
I Still Know What You Visited Last Summer
Leaking browsing history via user interaction and side channel attacks

Zachary Weinberg zack.weinberg@sv.cmu.edu
Eric Y. Chen eric.chen@sv.cmu.edu

Pavithra Ramesh Jayaraman prameshj@andrew.cmu.edu
Collin Jackson collin.jackson@sv.cmu.edu

Carnegie Mellon University

Abstract—History sniffing attacks allow web sites to learn
about users’ visits to other sites. The major browsers have
recently adopted a defense against the current strategies for
history sniffing. In a user study with 307 participants, we
demonstrate that history sniffing remains feasible via interactive
techniques which are not covered by the defense. While these
techniques are slower and cannot hope to learn as much about
users’ browsing history, we see no practical way to defend against
them.

I. INTRODUCTION

Since the creation of the World Wide Web, browsers have
made a visual distinction between links to pages their users
have already visited, and links to pages their users have not
yet visited. CSS allows page authors to control the appearance
of this distinction. Unfortunately, that ability, combined with
JavaScript’s ability to inspect how a page is rendered, exposes
Web users’ browsing history to any site that cares to test a list
of URLs that they might have visited. This privacy leak has
been known since 2002 ([1], [2]), and fixes for it have been
being discussed for nearly as long by both browser vendors
and security researchers.

In 2010, L. David Baron of Mozilla developed a defense [3]
that blocks all known, automated techniques for this attack,
while still distinguishing visited from unvisited links and
allowing site authors some control over how this distinction is
made. The latest versions of Firefox, Chrome, Safari, and IE
all adopt this defense. While it is a great step toward closing
this privacy leak, in this paper we will demonstrate that it
is still possible for a determined attacker to probe browsing
history.

Baron’s defense makes no effort to defend against interactive
attacks—that is, attacks which trick users into revealing what
they see on the screen. In our first experiment, we demonstrate
four practical interactive attacks that we have developed. These
attacks can probe far fewer links per second than the automated
attacks that formerly were possible, but they are still feasible
for the small sets of links probed by the exploiters found by
Jang et al. [4]. We discuss some potential countermeasures,
but as long as a visited/unvisited distinction is being shown at
all, it does not seem to us that users can be entirely protected
from revealing it to a determined attacker.

Baron’s defense does include protection against side-channel
attacks, particularly timing attacks. In our second experiment,

we demonstrate a side-channel attack that remains possible: The
dominant color of the computer screen can be made to depend
on whether a link is visited. The light of the screen reflects off
the victim and his or her surroundings. If the victim possesses a
“webcam” (a small computer-controlled video camera, pointed
at the victim’s face—this is built into many recent laptops,
and is a popular accessory for desktop PCs) it can be used
to detect the color of the reflected light. This attack may not
be practical for typical sites, if only because users are chary
of granting access to their webcams. But like our interactive
attacks, we do not believe it can be prevented as long as a
visited/unvisited distinction is being shown onscreen.

The rest of this paper is organized as follows. In Section II
we introduce the problem of history sniffing; in Section III we
describe the automated attacks that were possible until quite
recently, and the defense that has now been deployed against
it. Section IV covers our primary experiment, demonstrating
the feasibility of interactive attacks on browsing history; we
also discuss the long-term implications of interactive attacks.
Section V describes our second experiment, demonstrating a
side-channel attack on history that remains exploitable even
with a general defense against automated attacks in place.
Section VI covers related work, and Section VII concludes.

II. BACKGROUND

A. The Web platform

The World Wide Web was originally conceived in 1990 as an
interface to large collections of static documents (“pages”) [5].
In this paradigm, it is obviously useful for users to be able to
tell whether they have seen a particular page before, no matter
who is referring to it. NCSA Mosaic, one of the first graphical
Web browsers, drew hyperlinks in blue if they referred to a
page that had not yet been visited, in purple otherwise [6];
this feature was inherited by Netscape Navigator and has now
become customary.

Since its original conception, the Web has evolved into a
platform for software applications. At first these relied on
server-side processing, but with the invention of JavaScript
in the late 1990s, it became possible to run programs inside
Web pages. With this capability comes a need for security:
applications must not interfere with each other, and malicious
software must not be permitted to exploit the user. The Web’s
basic security policy is the same-origin policy [7], which

2011 IEEE Symposium on Security and Privacy

1081-6011/11 $26.00 © 2011 IEEE

DOI 10.1109/SP.2011.23

147

partitions the Web by its servers. JavaScript programs can only
see data from the HTTP server that produced them; within the
client, they can communicate only with other pages produced by
the same server. The same-origin policy originally applied only
to JavaScript but is progressively being expanded to cover other
security decisions that the browser must make [8]. However, it
has never applied to hyperlinks. It would diminish the utility
of the Web if sites could not link to each other, or even if they
could only link to other sites’ “front pages.” Further, since
visited-link indications are most useful when you encounter an
unfamiliar link to a familiar page, links are marked as visited
whether or not they cross origins [9].

In principle, a website should not be able to determine what
other sites its visitors have visited. Unfortunately, a combination
of innocuous-seeming Web features makes it possible for
websites to probe browsing history. This vulnerability was
first publicly disclosed by Andrew Clover in a BUGTRAQ
mailing list post in February of 2002 [1]. Until recently, browser
vendors and the security community believed that it was not
being exploited “in the wild,” but Jang et al. [4] discovered 46
popular websites—including one from the Alexa top 100—
that definitely probed browsing history and reported what they
found to their servers. Many of these sites were using third-
party JavaScript libraries designed specifically to probe history.
Another 326 sites made “suspicious” use of history information,
but might not have been reporting it to their servers.

B. Threat model

Illicit inspection of browsing history is conventionally
referred to as history sniffing.1 As will be explained below,
history sniffers cannot simply get a list of all URLs their
victims have ever visited; they can only ask whether particular
URLs have been visited. Therefore, the goal of history sniffers
is to learn which of some predetermined set of interesting
URLs have been visited by their victims. In principle, there is
no limit to the size of this set, but the actual exploiters found
by Jang only probed 6 to 220 URLs.

History sniffers have the abilities of web attackers: they
control the contents of a website and a DNS domain, and they
can get victims to visit their website. For interactive sniffing,
as the name implies, victims must also be willing to interact
with a sniffer’s site in the same ways that they might interact
with a legitimate site. History sniffers do not have any of the
additional powers of a network attacker: they cannot eavesdrop
on, tamper with, or redirect network traffic from victims to
legitimate sites (or vice versa), nor can they interfere with
domain name lookups. Furthermore, history sniffers cannot
install malicious software on their victims’ computers, or take
advantage of malware installed by someone else.

