice

wants to export, and a possible module implementing AliceSig
by keeping two local pointers – one for the salary, one for

the password – is given in Figure 2. Referring to Figure 2,

the method new takes a nat salary and a string password,

and generates a new instance of Alice, initialized with this

data; read salary takes a local-context argument representing

Alice, and returns her current salary; write salary takes a new

salary, a password, and an alice argument in the local context,

and updates the salary only if the supplied password matches

the password stored in the alice argument. Referring back to

Figure 1, AliceSig specifies an abstract type alice, abstract

predicates sshape and shape, a relation, srefl, between shape
and sshape, and the types of the methods. Although these
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alice : Type
sshape : alice2 → nat2 → string2 → heap2 → prop
shape =̂ fun a s p h. sshape (a, a) (s, s) (p, p) (h, h)
srefl : ∀aa ss pp ii . sshape aa ss pp ii →

shape aa.1 ss.1 pp.1 ii .1 ∧ shape aa.2 ss.2 pp.2 ii .2
new : nat→ string→ STsec nil alice
(fun i .True,
fun aa ii mm.
∃ss pp hh.mm = ii •• hh ∧ sshape aa ss pp hh)

read salary : STsec [alice] nat
(fun a i . ∃s p j h. i = j • h ∧ shape a s p j ,
fun aa yy ii mm. ∀ss pp jj hh.

ii = jj •• hh → sshape aa ss pp jj →
mm = ii ∧ yy = ss)

write salary : nat→ string→ STsec [alice] unit
(fun a i . ∃s p j h. i = j • h ∧ shape a s p j ,
fun aa qq yy ii mm. ∀ss pp jj hh.

ii = jj •• hh → sshape aa ss pp jj →
∃jj ′ ss ′.mm = jj ′ •• hh ∧ sshape aa ss ′ pp jj ′)

Fig. 1. AliceSig: access control via abstract predicates.

type alice =̂ ptr × ptr
salary (a : alice) =̂ a.1
passwd (a : alice) =̂ a.2

sshape (aa : alice2) (ss : nat2) (pp : string2) (ii : heap2) =̂
ii .1 = salary aa.1 �→ ss.1 • passwd aa.1 �→ pp.1 ∧
ii .2 = salary aa.2 �→ ss.2 • passwd aa.2 �→ pp.2 ∧

ss.1 = ss.2 ∧ pp.1 = pp.2

new s p =̂ do (x ← alloc s; y ← alloc p; return (x , y))

read salary =̂ do (fun a. read (salary a))

write salary s p =̂
do (fun a. x ← read (passwd a);

if x = p then write (salary a) s else return ())

Fig. 2. Implementation of AliceSig.

figures may look complicated, the reader should bear in mind

that they are intended for full functional verification. Also, the

definitions of the various abstract predicates and types such as

sshape, shape and alice, will be hidden from the clients, and

do not contribute to the complexity.

The sshape predicate is a relational invariant of the module’s

local state (i.e., invariant over two runs). It is parametrized

over pairs of alices, nat salaries, string passwords, and heaps

that are current during execution. The parametrization by all

these values captures that different instances of Alice that

may be allocated at run time all have different local states,

which can potentially store different salaries and passwords.

If we were not interested in tracking the changes to salaries

and passwords, but only in restricting write access, then these

can be omitted from sshape, resulting in fewer quantifiers and

hence simpler STsec types for the methods.

For use in preconditions for access control, we employ the

non-relational variant shape which is a diagonal of sshape, as

constrained by srefl. Recall that a computation in RHTT can

access locations only in those heaps that provably satisfy its

precondition. Correspondingly, a method that wants to access

Alice’s local state, has to describe the desired parts of that state

in its own precondition. This is why AliceSig keeps sshape and

shape abstract. The abstraction hides the layout of Alice’s local

state from the clients, thus preventing them from describing

the layout in their preconditions and forcing them to access

Alice’s local state exclusively via the exported methods. Apart

from giving code for the methods, the implementation also

provides a proof of srefl (elided here, but present in the Coq

scripts).

The STsec types in Alice’s methods describe several ad-

ditional properties. For example, that the local state of each

instance of Alice is disjoint from that of another instance. For

new, this is achieved by stating that the pair of ending heaps

mm extends the initial ones ii by newly allocated sections hh
(mm = ii •• hh). Here •• generalizes the disjointness operator
• to pairs of heaps, that is, (i1, i2) •• (h1, h2)= (i1 • h1, i2 • h2).
For read salary, we allow that the state in which the function

executes be larger than the module’s local state by allowing

ii = jj •• hh where jj names the local state and hh is the

potential global part. For write salary we require that the

global part, hh , remain invariant, but the local part may be

changed by storing the new salary.

Finally, the specifications expose that read salary does not

change Alice’s local state (mm = ii in the postcondition). On

the other hand, write salary may change the salary field, but

not the password field, as the sshape predicate changes from

using the salary ss to using ss ′, but pp persists.

Notice that the salary and password arguments in new and

write salary are ordinary function arguments, whereas alice is

in the local context of STsec in read salary and write salary.

Thus, within the scope of Alice’s methods, the salary and the

password are low (c.f. Remark 1) whereas the alice argument

is high because it is unconstrained by the methods’ pre- and

postconditions. Of course, as far as clients of AliceSig are

concerned, all three of these are high: the abstraction over

sshape hides all relations between the stored values.

Example 3 (Declassification). One consequence of making

salary and password internally low is that whenever a new in-

stance of Alice is allocated, or a salary of an existing instance

is changed, the salary and password have to be computed

only out of low arguments – it is not possible for Alice

to store confidential data into her local fields. Additionally,

the specifications of new and write salary must hide that the

stored salary and password are equal to the supplied ones. The

latter are internally low, while the former are to be externally

high. The hiding is achieved by existential quantification over

ss and pp in the postcondition of new, and over ss ′ in the

postcondition of write salary.