C. Attack consequences

What can history sniffers do with the information they glean?
There are some benign or even beneficial possibilities. Sites

1While the attack has been known since 2002, the phrase “history sniffing”
seems to have been coined much later: the earliest use we have found was
in 2008 [10].

at grave risk of impersonation (banks, for instance) could use
history sniffing to determine whether their users have visited
known phishing sites, and if so, warn them that their accounts
may have been compromised [9], [11]. Sites could also seed
visitors’ history with URLs made up for the purpose, and then
use those URLs to re-identify their visitors on subsequent visits;
this can foil “pharming” attacks (where attackers redirect traffic
for legitimate sites to servers under their control) by making it
impossible for attackers to predict the appearance of the sites
they wish to impersonate [12]. However, ordinary “cookies”
provide the same re-identification capability in an aboveboard,
user-controllable fashion. Finally, sites that support federated
login (OpenID, Facebook Connect, etc.) can use history sniffing
to determine which identity provider a user favors, and thus
streamline their login UI [13]. The same principle can be
applied to a broad variety of third-party service providers,
such as those for social bookmarking, feed subscription, and
maps [10].

On the other hand, the actual history sniffers found by
Jang appear to be tracking visitors across sites for advertising
purposes and/or to determine whether they also visit a site’s
competitors. This is very similar to the “tracking cookies”
used by many ad networks, which are widely considered
to be invasions of privacy [14], but only on the same level
as having one’s postal address sold to senders of junk mail.
History sniffing could potentially enable much more severe
privacy violations, because unlike tracking cookies, it allows
the sniffing site to know about visits to sites with which it has
no relationship at all. For instance, the government-services
websites of a police state could detect whether their visitors
have been reading sites that provide uncensored news, and
corporate webmail servers could detect whether employees have
been visiting a union organizer’s online forum (even if they do
this from home) [15]. Knowledge of browsing habits can also
connect an identity used on one social network to that used
on another [16], defeating users’ efforts to keep them separate
so they can maintain contextually appropriate presentations of
self [17]. Finally, stepping away from privacy issues, attackers
can construct more targeted phishing pages [18], [19] by
impersonating only sites that a particular victim is known
to visit, or using visual details (such as logos) of those sites
in a novel but credible context [9], [11].

We consider the privacy and security costs of history sniffing
to outweigh the beneficial possibilities.

III. AUTOMATED ATTACKS

Until recently, it was possible to sniff history automatically,
rapidly, and invisibly to users. While the focus of this paper is
on the attacks that remain possible today, for context’s sake
we begin by explaining how automated attacks worked and
how browsers now prevent them.

Web authors wish to control the appearance of their sites; the
modern mechanism for this is Cascading Style Sheets (CSS),
invented in the late 1990s (contemporaneously with JavaScript).
CSS provides control over every aspect of a page’s appearance,
including how the distinction between visited and unvisited

148

a { text-decoration: none }
a:link { color: #A61728 }
a:visited { color: #707070 }

Fig. 1. Example of CSS controlling rendering of links. Each line of code
is a style rule. Each style rule begins with a selector, which controls which
HTML elements are affected by the rule. A lone a selects all a elements,
i.e. hyperlinks; a:link and a:visited select unvisited and visited links,
respectively. A brace-enclosed list of style properties and their values follows;
these rules each contain only one property, but there could be many.

links is rendered. Figure 1 shows a sample set of changes
to the appearance of links: setting text-decoration to
none disables underlining, and setting color changes the
color of the text. If the same #rrggbb code were given in both
the second and third rules, visited and unvisited links would
be indistinguishable. Browsers’ default style sheets generally
distinguish visited and unvisited links with a color change, but
(until recently; see below) a web page’s style sheets could use
any CSS style property to make the distinction.

A. Direct sniffing

A JavaScript program can examine and manipulate the page
it is embedded within, using a standardized API known as the
Document Object Model (DOM) [20]. Most importantly for
our purposes, the DOM provides access to the computed style
of each HTML element. The computed style collects all of
the CSS properties that influence the drawing of that element,
which may have come from many style rules in different places.
Continuing with the example in Figure 1, the computed style
for both visited and unvisited links would show the value
of text-decoration as none, but the color property
would be #A61728 for unvisited links and #707070 for
visited links. JavaScript can also change the destination of
an existing hyperlink, or create entirely new hyperlinks to
destinations of its choosing.

Therefore, a malicious site can guess URLs of pages that its
visitors might have also visited, create links pointing to those
URLs, and determine whether each visitor has indeed visited
them by inspecting the links’ computed styles. The malicious
site’s style sheets control how the visited/unvisited difference
appears in the computed style, so the site knows exactly what
to look for. This only allows the malicious site to ask yes/no
questions about URLs it can guess; there is no known way
for a malicious site to get access to the browser’s complete
list of visited URLs. However, the “wild” exploits found by
Jang were interested in a small set of other sites that their
visitors also visited—usually direct competitors and popular
social networking sites—so they could use the well-known
URLs of those sites’ front pages. Deanonymization attacks
[16] can require thousands of history queries per victim, but
this is no obstacle; depending on the browser, an attacker can
make 10,000 to 30,000 queries per second [15].

B. Indirect sniffing

The attack described above admits a simple defense: the
DOM’s computed style API could pretend that all links were
being styled as if they were unvisited. However, this is only

the most direct way to detect whether or not a link has been
visited. Baron [3] lists two classes of indirect technique for
detecting whether a link has been visited:

• Make visited and unvisited links take different amounts
of space, which causes unrelated elements on the page to
move; inspect the positions of those other elements.
The DOM provides information on the position and size
of every HTML element on a page; the API for this
information is separate from the API for computed style.
Many CSS properties can change the size of an element,
and the size of an element influences the position of all
the elements that will be drawn after it. Therefore, an
attacker can make the APIs for position and size reveal
whether links are visited, by having the style rules for
visited links change the links’ sizes.
With moderate effort, the DOM could be made to pretend
that all links are being drawn with the size they would
have if they were unvisited. However, adopting the
same pretense for element positions would require the
browser to lay out the entire page twice, which would be
impractical.

• Make visited and unvisited links cause different images
to load.
The background-image style property specifies a
URL of an image to load; if it is used in a :visited
rule limited to one link, that image will be loaded only if
that link is visited. The attacker can specify a unique URL
on their server for each link to be probed, then route all
those URLs to a program that records which links were
visited. (The program would always send back an empty
image, so the page’s appearance would not be affected.)
This technique does not even require JavaScript. It
could be defeated by unconditionally loading all images
mentioned in style rules, but that would increase page load
time and bandwidth consumption for honest websites.

C. Side-channel sniffing

Side channel attacks exist when a system leaks information
through a mechanism that wasn’t intended to provide that infor-
mation, bypassing the system’s security policy. Side channels
are difficult to find, and often cannot be eliminated without
destroying other desirable characteristics of the system [21].
For instance, when a cache returns a piece of information
faster than it could be retrieved from the source, it reveals
that someone looked up the same information in the past. We
can only prevent this leak by slowing down retrievals from
the cache, or partitioning it by user; either method renders the
cache less useful.

Timing attacks are the most well-known type of side channel
attack. Baron’s essay also considers timing attacks on browsing
history: the attacker can make the page take longer to lay out if
a link is visited than if it is unvisited, or vice versa. JavaScript
has access to the system clock and can force page layout
to occur synchronously, so it can easily measure this time.
Modern computers’ clocks provide enough precision that even
apparently trivial details of rendering, such as whether an area

149

of color is partially transparent, or whether a line of text is
underlined, can produce measurable differences in the time
to draw the page. There doesn’t even need to be a rendering
difference. All current browsers process CSS selectors from
right to left [22], so if a style rule such as

[class*="abc"] :visited { ... }

appears somewhere in the style sheets for a page, layout will
take longer if any link on the page is visited.

Timing is by no means the only type of side-channel attack.
As an example, in the course of the experiments described in
this paper, we discovered a side channel for history sniffing in
early beta versions of Firefox 4 (which implements Baron’s
defense). For some time, Firefox has looked up history database
entries in the background, meanwhile drawing the page as it
would appear if all links were unvisited. If any of the links turn
out to have been visited, the page is redrawn. Changing the
target of a link will start this whole process over. So far, there
is no problem, because the redraws are invisible to standard
JavaScript. However, as an extension for benchmarking and
testing, early betas of Firefox 4 would generate a JavaScript
event called MozAfterPaint every time the browser finished
redrawing a page. An attacker could install a handler for this
event, repeatedly change the target of a link, and after each
change, count the number of times Firefox calls the event
handler. If it gets called twice, the current link target is visited.
We reported this bug to Mozilla [23], and it was fixed in beta 10
(by removing the extension).

D. Defense

As mentioned previously, in 2010 Baron developed a
defense [3] which blocks all known techniques for automated
sniffing. To block direct sniffing, the computed style APIs
pretend that all links are unvisited. To block indirect and side-
channel sniffing, CSS’s ability to control the visited/unvisited
distinction is limited, so that visited links are always the
same size and take the same amount of time to draw as their
unvisited counterparts. Style rules applying to links in general,
or unvisited links, can still do everything they could before
the defense was implemented. Style rules for visited links,
however, can only change visible graphical elements (text,
background, border, etc.) from one solid color to another solid
color. They cannot remove or introduce gradients, and they
cannot change the transparency of a color. For example, the
style rules shown in Figure 1 still work as designed. However,
suppose the text-decoration property was moved from
the a rule to the a:visited rule. Older browsers would then
underline unvisited links but not visited links, but browsers
that implement the defense would underline all links.

It is also necessary to ensure that selector matching takes
the same amount of time whether or not any links are visited.
To do so, Baron adjusted the algorithm for selector matching
a bit. A browser that implements the defense will only do one
history lookup per style rule, and it will do it last, after all the
other work of selector matching. Thus, the example selector
in Section III-C now takes the same amount of time whether

or not any links are visited. Also, a rule that needs more than
one lookup, such as

:visited + :visited { ... }

which is meant to apply to the second of two visited links in a
row, will be ignored by a browser that implements the defense
(technically, it will never match any elements).

Baron’s defense was rapidly adopted by browser vendors; as
of this writing, it is included in Firefox 4, Chrome 9, Safari 5,
and IE 9 (in order of adoption).

IV. EXPERIMENT 1: INTERACTIVE ATTACKS

Baron’s defense makes no attempt to address interactive
attacks, where victims’ actions on a site reveal their browsing
history. Interactive attacks obviously require victims to interact
with a malicious site, and cannot hope to probe nearly as many
links as the automated attacks that are no longer possible. It
might also seem that an interactive attack would be hard to
disguise as legitimate interaction. We claim that these are not
significant obstacles: we claim that interactive attacks can be
disguised as “normal” interactive tasks that users will not find
surprising or suspicious, and that they can still probe a useful
number of links. To demonstrate these claims, we designed
four interactive tasks that could be used to probe browser
history, and tested them on people recruited from Amazon’s
Mechanical Turk service [24].

A. The tasks

All of our tasks operate within the constraints of Baron’s
defense: they use visited-link styles only to change the color
of text or graphics on the screen. They are designed to probe
8 to 100 links each, which is small, but as demonstrated
by Jang, not too small for the sites currently making use of
automated history exploits. Finally, each task masquerades
as an interaction that would not be out of place on a honest
website. It is common for web sites to challenge their visitors to
perform a task that is relatively easy for a human, but difficult
for software [25]. This is to prevent automated abuse of a
site (“spam” posts to a message board, for instance). Such
challenges are referred to as CAPTCHAs.2 The most common
type of CAPTCHA is a request to type either a few words, or
a string of random letters and numbers, from an image shown
on the screen. The text is manipulated to defeat OCR software.
Another common type of CAPTCHA is a visual puzzle, to
be solved using the mouse; visual puzzles are also commonly
presented as true games (that is, intended only to entertain).

Interactive attacks necessarily involve placing hyperlinks on
the screen, and then inducing victims to do something with
them that will reveal to the attacker which ones are visited links.
Hyperlinks have built-in interactive behavior that will reveal
that something fishy is going on, if a victim experiments with
the page rather than just following the instructions. For instance,
clicking on a link (visible or not) will cause the browser to
load the link destination; hovering the mouse pointer over a
link (again, visible or not) will display the link’s destination

2CAPTCHA is a contrived acronym for Completely Automated Public
Turing test to tell Computers and Humans Apart.