Alice can use the internal knowledge that salary and pass-

word are low, to implement and export an additional function

which declassifies her salary – that is, reveals the internal

knowledge that the salary is low. This declassification can be

based on arbitrary conditions – say, it is only granted if a
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rreadable : alice2 → heap2 → prop
readable =̂ fun a h. rreadable (a, a) (h, h)
rrefl : ∀aa ii . rreadable aa ii →

readable aa.1 ii .1 ∧ readable aa.2 ii .2
grant : STsec [alice] unit
(fun a i . ∃s p j h. i = j • h ∧ shape a s p j ,
fun aa yy ii mm. ∀ss pp jj hh.

ii = jj •• hh → sshape aa ss pp jj →
∃jj ′.mm = jj ′ •• hh ∧ sshape aa ss pp jj ′ ∧

rreadable aa jj ′)
revoke : STsec [alice] unit
(fun a i . ∃s p j h.

i = j • h ∧ shape a s p j ∧ readable a j ,
fun aa yy ii mm. ∀ss pp jj hh.

ii = jj •• hh → sshape aa ss pp jj →
∃jj ′.mm = jj ′ •• hh ∧ sshape aa ss pp jj ′)

read salary : STsec [alice] nat
(fun a i . ∃s p j h.

i = j • h ∧ shape a s p j ∧ readable a j ,
fun aa yy ii mm. ∀ss pp jj hh.
ii = jj •• hh → sshape aa ss pp jj →

mm = ii ∧ yy = ss)

Fig. 3. Extension of AliceSig with state-based read access.

correct password has been supplied.

declassify : Πp:string. STsec [alice] bool
(fun a i . ∃s q j h. i = j • h ∧ shape a s q j ,
fun aa yy ii mm. ∀ss qq jj hh.

ii = jj •• hh → sshape aa ss qq jj →
∃jj ′.mm = jj ′ •• hh ∧ sshape aa ss qq jj ′ ∧

yy .1 = yy .2 ∧ yy = (p = qq .1, p = qq .2) ∧
yy .1→ ss.1 = ss.2) =̂

fun p. do (fun a. x ← read (passwd a); return (p = x ))

The code of declassify checks if the supplied password

equals the stored one, and returns the corresponding boolean.

declassify does not return the value of the salary; for that,

one has to use read salary, but the specification of declassify
shows that the salary is low if declassify returned true
(yy .1→ ss.1= ss.2). This is possible because the low-status

of the salary has been hardwired into the implementation of

sshape, and Alice can reveal it at will.

Example 4 (State-based policies). Alice can implement poli-

cies that change depending on her local state. For example,

she may control the granting of read access with functions

grant and revoke, as specified in Figure 3. These enable and

disable reading by, respectively, adding and removing a new

abstract predicate – rreadable – from the knowledge exposed

about Alice’s local state. Typically, such functions require

authentication, but for simplicity, we forgo that aspect. The

postcondition of grant exposes that the newly obtained state

jj ′ is readable, while revoke omits this property, thus revoking

the read access. To associate the predicate with reading, the

specification of read salary has to require a proof of readable.

The signature keeps rreadable abstract, so that the only

bbshape : bob2→G2→heap2→prop
bshape =̂ fun b k t . bbshape (b, b) (k , k) (t , t)
brefl : . . . (* similar to srefl *)

epre (a : alice) (b : bob) (j i : heap) =̂
∃s p k t h. i = j • t • h ∧ shape a s p j ∧ bshape b k t

epost aa bb jj yy ii mm =̂
∀ss pp kk tt hh. ii = jj •• tt •• hh →

sshape aa ss pp jj → bbshape bb kk tt →
∃jj ′ tt ′.mm = jj ′ •• tt ′ •• hh ∧ sshape aa ss pp jj ′ ∧

bbshape bb (bcmp kk .1, bcmp kk .2) tt ′ ∧
(tt .1 = tt .2→ tt ′.1 = tt ′.2)

Fig. 4. Some definitions for conditional access and erasure policies.

way readable can be derived is if rreadable has been placed

into the proof context by a previous call to grant, without

an intervening revoke. The signature can be implemented by

extending Alice’s state with an additional boolean pointer that

is set and reset by grant and revoke: rreadable is in force

once the boolean is set true. Our Coq scripts provide several

different implementations of this interface.

Example 5 (Conditional access and erasure policies). Suppose

Alice wants to download a program from Bob for computing

tax returns. Alice is willing to let Bob access her local state

and read her salary directly using read salary, but wants to

prevent Bob from stealing her secret by copying it into his

own local state. Alice may insist that Bob not keep any local

state, or that he deallocate all of it before termination. But this

is too restrictive, for Bob may want to keep in his local state

a count of how many times his program has executed. Such

local state should be allowed to escape the function call as it is

independent of Alice’s salary. In RHTT, Alice can formulate

such a permissive policy.

We start the description of Alice’s specification by as-

suming that bob is an abstract type representing Bob’s lo-

cal state (usually implemented as the set of root pointers

for Bob’s local state). G is another abstract type repre-

senting the values that Bob keeps in his local state. For

example, if Bob wants to count how many times his pro-

gram has been invoked, then G = nat. Further, we assume

bbshape:bob2→G2→heap2→prop is an abstract predicate

describing Bob’s local state, and bcmp:G→G describes how

Bob’s local state changes within one function call. In the

counting example, bcmp will be the program Bob needs to run

over both Alice’s and Bob’s local heap. The initial heaps i for

his program can therefore be split in three ways: j belonging

to Alice, t belonging to Bob, and the remainder h that is

untouched. Predicate epre in Figure 4 describes this situation.

On the other hand, epost states that Bob’s local state tt ′ at

the end stores the correct statistics (bcmp of kk .1 and kk .2),

and if Bob’s initial local state tt is assumed low, then tt ′ is

low as well. In other words, Bob did not copy into tt ′ any of

the high values that he may have read from Alice. A program

that requests read access to Alice’s local store, and respects
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the described policy has the type

T =̂ STsec [alice, bob] nat
(fun a b i . ∃j . readable a j ∧ epre a b j i ,
fun aa bb yy ii mm. ∀jj .

rreadable aa jj → epost aa bb jj yy ii mm)

Alice now wants to ratify programs with type T by granting

them read access to her salary. She can do so by exporting

from her module a function ratify which removes readable
from T , much like the grant program would do. After that,

Bob’s program can execute without needing special reading

privileges. In this respect, ratify is a higher-order function

because in its type, STsec appears in a negative (argument)

position. ratify can be said to implement a conditional access

policy, because it grants access only after Bob supplies a proof

that his program satisfies the type T , i.e., the program does

not leak Alice’s salary.

ratify : T →
STsec [alice, bob] nat
(fun a b i . ∃j . epre a b j i ,
fun aa bb yy ii mm.

∀jj . epost aa bb jj yy ii mm) =̂
fun e : T . do (fun a b. e a b)

This specification can be instantiated in several ways,

by choosing different values for bob, G , bbshape and

bcmp. For example, if bob =̂ ptr, G =̂ nat, bcmp =̂ succ and

bbshape bb kk tt =̂ (tt .1=bb.1 �→ kk .1∧ tt .2= bb.2 �→ kk .2)
then Bob’s program keeps a single pointer whose content is

incremented by 1 after every execution.