150

Please type the string of characters shown below, then press

RETURN. You don’t have to match upper and lower case.

�������������������

Please click on all of the chess pawns.

The large image on the left was assembled from two of the

small images on the right: one from the first row and one

from the second. Please click on the two small images that

make up the large one.

Please type all the words shown below, then press RETURN.

low hang we life alone line cost

Fig. 2. Our four interactive tasks. Top to bottom: word CAPTCHA, character CAPTCHA, chessboard, and visual matching. Screen shots taken with Safari 4.0.

151

Fig. 3. 7-segment LCD symbols stacked to test three links per composite
character. The - at the bottom is always visible, but the 4, 5, and F are only
visible if a URL was visited.

URL somewhere in the browser’s “chrome” (such as the status
bar or the URL bar); selecting all the text on the page will
reveal text that has been hidden by drawing it with the same
color as the background. Fortunately for the attacker, all these
inconvenient behaviors can be suppressed by positioning a
transparent image over all the hyperlinks.

Figure 2 shows what each of our interactive attacks looked
like to a participant in the experiment, including the instructions
for each. Note that we did not include the noise, lines, or
distortions typical of real CAPTCHAs; image recognition
software would have no trouble with any of them. (If we had
done this, the tasks would also have been more difficult for
our participants.) An attacker determined to make their phony
CAPTCHAs look as much like real ones as possible could use
SVG transformations to distort the text, and/or include lines
and visual noise in the transparent image superimposed on the
links to suppress their normal behavior.

1) Word CAPTCHA: This is the simplest task. Victims are
asked to type several short English words. Each word is a
hyperlink to an URL that the attacker wishes to probe; if
visited, the word is styled to be drawn in black as usual, but
if unvisited, it is drawn in the same color as the background.
Thus, victims see only words corresponding to sites they have
visited. The attacker must arrange for at least one word to be
visible no matter what; otherwise, a victim who has visited
none of the URLs the attacker is probing will see a blank
CAPTCHA and think the site has malfunctioned.

This task is easy to perform, and simple to implement, but
can only probe a small number of links, since attackers cannot
expect their victims to be willing to type more than a few
words. In our study, we used a maximum of ten words, of
which one was always visible and one always invisible; thus
we could test no more than eight links.

2) Character CAPTCHA: This task is very similar to the
previous one, but by clever choice of font and symbols, it tests
the visitedness of three links per character typed. Victims are
asked to type what appears to be a string of letters, numbers,
and dashes from a restricted character set, in a font that mimics
seven-segment LCD symbols. As shown in Figure 3, each
visible character is actually four characters, superimposed,
three of them visible only if an associated link is visited. No

matter which combination of symbols is “on,” their composite
will always be a character that the victim can type, and each
combination produces a different composite. 4+5 = 9; 4+F =
A; 5 + F = 6; 4 + 5 + F = 8. The always-on - is necessary
because position within the overall string is meaningful; without
it, victims might see a series of blank spaces. In response
they would probably type only one space, and that would
make the result ambiguous. Again, attackers cannot expect
their victims to type more than a few characters, but an eight-
character CAPTCHA of this design will probe 24 sites, and a
12-character one will probe 36.

This attack has more technical complications to cope with
than the previous one. Hardly anyone has a seven-segment LCD
font installed, but this is only a minor hurdle, as all modern
browsers implement site-supplied fonts [26]. More seriously,
Baron’s history-sniffing defense does not allow visited-link
rules to change the transparency of a color. This restriction
prevents timing attacks (drawing partial transparency is slower
than drawing opaque color) but also makes it harder to compose
characters by stacking them. Attackers can work around this
restriction by making the characters always be nearly (but not
entirely) transparent, whether or not they are visited links; this
is allowed. They are black if visited and white if unvisited.
Each composite segment is thus drawn in a shade of gray. This
might be acceptable; if not, attackers could apply an SVG
color transformation to map all shades of gray to solid black.
Unfortunately, SVG is not a universal feature [27]; IE did not
support it at all before version 9 (not yet released as of this
writing) and no browser implements the complete spec.

3) Chessboard puzzle: This task presents a chessboard
grid (not necessarily the same size as a standard chessboard)
on the screen; some of the squares are occupied by chess
pawns. Victims are asked to click on all of the pawns. In
fact every square contains a pawn, but each is a hyperlink
to a different website, and only the pawns corresponding to
visited sites are made visible, using the same technique as for
the word CAPTCHA; invisible pawns are the same color as
their background. This is technically straightforward; the only
complication is that the pawns must be rendered using text
or SVG shapes, so their color can be controlled from CSS.
Fortunately, Unicode defines dingbats for all the standard chess
pieces; in our implementation we used another site-supplied
font to ensure that participants got pawns rather than “missing
glyph” symbols. An attacker might be able to rely on system
fonts for the pawn dingbat, but it’s easy enough to use a site
font that there’s no reason not to.

This puzzle is easy for victims to complete, and the grid can
be at least ten squares on a side—the only limits are the size
of the screen, and victims’ patience—so this attack can test
at least 100 links’ visitedness. However, it becomes tedious if
there are more than a few visible pawns. Also, if used for a real
attack, the page would have no way to tell how many clicks
each victim will make, so attackers must resort to a time-out
or an explicit “go on” button; either might seem suspicious.

4) Pattern matching puzzle: In this task, victims are asked
to select two images which, when “assembled,” produce a

152

composite image. The composite is made up of four SVG
shapes, whose fill color depends on the visitedness of four
hyperlinks. There are four choices for each of the two images
to be selected; together, they exhaust the sixteen possible
appearances of the composite image. While this does rely on
SVG, it only requires basic drawing features that are universally
supported (except by IE).

One encounter with this puzzle tests the visitedness of four
links. It could be presented as a brainteaser challenge, giving a
malicious site the opportunity to make each victim solve many
instances of the puzzle in succession, and so probe many links.
It is decidedly more difficult than our other tasks, but it could
be made easier by not composing two images, or by adjusting
the images to make the correct answer more obvious.

B. Procedure

We constructed a website which would challenge participants
to carry out instances of each of the above four tasks. We
did not actually sniff history in the implementation of these
tasks, because our goal was to prove that these tasks could be
performed by a typical user accurately, quickly, and without
frustration. If we had implemented genuine history-sniffing
attacks, we would not have known the ratio of visited to
unvisited links to expect for each prompt, nor would we have
been able to detect errors. Instead, we randomly generated task
instances corresponding to known proportions of visited and
unvisited links. Each participant experienced a fixed number of
trials of each task, as indicated in Table I; each trial selected a
proportion uniformly at random without replacement from the
appropriate column of Table I. The site automatically skipped
tasks that would not work with participants’ browsers (notably
those that required SVG, for participants using IE).

We recruited 307 participants from Amazon Mechanical
Turk for a “user study.” Participants were required to be at
least 18 years old, able to see computer graphics and read
English, and be using a browser with JavaScript enabled. The
precise nature of the study was not revealed until participants
visited the site itself. At that point they were told:

We are studying how much information can be
extracted from a browser’s history of visited web
pages by interactive attacks—that is, attacks that
involve your doing something on a website that
appears to be innocuous. It used to be possible to
probe your browsing history without making you
do anything, but browsers are now starting to block
those attacks, so interactive probes may become more
common in the future.
In this experiment you will carry out some tasks
similar to the ones that a malicious site might use
to probe your browsing history. These tasks do not
actually probe your browsing history; instead we
measure how quickly and accurately you can do
them. From this, we will be able to infer how much
information each of the tasks could extract from your
history.

TABLE I
PROPORTIONS OF VISITED LINKS USED FOR EACH TASK.

N = TOTAL NUMBER OF LINKS, V = NUMBER OF VISITED LINKS.

Word Character
captcha captcha Chess Matching
9 trials 9 trials 12 trials 12 trials
N V N V N V N V

10 1 12 3 16 3 4 0
10 1 12 6 16 3 4 0
10 1 12 9 16 5 4 1
10 2 24 6 16 5 4 1
10 2 24 12 16 7 4 1
10 3 24 18 16 7 4 1
10 3 36 9 16 11 4 1
10 3 36 18 16 11 4 1
10 4 36 27 36 3 4 1
10 4 48 12 36 3 4 1
10 4 48 24 36 5 4 2
10 4 48 36 36 5 4 2
10 5 60 15 36 7 4 2
10 5 60 30 36 7 4 2
10 5 60 45 36 11 4 2
10 6 64 3 4 2
10 6 64 3 4 2
10 6 64 5 4 2
10 7 64 5 4 3
10 7 64 7 4 3
10 7 64 7 4 3
10 8 64 11 4 3
10 8 64 11 4 3
10 8 4 3
10 9 4 3
10 9 4 3
10 9 4 3

4 4
4 4

All participants completed a consent form and then a short
demographic survey (reproduced in Appendix A), after which
they were given brief overall instructions:

This experiment is divided into several tasks. To
proceed to the first task, click on its heading, which
is right below these instructions. When you complete
each task, the heading for the next task will become
selectable.

The tasks all included their own specific instructions, which
are reproduced in Figure 2 above the facsimile of each task.
Each task also included a progress bar at the bottom of its
screen area (not shown in Figure 2) which indicated the number
of trials remaining for that task. When participants reached
the end of a subtask, the page showed some graphs of their
performance on that task, as a reward (we do not show any of
these graphs here, to avoid confusion with our actual analysis).
At the very end of the experiment, participants were thanked
for their assistance and offered an opportunity to see all of the
data collected (in its raw form) before sending it to our server.

The typing tasks gave no feedback until the end, but the
clicking tasks indicated errors immediately. In the chessboard
task, each pawn turned green when clicked, but if a participant
clicked on an empty square, a red X would appear in that
square. In the matching task, when a small image was clicked,

153

Pattern match

Chessboard

Char. CAPTCHA

Word CAPTCHA

lllllll lll

llllll ll llll lll llll lll lllll ll

ll lll llll lll l ll ll ll l lll l ll

ll llllll llllllllllllll lll llllllll lllllllllll lll lll

0% 20% 40% 60% 80% 100%

Fig. 4. Overall accuracy rates for the four interactive tasks.

its brown border would turn blue if that was the correct choice,
red if not. In both cases, participants had to produce the correct
answers before the task would end. A real attack could respond
to clicks in a similar fashion, but might not be able to give
exactly the same error feedback, because of the limitations on
visited-link styles imposed by Baron’s defense. For instance, a
version of the chessboard task that really sniffed history could
turn visible pawns green when clicked, and could cause red
pawns to appear in squares that had been empty before the
click, but could not convert invisible pawns to visible Xes
upon a click.

It was possible for participants to refuse to carry out the
typing tasks, by hitting the RETURN key over and over again
without typing anything. The matching task could also be
skipped, via an explicit “skip this task” button, because our
implementation sometimes malfunctioned and we were not
able to isolate the bug, so we had to give people a way to
move on. The chessboard task, however, could not be skipped
or refused.

For comparison purposes, we also ran three automated
history-sniffing exploits on all the participants. Less than 13%
of the participants were using a browser that blocked these
exploits; see Section IV-E below for more on the experiment
population. We used wtikay.com’s set of 7012 commonly
visited URLs (derived from the Alexa top 5000 sites list [15],
[28]) for this test; we recorded only the total elapsed time and
the number of URLs detected as visited.

C. Results

Not all of the participants completed all of the tasks success-
fully, but we have usable data from at least 177 participants for
each task. Figure 4 shows raw user accuracy rate for all four
tasks. The chessboard takes first place in accuracy, with nearly
all participants scoring 100% or close to. The word CAPTCHA
is substantially easier than the character CAPTCHA; the visual
matching task is dead last in terms of average accuracy, but the
character CAPTCHA has a surprising number of outliers with
very poor accuracy. We investigated these, and found that some
participants became so frustrated with the task that after a few
trials they started hitting RETURN without attempting to type

Auto (timing)

Auto (indirect)

Auto (direct)

Pat. match

Chessboard

Char. CAPTCHA

Word CAPTCHA

lll llll ll

lllll

ll ll llll

ll

lll

ll

10
1

10
2

10
3

10
4

10
5

Fig. 5. Queries per minute achieved by the four interactive tasks (black) and
three automated exploits (gray).

anything. There are even a few 0% scores, from participants
who would not do this task at all. It is well known that strings
of meaningless characters are harder to type than strings of
words [29], but we did not anticipate this level of frustration.