Bob’s program which computes the tax of 24% of Al-

ice’s salary, while also keeping its invocation count, can be

implemented and then immediately ratified by the following

function call. Notice that by the type of ratify, the return

value of Bob’s program is high as there is no requirement

yy .1= yy .2 in epost. Hence, the fact that this value is a

function of Alice’s salary, is not a security leak.

ratify (do (fun a:alice b:bob.
x ← read salary a; k ← read b;
write b (k + 1); return (x ∗ 24%)))

Suppose Bob keeps the count with two nat pointers, whose

contents p and q are both increased at every call, so that

the overall count is the difference between the two. This is

represented by taking bob =̂ ptr× ptr (one ptr for p and one

for q), G =̂ nat, bcmp =̂ succ and bbshape bb kk tt is

∃pp qq :nat2. tt .1 = fst (bb.1) �→ pp.1 • snd (bb.1) �→ qq .1 ∧
tt .2 = fst (bb.2) �→ pp.2 • snd (bb.2) �→ qq .2 ∧
kk = (pp.1− qq .1, pp.2− qq .2))

Bob’s program can read Alice’s salary, then increment p and

q by amount of the salary, and additionally, increment p by

1. In terms of required specifications for Bob’s local state,

the program still keeps the invocation count. However, the

program is actually stealing Alice’s salary, because the salary

can be inferred by deducting the old value of q from the new

one. Bob will fail to get such a program ratified by Alice, if

he calls ratify with the argument

do (fun a:alice b:bob. x ← read salary a;
p ← read (fst b); q ← read (snd b);
write (fst b) (p+ x +1);write (snd b) (q + x );
return (x ∗ 24%))

ratify forces Bob to prove that his ending state is low

(tt ′.1= tt ′.2) as defined in epost, but this is not provable if

tt ′ stores Alice’s salary x . Indeed, as x is high, Bob lacks

the information that x is equal in the two runs, so he cannot

prove that his pointers store equal values in two runs. For

ratification, Bob will have to erase Alice’s salary from his

state, perhaps by mutating his pointers to store p+1 and

q instead of p+ x +1 and q + x . ratify may thus be said

to implement an erasure policy, similar to those of Chong

and Myers [15, 16]. Alternatively, Bob may try to declassify
Alice’s salary, using the function from Example 2, but then he

has to provide the correct

III. TYPING RULES

Each command of the stateful fragment of RHTT comes

with a dependent STsec type that captures the command’s

specification using pre- and post-conditions. We start our

description with the types of the basic commands; descriptions

of the other commands appear later in the section.

return : STsec [A] A
(fun x i .True,
fun xx yy ii mm.mm = ii ∧ yy = xx )

read : STsec [ptr] A
(fun � i . ∃h:heap v :A. i = � �→ v • h,
fun �� yy ii mm.mm = ii ∧
∀hh vv . ii = (��.1 �→ vv .1, ��.2 �→ vv .2) •• hh →

yy = vv)
write : STsec [ptr,A] unit

(fun � v i . ∃h B :typew :B . i = � �→w • h,
fun �� vv yy ii mm.
∀hh B1 B2 w1:B1 w2:B2.
ii = (��.1 �→w1, ��.2 �→w2) •• hh →
mm = (��.1 �→ vv .1, ��.2 �→ vv .2) •• hh)

dealloc : STsec [ptr] unit
(fun � i . ∃h B :typew :B . i = � �→w • h,
fun �� yy ii mm.
∀hh B1 B2 w1:B1 w2:B2.
ii = (��.1 �→w1, ��.2 �→w2) •• hh →
mm = hh)

return immediately terminates with the value that was sup-

plied as a local argument. Its STsec constructor records the

argument type in the local context, and the type of the

returned value (here, both types are A). The precondition

states that return can execute in any heap, as it performs

no heap operations. The postcondition states that return does

not change the input heaps (mm = ii) and passes the input

argument to the output (yy = xx ). The precondition of read
write and dealloc all require that the initial heaps contain at
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least the pointer � to be read from, written to or deallocated.

In the case of read, the contents of the pointer must have the

expected type A. For write and dealloc, this type is irrelevant

and is hence existentially quantified. The postconditions of all

three commands explicitly describe the layout of the new heap

and, in particular, state that parts of the input heaps that are

disjoint from � (hh above) remain invariant.

Allocation presents the following challenge. If under a high

guard, a pointer is allocated in one branch of a conditional,

but not in the other, this may constitute a leak of the high

guard, if the pointer itself is of low security. Such “unmatched”

allocations should therefore always produce high pointers.

This is why we provide two allocation primitives: lalloc for

allocating low pointer addresses, and alloc, for allocating high

ones.

lalloc : STsec [A] ptr
(fun v i .True, fun vv yy ii mm.

mm = (yy .1 �→ vv .1, yy .2 �→ vv .2) •• ii ∧
(ii .1 ∼= ii .2→ yy .1 = yy .2 ∧mm.1 ∼= mm.2))

alloc : STsec [A] ptr
(fun v i .True, fun vv yy ii mm.

mm = (yy .1 �→ vv .1, yy .2 �→ vv .2) •• ii ∧
even yy .1 ∧ even yy .2)

Both commands take a local argument v :A, and return a

fresh pointer initialized with v . The freshness is captured in

the postcondition by demanding that the initial heaps ii be

disjoint from the returned pointers yy in the equation for

the ending heaps mm . However, alloc chooses the returned

location non-deterministically, while lalloc is deterministic;

that is, it returns equal (and hence low) pointers, when invoked

under appropriate conditions. We make the two allocators

operate on disjoint pools of locations: alloc always returns

an even pointer (albeit, a randomly chosen one), while lalloc
returns the next unallocated odd pointer. Here we rely on the

property that type ptr is isomorphic to nat in our model.

Definition 1. Heaps h1 and h2 are low-equivalent, written

h1 ∼= h2, iff their domains contain the same odd pointers. The

content of the pointers is irrelevant.

The postconditions of lalloc and alloc further capture the

behavior of the two commands with respect to the ∼= relation.

In the case of lalloc, we expose that if invoked in low-

equivalent input heaps (ii .1∼= ii .2), the command returns

equal pointers (yy .1= yy .2), and low-equivalent output heaps

(mm.1∼=mm.2). In the case of alloc, we expose the evenness

of yy .1 and yy .2, and provide a number of lemmas, that can

be used to relate evenness with ∼=. For example, the lemma

∀x :ptr. even x → (x �→ v • h1 ∼= h2)↔ (h1 ∼= h2)

when iterated, can show that low equivalence of h1 and h2
is preserved after arbitrary number of high allocations. Other

related lemmas are present in our Coq scripts.