Figure 5 shows the achievable history-sniffing rate for each
task, with the rate of “traditional” automated attacks included
for comparison. Of the four interactive tasks, the chessboard
puzzle is the clear winner, achieving a median of nearly
1000 queries per minute. It should be remembered that this
measurement combines two factors: how fast a victim can do
the task, and how many URLs the task encodes. The chessboard
scores highly on both counts, but the character CAPTCHA
is only in second place because it encodes many URLs.
Conversely, the word CAPTCHA is quick to complete, but
doesn’t encode many URLs and therefore falls behind on QPM.
Matching does poorly on both factors. And, unsurprisingly,
all of our interactive tasks are much slower than automated
sniffing.

Since our study conditions are artificial, our participants’
performance (either speed or accuracy) does not translate
directly to attack effectiveness under “wild” conditions. We
challenged participants to carry out dozens of instances of
our tasks in quick succession, whereas a real attack would
require victims to complete only one instance (except perhaps
for the pattern-matching task). However, we did not observe
any significant effect of fatigue in our tests, except for the
participants who refused to complete all the requested trials of
the character CAPTCHA. Some of the errors on the typing tasks
were caused by participants entering something completely
unexpected, rather than a possible but incorrect answer; in a
real attack, if this happened, the attacker would have to default
to some assumption about the links it was probing (most likely,
that none of them were visited) which might chance to be
correct. These effects would tend to make a genuine attack
more effective than our results indicate.

On the other hand, our participants were told in advance that
their ability to carry out the tasks quickly and accurately was
being measured; people are known to perform better on tasks
of this nature when they know their performance is being tested

154

P
a

rt
ic

ip
a

n
t

c
o

u
n

t

0

5

10

15

0.0% 0.5% 1.0% 1.5% 2.0%

Fig. 6. Histogram of percentage of links visited within wtikay.com’s set
of 7012 commonly visited URLs (derived from the Alexa top 5000 sites), as
measured by an automated history exploit. No participant had visited more
than a tiny fraction of these URLs.

(the “Hawthorne effect” [30]). Even if we had made the task
conditions mimic a real attack more precisely—perhaps we
could have claimed that we were evaluating the usability of new
CAPTCHA styles—our participants might have deduced that
their performance was being tested. Furthermore, Mechanical
Turk workers are paid for every task they complete, so the
faster they do tasks, the more money they earn; our participant
pool was therefore primed to carry out tasks as quickly and
accurately as they could before we ever started talking to
them. These effects would tend to make a genuine attack less
effective than our results indicate. We should not discount the
motivation of victims faced with an (apparent) CAPTCHA,
however. CAPTCHAs are pure obstacles, so users are motivated
to get them out of the way as quickly as possible; users expect
to be locked out of the site if they fail to solve the challenge,
so they are motivated to solve them correctly.

On the whole, we think our results are a reasonable
estimate of the effectiveness of our tasks when used for a
real sniffing exploit. Attackers should perhaps worry more
about CAPTCHAs causing some fraction of their victims to
abandon their efforts to use the site [31]. Even this can be
addressed by making the interactive task seem more like a
game than an obstacle, and by presenting it after potential
victims have already sunk effort into making use of the site.

D. History Density

The chessboard and word CAPTCHA are easier for the
victim to complete if they have visited only a few of the links
that the attacker is probing. 264 of our participants used a
browser that still permits automated history sniffing. Figure 6
shows what percentage of the wtikay.com “top5k” link
set had been visited by each of them. The percentages are

Chrome 3

Chrome 6

Chrome 7

Chrome 8

Chrome 9

Firefox 2

Firefox 3.0

Firefox 3.5

Firefox 3.6

Firefox 4

Flock 2

IE 8

Opera 10

Safari 4

Safari 5

0% 10% 20% 30% 40%

Fig. 8. Browsers used by participants

clearly quite small, so attackers may be able to assume a
sparse set of visited links. However, as pointed out by Janc
and Olejnik [15], sparseness over this generic link set may not
equate to sparseness over a more targeted set—and the link
sets found by Jang were quite targeted indeed.

E. Participant Demographics

We asked participants a few general questions about them-
selves; the results are shown in Figure 7. As the leftmost graph
in Figure 7 shows, the study population is strongly skewed
to younger users, much more so than the (USA) Internet-
using population [32]. Participants also appear more likely
than average to own more than one computer, use the Internet
frequently, have used computers for more than ten years despite
their youth, and to report having at least tried to put together
a website before. This is consistent with other analyses of the
demographics of Mechanical Turk workers specifically [33],
[34]. We expect that our conclusions about interactive tasks
remain valid for Internet users at large, since they rely mostly
on measurements of basic motor activities (typing, mousing).

Our participants used a wide variety of browsers, with the
three most popular being Firefox 3.6, Chrome 7, and IE 8.
Despite its place in the top three, less than 20% of participants
used IE 8, and no older versions of IE were detected; this also
indicates a more technically experienced population than the
average. The full breakdown is in Figure 8. We did not record
participants’ operating systems, or any other User-Agent data
beyond what is shown. Safari 5, Firefox 4, and Chrome 9
are the browsers that, at the time of the study, implemented
Baron’s defense against automated history sniffing; users of
these browsers made up 13% of our survey population.

F. Discussion

We have shown that interactive attacks on visited-link history
are feasible, particularly if the attacker is interested only in a
small set of links, as were the real history sniffers found by Jang.
If we wish to defend against these attacks we must consider
further restricting the functionality of visited-link history—
either the circumstances under which links are revealed to be
visited, or the capabilities of visited-link styles.

Three of our four interactive attacks relied on making
unvisited links invisible by blending them into the background.

155

0%

16%

33%

50%

Age

18−29 30−49 50−69 70+

Date of first computer use

Before

1984

1984−

1994

1994−

2000

2000−

2004

2005−

present

Daily Internet use (hours)

<1 1 2−4 4−8 8+

Number of computers owned

0 1 2 3 4 5+

Web design skill

None Dabbling Skilled Pro

Fig. 7. Demographic breakdown of participants

An obvious defense is to prevent links from being drawn in
the same color as the background (whether visited or not).
However, merely determining what the background color is at
any given position can be difficult. Just to give one example, the
attacker could make the background of their fake CAPTCHA
be partially transparent, then place a box of a contrasting color
directly underneath. For efficiency, the browser might prefer
to have the computer’s graphics card overlay the text, the
partially transparent background, and the colored box, and
send the result directly to the screen, but if it needs to know
what the color of the background plus the box is before it can
draw the text, it cannot do this.