Example 6 (The need for both allocators). The following

program can be given a type in which the returned pointer

y is low, no matter what the boolean h is.

do (fun h. if h then y ← lalloc 2; return y else
x ← alloc 1; y ← lalloc 2; dealloc x ; return y) :

STsec [bool] ptr
(fun h i .True,
fun hh yy ii mm.mm = ii •• (yy .1 �→ 2, yy .2 �→ 2) ∧

(ii .1 ∼= ii .2→ yy .1 = yy .2))

The program does not typecheck if the high allocation of

x is replaced by lalloc. In that case, it is possible that the

two executions of the program select different branches of

the conditional (depending on h). If we started with low-

equivalent heaps i1∼= i2, then at the point of allocation of y , the

heaps will not be low equivalent anymore, since one of them

has been extended with an odd location x , while the other has

not. Thus, we cannot conclude that the returned pointer is low

(yy .1= yy .2).

Remark 2. Deterministic allocation forces STsec to use large-
footprint specifications, whereby specifications describe the

full heaps in which commands operate. This is in contrast to

separation logic, where specifications describe only those heap

parts that commands touch, and implicitly assume invariance

of the remaining heap. The latter style is more succinct,

but cannot support deterministic allocation [47]. With large

footprints, we can specify lalloc (specifically, the antecedent

ii .1∼= ii .2 in the postcondition), but the invariance of un-

touched parts of heaps has to be stated explicitly for every

program, as witnessed by the quantification over hh in the

postconditions of write and dealloc. Note that the concrete
layouts of untouched parts of heaps do not need to appear
in the specifications — thus alleviating concerns of scalability

of specifications. Moreover, the overhead between large and

small footprint specifications is constant, as we discuss in

Section 6 of the TR. The two styles also lead to similar proofs.

What matters in proofs is the ability to effectively reason about

heap disjointness, and we can do that equally well in both

styles by relying on the operator • [32].

Another way of treating allocation in the relational setting

is to model its non-determinism by means of partial bijections

between pointers [1]. Then one can avoid using two different

allocators, albeit at a price of increasing the complexity of rea-

soning. Such proposals, however, only work in the absence of
deallocation. For example, the definition of noninterference of

Amtoft et al. [1] allows that the input heaps to the computation

are related by some bijection between pointers, and requires

that the ending heaps are also related by a bijection. However,

the ending bijection has to be an extension of the initial one.

Obviously, such a definition cannot support deallocation, as

deallocation produces smaller, not larger heaps. Alternatively,

one can omit the extension requirement; but that leads to

counterexamples which satisfy the weakened requirement even

though they actually leak information.

We proceed to describe our constructor for sequential com-

position, but first we need some notational conventions. Let Γ
be a list of types. We denote by Γ the product of all the types
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in Γ, e.g., nil = unit and [A,B ,C ] = A×B×C . We further

conflate the function types Γ→T and Γ1→Γ2→· · ·→T , and

their corresponding terms. For example, we freely interchange

fun γ:[A,B ,C ] . . ., or fun γ . . . if the types are clear from the

context, with fun x :A y :B z :C . . .. Similarly, we interchange

e (x , y , z ) with e x y z . We hope that no confusion arises

due to this abuse of notation; all of our exposition has been

checked in Coq, where the notation is formally resolved.

For sequential composition e1; e2, let e1 : STsecΓA (p1, q1)
and e2 : STsec (A::Γ)B (p2, q2). Then e1; e2 first executes e1,

passing the returned value as the first local argument to e2.

Assuming γ:Γ and γγ:Γ
2
, the STsec type for e1; e2 is

STsec Γ B
(fun γ i . p1 γ i ∧

∀y m. q1 (γ, γ) (y , y) (i , i)(m,m)→ p2 (y , γ) m,
fun γγ yy ii mm.
∃vv :A2. hh:heap2. q1 γγ vv ii hh ∧

q2 ((vv .1, γγ.1), (vv .2, γγ.2)) yy hh mm)

In English, the precondition requires e1 to be safe in the initial

heap of the sequential composition, and that any value y and

heap m obtained as output of e1 – and which thus satisfy e1’s

“squared” postcondition – make e2 safe. The postcondition

states that intermediate values vv and heaps hh exist, obtained

after running e1 but before running e2.

As e1’s output is bound in the local context of e2, we cannot

treat this output as an ordinary functional variable, despite

our suggestive notation in Section II. Indeed, as discussed

previously in Section II, ordinary variables are always low,

whereas the ones in the local context may be high, depending

on the specification. Thus, we must rely on variable-free

representation via combinators, as described next.

Our first combinator is for changing the local context of an

STsec type. Given Γ1,Γ2, f :Γ1→Γ2, and e:STsec Γ2 A (p, q),
we can instantiate the local variables of e according to f , to

produce a computation with context Γ1.

e @ f : STsec Γ1 B
(fun γ. p (f γ), fun γγ. q (f γγ.1, f γγ.2))

We denote by e @0 γ the special instance of @, when Γ1 = nil
and hence, f is isomorphic to a tuple γ:Γ2. We refer to e in

e @ f or e @0 γ as the head of the instantiation, and to f as

the explicit substitution.

Example 7. In Example 2, we implemented declassify as

fun p. do (fun a. x← read (passwd a); return (p= x )).The ac-

tual implementation using combinators is

fun p:string. do (read @ (fun a. passwd a);
return @ (fun x a. (p = x )))

Programs thus become lists of commands instantiated with

explicit substitutions, where the domains of substitutions grow

with each command to provide names for the results of

previous commands. In the above example, the domain of the

substitution for read includes only the variable a:alice, but the

substitution for return also includes x :string, which names the

result of the previous read (Alice’s stored password). Similarly,

the functions new and read salary are reimplemented as

new s p =̂ do (alloc @0 s; alloc @ (fun x . p);
return @ (fun y x . (x , y)))

read salary =̂ do (read @ (fun a. salary a))

To set the stage for discussing the combinator cond for

conditionals we first consider the predicates safe and verify2.

The former says that an expression e : STSec nil (p, q) is safe

to execute in any heap i satisfying precondition p, and is

defined as safe e i =̂ p i . The latter formalizes when it is

that executions over two programs, e1, e2 result in heaps

and values that satisfy a postcondition q . Although we have

been concerned thus far with two runs of the same pro-

gram, the above escalation becomes necessary when treating

a conditional under a high guard because in two runs of the

conditional different branches may be executed. Assuming

e1 : STsec nilA (r1, t1) and e2 : STsec nilA (r2, t2), a pair of

input heaps ii , and a predicate q :A2→heap2→prop, we define

verify2 ii e1 e2 q =̂

∀yy :A2.mm:heap2.
(ii .1, yy .1,mm.1) ∈ runs of e1 →
(ii .2, yy .2,mm.2) ∈ runs of e2 → q yy mm

Here runs of (defined in the TR) coerces programs into

relations between input heaps, output values and output heaps.