But this is not the real problem with this defense. The real
problem is that interactive attacks don’t need to make anything
invisible. “Type the green words, but not the red words” would
be an even more convincing fake CAPTCHA than the one we
used. Similarly, the chessboard task could ask the user to click
only on red pawns. As long as there is a visible difference
on the user’s screen, we see no practical way to prevent a
sufficiently determined attacker from getting the user to reveal
what it is.

For the most privacy-conscious users, limiting the circum-
stances under which visited links are revealed might be an
appropriate move. In his original BUGTRAQ post describing
visited link attacks [1], Clover suggested that links might
only be revealed as visited when they refer to documents in
the same domain as the current page, but then immediately
pointed out that this would render the feature nearly useless.
SafeHistory [9] refines this idea: links are revealed as visited
if they target a document in the same domain, if the link
destination has previously been visited from the current site,
or if the current site is on a whitelist of trusted sites. Under
this policy, a malicious site cannot learn anything from history
sniffing that it could not discover by monitoring clicks on
outbound links. It sacrifices what is arguably the most useful
case of visited-link indications (when a new-to-the-user site
links to a document they have already seen), but to some extent
this can be mitigated by use of the whitelist.

Unfortunately, an attacker may still be able to construct an
interactive attack on history if any links are revealed as visited.
With SafeHistory in use, if attackers can predict the location of
a link to a site of interest on a whitelisted page, they can draw
pictures using iframes that show one pixel of the whitelisted
page, directly above that link. This is not so farfetched as
it might sound: a hyperlink to facebook.com appears at a
predictable location on the page http://www.google.com/search?
q=facebook.com, and search engines are obvious candidates
for whitelisting. If there is no whitelist, attackers could instead
draw their pictures with single-pixel iframes of the sites
they want to know about. Many sites contain links pointing
back to their front pages in predictable locations on interior
pages, which would count as same-origin and so have their
visitedness revealed. (Care must be taken not to disturb the
visitedness of the front page, of course.) Of course, attackers
using this technique cannot control the colors of visited and
unvisited links, but this poses little difficulty: they can either
design their interactive attack to work with the colors they get,
or they can use an SVG filter to remap the colors as they see
fit (as we did in the character CAPTCHA).

Most browsers can be configured not to retain any visited-
link history at all, and the “private browsing” mode found
in all modern browsers makes this quite convenient. Private
browsing was developed to defend users’ privacy against other
users of the same computer [35], but it also prevents remote
history sniffing attacks. Of course, this comes at the price of not
distinguishing visited from unvisited links at all. Alternatively,
most browsers can be configured to remember history only
until shut down; this mode’s visited-link distinctions are less
useful (the user probably remembers what they have visited
within the current session) and remote attackers can still detect
pages visited within the current session.

V. EXPERIMENT 2: SIDE-CHANNEL ATTACK

Baron’s defense was intended to cover all practical side
channel attacks on browsing history; many of the restrictions
it places on :visited are solely to prevent timing attacks.

156

In Section III-C, we described a practical side channel attack
on Firefox 4 beta using the MozAfterPaint event. Unfor-
tunately, this is not the only side channel attack for history
detection. We discovered another attack that is technically out
of scope for the defense, as it relies on both software and
hardware outside the browser’s control, and would be difficult
to exploit in practice, but would also be very hard to close.

A. Webcam attacks

Many computers, especially laptops, nowadays come with
a built-in video camera aimed at the user. Adobe Flash
(not a standard component of the Web, but very common
nonetheless) includes a mechanism for activating this camera
and gaining direct access to the data stream it produces.
Computer screens are backlit, so they illuminate the user and
the user’s environment; the color of this light varies with the
color of the computer screen. Thus, if the color of an area of
the screen depends on whether or not a link has been visited,
an attacker could use the camera to detect that color. This
attack will work better if the colored area is large and the
difference between the visited and unvisited colors is dramatic,
but in theory, sophisticated image processing code could detect
even small differences.

There are two major obstacles to this attack. First, the
Flash runtime will not activate the camera without the user’s
permission, and it includes defenses against “clickjacking”
attacks that trick the user into granting permission [36], [37].
The attacker would have to make their site appear to have a
legitimate use for the camera; for instance, it could present
itself as a video chat site. Second, to probe many links, it is
necessary to change the color of the link frequently—that is,
to make some part of the screen flash, which annoys users
even in tiny doses, as the <blink> tag demonstrates. If the
color, size, or blink rate are poorly chosen, flashing light can
even induce epileptic seizures [38]. However, despite these
drawbacks, many online ads already do include blinking effects;
an attack disguised as one of these ads might irritate victims
enough that they close the offending window, but is unlikely
to seem suspicious.

We developed and tested two variants of this attack. In
both variants, we made a rectangular box of uniform color
be a hyperlink, periodically changed its target, and monitored
changes in the average color detected by the camera. We used
the least sophisticated image processing algorithm that would
work at all; our results should therefore be considered a worst
case scenario for the attacker. The QPM ratio and total number
of links probed are fixed by the blink rate and runtime of
the attack, so we discuss only accuracy below. As with the
interactive attacks, we did not actually sniff history; rather, we
generated a random sequence of 20 links, of which 10 were
known to be visited and 10 known to be unvisited, so that
we knew the correct answer for each link and could measure
accuracy.

1) Variant 1: The first variant was designed to comply with
the WCAG standard for seizure safety [38]. This standard limits
the maximum area that can be made to blink, maximum blink

0%

5%

10%

15%

20%

0% 20% 40% 60% 80% 100%

Fig. 9. Histogram of webcam attack (variant 1)’s accuracy rate when presented
to participants in the interactive experiment.

rate, and the maximum luminosity difference between flashes; it
also requires avoidance of the color red. All these requirements,
especially the limits on blinking area and luminosity changes,
make detecting the change in reflected light more difficult, but
by no means impossible.

2) Variant 2: The second variant made the entire browser
window flash, and used brighter colors to represent visited and
unvisited links. The image processing task is much easier, but
it is obvious that something unusual is happening.

B. Results

We tested both variants on ourselves under controlled
conditions, using one of the authors’ computers (a Macbook
Pro with built-in webcam) in three settings with diverse
backgrounds: an office cubicle, a bedroom, and a living room.
We also tested the attacks both with one of the authors sitting
in front of the computer, and with nobody in the camera’s
field of view. We were able to achieve 100% accuracy for both
variants in all conditions, provided that the room was well-lit
and the person in front of the computer (if any) remained still.
In a dark room, accuracy dropped to chance (50%).