It is a useful intuition to regard verify2 as a relational variant

of a Hoare style specification, with programs e1 and e2, and

postcondition q , except that the precondition has been replaced

with concrete heaps ii .1 and ii .2.

Given programs ei :STsec Γ A (pi , qi) for i=1, 2, corre-

sponding to branches of a conditional, and a boolean guard

b:Γ→bool (here parametrized over a context), which type

should we ascribe to the conditional? We would like to be

precise, and ascribe the weakest precondition sufficient for the

safety, and the strongest postcondition sound wrt. the expected

semantics. Unfortunately, computing that postcondition seems

impossible in the case when the boolean guard is high. Indeed,

we know that q1 (resp. q2) relates the output heaps if both

runs of the conditional chose the same branch e1 (resp. e2),

but nothing can be said if the branches chosen in the two

runs are different. Since the principal specification cannot be

computed, the best we can do is ask the programmer for the

desired precondition p and postcondition q , and emit proof

obligations for checking that (p, q) is valid for the conditional.

cond : Πb:Γ→bool.
Πe1:STsec Γ A (p1, q1).Πe2:STsec Γ A (p2, q2).
D1 (b, e1, e2)→ D2 (b, e1, e2)→ STsec Γ A (p, q).

Here D1 captures the safety of the conditional, and D2 the
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Hoare-style correctness.

D1(b, e1, e2) =̂ ∀γ i . p γ i →
safe (if b γ then e1 @0γ else e2 @0γ) i

D2(b, e1, e2) =̂
∀γγ ii . p γγ.1 ii .1→ p γγ.2 ii .2→

verify2 ii (if b γγ.1 thene1 @0 γγ.1 else e2 @0 γγ.1)
(if b γγ.2 thene1 @0 γγ.2 else e2 @0 γγ.2)
(fun yy mm. q γγ yy ii mm)

The definitions of D1 and D2 make use of the purely-

functional conditional if to define when each of the branches is

taken. In this paper, we conflate cond and if and use if for both.

Note that, in contrast to other relational Hoare logics [9, 46],

we do not restrict the reasoning to only the situation where the

same branch of the conditional is taken in both runs; nor do

we need side conditions, as in Amtoft et al. [1], that prohibit

updates of low variables under a high guard (which would

prevent verification of P1 in Section II).

Example 8. The function write salary from Example 2 is im-

plemented with combinators (omitting annotations and proofs)

as follows. Notice that the guard of the conditional is a term

with a local context consisting of a:alice and x :string.

write salary s p =̂
do (read @ (fun a. passwd a);

if (fun x a. x = p) then
write @ (fun x a. (salary a, s))

else return @ (fun x a. ()))

A development similar to the one for cond can also be

carried out for the combinator do and appears in the TR.

We justify the soundness of our type system by building a

denotational model for STsec types. This development is fully

carried out as a shallow embedding in CiC, and we have

formalized it in Coq. The model, briefly described in our TR,

is based on predicate transformers. We also show in our Coq

scripts that STsec Γ A (p, q) is a complete partial order, thus,

supporting a combinator fix for least fixed points of continuous

functions between monadic types.

IV. LINKED DATA STRUCTURES

In this section we develop a small library for linked lists

to illustrate RHTT’s support for stateful abstract data types

(ADTs), and their interaction with information flow. Working

with ADTs essentially requires a number of higher-order

features. For example, to support linked lists in a reasonable

way, it has to be possible to: (1) describe the layout of the

lists in the heap (is the list singly-linked, doubly-linked, etc?).

This requires quantification in the assertion logic, definition of

predicates by recursion, and inductive definitions of types; (2)

abstract the definition of the heap layout from the specification

of the ADT, so that the ADT clients can freely interchange

implementations with different layouts (hence the need for

abstract predicates); (3) parametrize the ADT with respect to

the type of list elements (hence the need for type polymor-

phism in both programs and the assertion logic). All of these

linked list : type
shape : linked list→ list T → heap→ prop
sshape (pp : linked list2) (vvs : (list T )2) (ii : heap2) =̂
shape pp.1 vvs.1 ii .1 ∧ shape pp.2 vvs.2 ii .2

low links : linked list2 → heap2 → prop

new : STsec nil linked list
(fun i .True,
fun pp ii mm. ∃jj .mm = jj •• ii ∧
sshape pp (nil, nil) jj ∧ (ii .1 ∼= ii .2→ low links pp jj ))

insert : STsec [linked list,T ] unit
(fun p v i . ∃h j vs . i = j • h ∧ shape p vs j ,
fun pp vv yy ii mm. ∀hh jj vvs .

ii = jj •• hh → sshape pp vvs jj →
∃jj ′.mm = jj ′ •• hh ∧
sshape pp (vv .1::vvs.1, vv .2::vvs.2) jj ′ ∧
(low links pp jj → hh.1 ∼= hh.2→ low links pp jj ′))

remove : STsec [linked list] (option T )
(fun p i . ∃h j vs . i = j • h ∧ shape p vs j ,
fun pp yy ii mm. ∀hh jj vvs .

ii = jj •• hh → sshape pp vvs jj →
∃jj ′.mm = jj ′ •• hh ∧

sshape pp (tail vvs.1, tail vvs.2) jj ′ ∧
yy = (if vvs.1 is v1:: then some v1 else none,

if vvs.2 is v2:: then some v2 else none) ∧
(low links pp jj → low links pp jj ′))

Fig. 5. ListSig: signature for linked lists (excerpts).

features are present in RHTT, and used in the Figures 5 and 6,

which show one possible interface, ListSig, and a module,

List, implementing ListSig. The interface exports methods that

create a new empty list, insert an element to the head of a list,

and remove the head element, should one exist.

Both ListSig and List are parametrized in the type of list

elements T . The interface declares the abstract predicate

shape p vs i , capturing that the heap i stores a valid singly-
linked list whose content is the mathematical (i.e., purely-

functional) sequence vs of type list T . The pointer p stores

the address of the list head, so that adding new elements at

the head can be done by updating p. The linkage between the

elements is described by the predicate lseq x vs which recurses

over the contents vs and states that each node, starting from

the head x , contains a single pointer z to the next node in the

linked list. The interface hides the details of shape, however,

and can thus be ascribed to other implementations of shape,

such as ones describing doubly-linked lists.

The interface in Figure 5 contains one more abstract pred-

icate low links pp ii , which we use in combination with

sshape pp vvs ii , to describe that the linkage of the list stored

in the heap ii is of low security, no matter the security levels

of the contents vvs . The latter may be heterogeneous; that is,

some elements of vvs may be of low security, while others

are high. Similar to lseq, low links recurses over the linked

lists, declaring that each node is stored at a low address; that
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is, an address which is equal in the two heap instances, ii .1
and ii .2. (The formal definition of low links is elided here but

appears in file llist3.v of the Coq scripts.)

The types of the methods declare how the methods modify

the contents of the list as well as the linkage. For example,

the shape predicate in the preconditions of insert and remove
requires that the initial heaps of these methods store valid

linked lists. The sshape predicate in the postconditions guar-

antees that valid linked lists are produced at the end. The

postconditions additionally contain conjuncts describing that

the methods preserve the low security level of the linkage. For

example, new will allocate a fresh pointer p, and initialize it

with null. If the deterministic allocator is used to obtain p,

then p will be low only if the allocator is executed in low-
equivalent initial heaps. Thus, in order to get low links pp jj ,

we require an antecedent ii .1 ∼= ii .2. Similarly, insert specifies

that low links pp jj → hh.1 ∼= hh.2 → low links pp jj ′.
In other words, if the initial lists have low linkage, and the

remainders of the global heaps are low equivalent, then we

can allocate a list node with low linkage. This is so, because

the initial heaps must be low equivalent under the described

conditions.

The implementations of the methods are standard (Figure 6),

but due to the combinator syntax, we describe them in prose.

new returns a fresh pointer, initialized with null. This will be

the pointer p in the shape predicate. insert takes the pointer p
to the list, and a value v to insert. It reads the address of the

first element (bound to variable hd ), and allocates a node x
whose contents field is v and next pointer field is hd . Finally,

x is written to p. remove reads the address of the first element

of the list p into the variable hd . If hd is null, then the list

is empty, and the function terminates. Otherwise, it reads the

contents of the node at hd , binding it to the variable v . p is

made to point to next v , before v is deallocated.

To establish that the implementation satisfies the signature,

we need a number of helper lemmas about lseq and linked list,
which are kept local to the module. For example, for lseq, we

need properties that describe the behavior of lseq x vs i , in

case x is null (then the whole list is empty), and non-null (then

x points to the head). For low links, we show that if two heaps

store lists with low linkage and equal contents, then the heaps

themselves are equal.

Example 9. The program P5 in Figure 7 illustrates heteroge-

neous lists, i.e., lists that contain both high and low values. It

takes a high boolean argument b, creates a new linked list, and

inserts 0 (a constant, hence low) at the head. Then, depending

on b, it inserts either 1 or 2, resulting in a heterogeneous

list with a high first element and low second element. This is

described in the postcondition by conditionals over the values

of b in the two different runs (bb.1 and bb.2). Irrespective of

the contents, the ending linkage is low, assuming we started

with low-equivalent input heaps.

Example 10. The program P6 in Figure 7 is similar to P5, but

branches on b to decide whether to remove the head element.

Therefore, the length of the resulting list may differ in the

linked list =̂ ptr
node : type =̂ node of (T × ptr)
elem (e : node) =̂ e.1
next (e : node) =̂ e.2

lseq (x : ptr) (vs : list T ) : heap→ prop =̂
if vs is v ::vt then

fun i . ∃z :ptr j :heap.
i = x �→ node v z • j ∧ lseq z vt j

else fun i . x = null ∧ i = empty heap

shape (p : linked list) (vs : list T ) (i : heap) =̂
∃x :ptr. j :heap. i = p �→ x • j ∧ lseq x vs j

new =̂ do (lalloc @0 null)
insert =̂

do (read @ (fun p v . p);
lalloc @ (fun hd p v . node v hd);
write @ (fun x hd p v . (p, x )))

remove =̂
do (read @ (fun p. p);

if (fun hd p. hd = null) then
return @ (fun hd p. none)

else
read @ (fun hd p. hd);
write @ (fun v hd p. (p, next v));
dealloc @ (fun v hd p. hd);
return @ (fun v hd p. some (elem v)))

Fig. 6. Module List: implementation of singly-linked lists (excerpts).

P5 : STsec [bool] linked list
(fun b i .True,
fun bb yy ii mm. ∃jj .mm = jj •• ii ∧

sshape yy ([if bb.1 then 1 else 2, 0],
[if bb.2 then 1 else 2, 0]) jj ∧

(ii .1 ∼= ii .2→ low links yy jj )) =̂
do (new @ (fun b. ());

insert @ (fun p b. (p, 0));
if (fun p b. b) then insert @ (fun p b. (p, 1))
else insert @ (fun p b. (p, 2)) fi;
return @ (fun p b. p))

P6 : STsec [bool] linked list
(fun b i .True,
fun bb yy ii mm. ∃jj .mm = ii •• jj ∧

sshape yy (if bb.1 then [0] else [1, 0],
if bb.2 then [0] else [1, 0]) jj ) =̂

do (new @ (fun b. ());
insert @ (fun p b. (p, 0));
insert @ (fun p b. (p, 1));
if (fun p b. b) then

remove @ (fun p b. p);
return @ (fun p b. p)

else return @ (fun p b. p))

Fig. 7. Programs with heterogeneous lists.
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two runs, depending on b. We can specify it with the type

shown in the Figure. Notice however that we cannot prove

that low links yy jj holds at the end of P6. The length of

the produced list is dependent on b, which implies that the

resulting linkage may differ in two runs of P6, and hence

cannot be low itself.

Our Coq scripts implement other interfaces for linked list,

where the sshape predicates are parametrized by the linkage as

well. This exposes more implementation details (e.g., that the

list is singly-linked), but allows more precise reasoning about

linkage. For example, we may prove that executing one more

conditional over b, with a call to remove in the else branch,

will restore the low linkage.
We are not aware of any other system in literature that

can reason statically about heterogeneous structures. In the

dynamic setting, a recent example is the work of Russo et

al. [37], which tracks information-flow through DOM trees,

with the goal of preventing information leakage via node

deletion or navigation. The system works by assigning to each

node two security labels: one for the contents, and another

for the existence of the node. These annotations are very

specific to DOM trees, however, and it seems that the label

assignment would have to be designed differently for different

data structures and enforced properties. Thus, if one wants to

work with a number of structures simultaneously, one must

employ a very rich specification logic, just as we do.
We close with an example which combines linked lists with

the Alice module from Section II.

Example 11. In Example 5, Alice ratifies Bob’s tax function,

which may keep local state, as long as Bob can prove that his

final state does not steal Alice’s salary. Here we instantiate

Bob’s local state to a linked list, which dynamically grows

as various instances of Alice execute Bob’s program, but

the values stored in the linked list are always independent

of any instance’s salary and the list’s linkage is always low.

Observe from the specifications of new and insert that Bob’s

newly allocated nodes will be low only if he can generate

them in low-equivalent heaps. To express this low equivalence

the specification of epost used in ratify’s specification must

change as emphasized below.

epost aa bb jj yy ii mm =̂
∀ss pp kk tt hh.

ii = jj •• tt •• hh → sshape aa ss pp jj →
bbshape bb kk tt →

∃jj ′ tt ′.mm = jj ′ •• tt ′ •• hh ∧ sshape aa ss pp jj ′ ∧
bbshape bb (bcmp kk .1, bcmp kk .2) tt ′ ∧
jj .1 • hh.1 ∼= jj .2 • hh.2 →
tt .1 = tt .2→ tt ′.1 = tt ′.2)

Bob can now be granted access to Alice’s salary and can keep

the count in a linked list. For example, the implementation

below defines Bob’s local state as a linked list which counts

the number of times Bob’s program has been called by

linking in new nodes into Bob’s list. The nodes are filled

with 1 for simplicity, but arbitrary values would do, including

dynamically computed ones, as long as they are independent

of Alice’s salary.

bob =̂ linked list
G =̂ list nat
bbshape (bb : bob2) (kk : G2) (ii : heap2) =̂

List.sshape bb kk ii ∧ bb.1 = bb.2
bcmp : G → G =̂ fun k . 1 :: k

Bob’s program, which reads Alice’s salary, allocates a new

node in his list, and then returns the computed tax for the

salary, can then be created and ratified as follows.

linked client =̂
ratify (do (read salary @ (fun a b. a);

insert @ (fun x a b. (b, 1));
return @ (fun x a b. x ∗ 24%)))

V. DISCUSSION

Completeness: We have informally justified the com-

pleteness of our system through several examples, covering

a wide range of security relevant policies including access

control, information flow, declassification, erasure, and their

combinations. Unfortunately we are not aware of a clear

and exhaustive formal definition of what constitutes, say, an

erasure, or access-control policy, or a combination thereof.

Therefore, we do not know how to state a formal completeness

result.

If we focus on Cook completeness for RHTT, then, as we

have argued in Section III, our specifications for all of the

primitive effectful combinators compute weakest preconditions

and strongest postconditions using the specifications of the

components. The exception are the conditionals, for which this

cannot be done when the boolean guard is high. However,

RHTT is still capable of checking high conditionals against

programmer-supplied postconditions. The lack of Cook com-

pleteness therefore results in an increase in code annotations

that the programmer has to supply, but does not decrease the

reasoning power of the logic.
Noninterference for finite security lattices: The standard

notion of noninterference when locations are classified into

elements of a security lattice is compatible with RHTT and

can be expressed in postconditions of RHTT programs. If

each variable of a program is classified at some level of a

finite lattice L, then the program is noninterfering if for each

� ∈ L, the following holds: (xx1.1 = xx1.2 ∧ . . . ∧ xxn .1 =
xxn .2) → (yy1.1 = yy1.2 ∧ . . . ∧ yym .1 = yym .2) where

xx1, . . . , xxn are pairs of values of variables at or below

security level � in the two initial heaps and yy1, . . . , yyn are

pairs of values of variables at security level � in the two

final heaps. If the lattice L is finite, then the noninterference

property can be represented in the postcondition of a program

as the conjunction of such requirements for each level � ∈ L.

This representation can be combinatorially explosive, if one

uses one conjunct for each variable. But, in our higher-order

assertion logic we can introduce predicates that abstract over

a number of such conjuncts at once, and hence avoid the
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explosion. For example, if the variables in question all stand

for the contents of some linked list, we can define a predicate

that conjoins equations of the above form for each value

reachable from the head of the list. Note that reachability can

be expressed in higher-order but not in first-order logic. We

leave a more detailed exploration of the above representation

to future work.

On proof sizes: We have found that the size of interactive

proofs is not too overwhelming in general. However, the

amount of interaction varies with programs. Programs with

complex loop invariants usually require large proofs, whereas

simpler programs can be verified in just a number of lines

proportional to the size of the program.

Programs that branch on high boolean guards invariably

have larger proofs than programs that branch only on low:

the latter always choose the same branches of conditionals

in two runs, so the verification of the two runs proceeds

in lockstep. High-branching programs can choose branches

asymmetrically, thus doubling the number of proof obligations.

In addition, when branches are chosen asymmetrically, the

proofs usually require some mathematical insight from the pro-

grammer (for example, algebraic simplification of expressions)

in order to argue that the high secret has not been leaked. The

latter, however, seems unavoidable, and inherent to the nature

of programs branching on high guards.

To substantiate, consider the programs from Examples 2

and 3, our first examples that do not branch on high. We

have the following statistics given as the pair (code+spec
size, proof size). For new, we have (7, 5); for read salary
(7, 4); for write salary (18, 15) and for declassify (11, 5). The

above proofs share common definitions and lemmas which are

altogether 10 lines long.

The program P2 in Example 1, which contains nested

conditionals and branching on high, is implemented using

36 lines of code, most of which are inlined user-supplied

annotations. The corresponding proof is 44 lines long.

We have also implemented examples that iterate over linked

data structures (not presented in the paper, but available in

the accompanying Coq scripts). In a program for in-place list

reversal, in which the linkage of the list is high, the code and

annotations together take 43 lines. The proof is 94 lines long,

because there is a high conditional branching on a null-pointer

check.

VI. RELATED WORK

Banerjee et al. [7] specify expressive declassification poli-

cies using Hoare style specifications (termed flowspecs); pre-

conditions thereof are conjunctions of ordinary state conditions

based on first-order logic (for specifying conditions when
declassification can happen) as well as relational predicates

(that specify what is being declassified) [39]. We extend the

ideas in [7] and consider a higher-order imperative language

and also a policy specification language based on higher-order

logic, where Hoare-style specifications may appear in negative

(i.e., argument) positions, which is required for conditional

access and erasure policies.

A recent line of work [23, 36] uses type-theoretic technol-

ogy, namely Haskell, to specify and enforce information-flow

properties in a non-dependently-typed setting. While Haskell

already provides the important higher-order constructs for

abstraction and modularity, non-dependent types by definition

cannot specify behaviors that are dependent on some condition

such as authorization, conformance to a policy, or local state.

Thus, we do not think they can be used directly to enforce

involved security policies such as the ones considered in this

paper.

Some other recent languages, with somewhat similar high-

level goals to ours, and which use some form of dependent

types are Fine [41], Fable [42], FX [10], Aglet [27], F7 [11]

and Aura [20]. They all support some, but not all features that

we provide in RHTT.

In Swamy et al.’s purely functional programming language

Fine [41], access and information flow policies can mention

attributes like high and low, that statically label data. The type

system enforces these policies by tracking flows of attributes.

Unlike RHTT, Fine’s type system does not track changes to

the state (heap), so the effect of state in policies must be

simulated through ghost variables, whose (static) updates are

governed by specifications of primitive functions. A token

passing mechanism based on affine kinds ensures that at

most one static state is valid at each program point, but it

makes programming in Fine inconvenient. Fine includes a

simple module system which allows a programmer to hide

type definitions, but does not allow abstraction over predicates

as RHTT does. In an earlier language, Fable [42], data can be

statically labelled with attributes that can be used to enforce

both access control and information flow policies. However,

Fable’s type system lacks the affine kinds of Fine as well

as Fine’s logic-based sublanguage for policies and, therefore,

cannot be used to reason about state-dependent policies.

The language FX [10] succeeds Fine with the purpose

of verifying stateful programs that permit object allocation,

mutation and deallocation. The type system of FX admits

computation (Hoare) types and caters to the verification of

safety properties of FX programs by translating into Fine

programs and typechecking the latter. The translation is a

simulation under strong bisimilarity, rather than the stronger

property that well-typed FX programs are translated into well-

typed Fine programs. The verification of security policies,

particularly, of non-safety properties such as noninterference,

is not the overarching goal of FX’s type system, although a

lattice of labels can be encoded and used to prove, e.g., an

integrity property that untrusted data does not get consumed at

trusted sinks. A proof of noninterference is not supplied; as in

most label-based security type systems, such a proof cannot be

carried out in FX’s (or Fine’s) type system directly (in contrast

to our work) but rather must be established as a metatheorem

of the type system by reasoning about two runs of programs.

As regards reasoning about stateful higher-order programs, the

formalization is left for future work and we expect that it

will elucidate how the type system reasons about (security

properties of) unbounded dynamic data structures e.g., linked
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lists, trees with back pointers etc., that contain significant use

of aliased mutable objects. In particular, because FX proposes

to reason about aliasing using a library of permissions the

above formalization might be delicate.

Morgenstern and Licata have recently proposed a type

system called Aglet [27], for enforcement of state-dependent

access control policies. Aglet is an extension of Agda [33] with

a computation monad similar to our STsec types. However,

Aglet’s computation monad lacks semantics and, consequently,

the soundness of its inference rules has to be taken on faith (in

contrast, the RHTT model is formalized in Coq). Moreover,

the pre- and post-conditions of Aglet’s computation monad

can only mention a restricted form of state, namely, a mutable

list of authorization-relevant credentials, which can be used to

discharge authorization obligations at various program points.

Due to this restriction, Aglet cannot be used to reason about

data structures written in Agda. Also, Aglet’s postconditions

do not consider simultaneous runs of programs. As a result of

these limitations, Aglet cannot be used to represent many of

our examples. On the other hand, we believe that examples

from the paper on Aglet can be expressed in RHTT easily.

Borgström et al. [11] reason about access control behavior

of programs in an extension of F7 that has a state monad

with pre- and post-conditions. Although the state monads in

their work and ours are technically similar, that work differs

from ours in two significant ways. First, the goals are dif-

ferent: whereas we consider enforcement of information flow

properties and declassification in addition to access control

properties, Borgström et al. consider access control and show

how the state monad can be used to enforce different flavors

of it, viz. role-based, stack-based, and history-based. Second,

in common with other work based in F7, a priori evidence for

discharging verification conditions in Borgström et al’s work

is programmer specified assumptions that are not necessarily

semantically grounded, and verification is correct only to the

extent that these assumptions are correct. In contrast to their

axiomatic approach, we verify the soundness of our type

theory on a semantic model. Nonetheless, due to the common

state-monad based approach, and RHTT’s more general type

system, we believe that Borgström et al’s work can be encoded

in RHTT without much change. As a first step in this direction,

our Coq scripts contain an example that shows how RHTT

supports reasoning about principals and roles.

The languages Aura [20], PCML5 [5], and PCAL [13],

based on the proof-as-authorization paradigm [2], enforce

logic-represented access policies by statically ensuring that

each call to a protected interface is accompanied by proper

authorization. Although work in the context of Aura shows

that noninterference can be encoded [21], Aura currently does

not handle state in the form that we consider in this paper.

However, it is conceivable that mutable state can be added to

Aura along the lines of the STsec monad.

The Paralocks language [12] also allows logic-based access

control policies that are enforced statically in the type system.

Information flow policies can be encoded as a specific mode

of access control as, for instance, is demonstrated through an

encoding of Myers’ and Liskov’s Decentralized Label Model.

Like Fine, Paralocks includes two kinds of state, of which, one,

called locks, is tracked through the type system, while the other

is not. Locks are boolean variables that can be used to encode

a wide range of policies. The semantics of Paralocks is trace-

based and, like gradual release [3], uses a knowledge-based

definition of information leaks. A meta-theorem guarantees

that access policies of a well-typed program are respected at

all program points during the program’s execution.

Finally, RHTT extends the work on Hoare Type Theory

(HTT) [31] and Ynot [30] with the ability to reason relationally

about security. HTT and Ynot implement via dependent types

a higher-order variant of Hoare logic for single program runs.

Thus, they cannot enforce relational properties such as the

various information flow policies, which are specified via two

program runs. A more technical discussion of the differences

between these systems and RHTT appears in the TR.

VII. CONCLUSION

We have presented RHTT, a system implemented in Coq

that is targeted for full interactive verification of state-based

access control and information flow policies via dependent

types. Examples of such security policies include declassi-

fication, information erasure and state-based access control

and information flow. We have presented typing rules for the

stateful fragment of RHTT and implemented a semantic model

that provides a denotation to every well-typed RHTT program.

We have also developed a logic for discharging verification

conditions that arise in the verification process.

Currently, RHTT does not support reasoning about trace-

based, temporal properties. For example, while it is intu-

itively clear that our specification of functions grant, revoke,

read salary (Example 4) indeed encodes a temporal discipline

on the usage of read salary (e.g., “no reads occur unless a

grant has occurred and no revoke has occurred after the grant”)

this cannot be formally proved in our logic itself. We note

that very little is known on how enforcement of trace-based

properties, in security or other areas such as concurrency,

interacts with type theoretic constructions such as higher-order

functions, abstract types or modules. We intend to investigate

this in the future, in the context of reactive, non-deterministic

and concurrent higher-order languages.
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