The first variant of the webcam attack was also field-tested
as an optional task for participants in our interactive experiment.
Not all of them had Flash-accessible cameras or were willing
to let us use them; of the 307 participants in the interactive
experiment, only 60 performed the webcam task. Participants
who agreed to perform the task were asked to sit still and
watch the screen while it flashed; they did not need to do
anything.

As shown in Figure 9, this attack’s accuracy rate is highly
variable in the field, often dropping to not much better than

157

chance. Comparing to our results under controlled conditions,
we believe the high error rate is mainly caused by participants
moving around during the task. If so, attackers could analyze the
video feed and only run the attack during periods when nothing
was moving in the camera’s field of view. More sophisticated
image processing might also help.

C. Discussion

One might reasonably ask whether this technique is practical
enough to be a genuine threat. We think the most serious
obstacle in real life would be persuading victims to allow
access to their webcams. There are already sites that make
legitimate use of the webcam, usually for live two-way chat (the
ChatRoulette service [39] is a prominent example). Such sites
could plausibly incorporate the WCAG-compliant variant of this
attack, disguised as an ad. The more obtrusive variant is likely
to make anyone who sees it close the browser immediately,
but we think it could still be used on victims who walk away
from the computer leaving the malicious site open. It does not
take terribly sophisticated image processing to detect when
nobody is in the camera’s field of view, and in our controlled
tests, the attack works even when the closest reflector is a wall
10 to 20 feet away from the monitor.

We would also like to point out that as the Web platform
gains capabilities, other side-channel attacks may become
possible. HTML5 already contemplates adding features [40]
that would eliminate the need for Adobe Flash in the webcam
attack. WebGL [41] allows rendered HTML pages to be
processed by shader programs, which are Turing-complete; we
speculate that they might be able to detect history-dependent
color changes and report them back to the controlling page’s
scripts (if only via a timing channel).

VI. RELATED WORK

Privacy attacks have received significant attention recently.
Section II covered the existing work on defenses for nonin-
teractive attacks on visited-link history [1], [2], [4], [9], [11],
[15], [16]. In this section, we describe related work on privacy
attacks that abuse other browser features.

Visited-link state is not the only way to determine whether
the user has visited a site. Two other straightforward techniques
involve timing attacks on local caches maintained by the
browser.
Page cache. Browsers cache resources retrieved from the

Web to improve the speed of subsequent page loads.
Approximately 60% of HTTP queries are requests for
cacheable resources [42]. The cache is global, so by
embedding a resource from another site and measuring the
time it takes to load, a web page can determine whether
that resource is already in the browser’s cache, and thus
determine whether the user has visited the other site [43].

DNS cache. Name-to-IP-address mappings retrieved from the
DNS are typically cached by the operating system of the
computer that made the query, and may also be cached
by an intermediate device (such as a network router)
for the benefit of other computers on the same network.

Web attackers can induce the browser to perform a DNS
lookup and measure the amount of time it takes [43];
local network attackers, able to make queries of a shared
DNS cache, can inspect its contents in more detail [44],
[45]. The DNS cache can reveal which sites a user has
visited, but unlike the page cache, it can also reveal search
queries that the user has made, because some browsers
(versions of Firefox and Chrome released since 2008 [45];
Safari 5 also adopted the tactic) prefetch DNS entries for
sites that the user is likely to visit in the future—such as
sites linked from a search results page.

Note that both these techniques are destructive—only the very
first attempt to determine whether a piece of information is
cached will reveal anything interesting, because the attack itself
causes the information to be cached. Also, browsers don’t cache
information for very long, even in the face of strenuous efforts
by site maintainers to make them do so [46], [47] so these
attacks are not very reliable and may only reveal short-term
history.

Another tactic only applies to sites that users typically
remain logged into for long periods (Facebook, Gmail, Twitter,
etc.) If an attacker can guess the URL of a resource that is
loadable cross-origin but only available to logged-in users, they
can attempt to load it and detect failure using the JavaScript
onerror event. Depending on the site, more information may
be available to clever attackers [48]; even if the resource does
not generate an HTTP error for users that are not logged in, it
may be possible to extract information from it [49].

Client-side state such as cookies [50], [51], Flash Player
local shared objects [52], and Web Storage [53] can be used by
web sites to re-identify users who have visited a site in the past.
They are often used for user authentication and personalization.
Some of these mechanisms (notably cookies) allow “third
parties” (sites other than the main one the user is interacting
with, but that provide some of the resources present in the page)
to access client-side state. This third-party state is separate
from any state set by the page itself, but if several sites refer
to the same resource provider (for instance, an advertising
network), that provider can build a profile of a user’s browsing
activities. Even if the user regularly clears their cookies, a
determined site may be able to re-construct them based on
other browser state [54]. Most browsers provide some degree
of control over cookies, allowing users to disable third-party
cookies altogether, or allow only cookies with an acceptable
P3P privacy policy [55]. Unfortunately, these mechanisms are
easily circumvented [9], [56].

Finally, many kinds of technological devices possess subtle
but measurable variations that allow them to be “fingerprinted,”
and browsers are no exception. By tracking information that
the browser reveals to all sites, such as User-Agent headers,
Accept headers, screen resolution, time zone, browser plugins,
and system fonts, a site can rapidly re-identify users, even
without the use of client-side state [57], [58]. Fingerprinting
can be used to build a profile of user behavior even if the user
tries to clear browser state.

Privacy tools such as Torbutton [59] aim to mitigate or

158

prevent the above attacks, at the cost of web functionality;
this is an acceptable tradeoff for some users. Torbutton is
particularly noteworthy for considering and designing against
fingerprintability. Private browsing mode [35] can also mitigate
some of these attacks, but it was not designed to do so and
is less effective than a specialized tool; again, functionality is
sacrificed. Ad-blockers [60] prevent many real-world cases of
behavior profiling as a side effect, since ad networks are one
of the primary users of third-party cookies.

The more well-known providers of third-party tracking
cookies often allow users to “opt out” [14], but this is a
manual procedure that must be carried out for each tracker.
The “Do Not Track” initiative [61] proposes to indicate in
HTTP request headers when users do not wish to be tracked;
to be effective this would have to be backed up with sanctions
against tracking agencies that ignore it, and at present there is
no legal framework for such sanctions.

VII. CONCLUSION

Web browsers attempt the difficult balancing act of pre-
serving their users’ privacy and security, while simultaneously
exposing as much of their computers’ capabilities as possible to
untrusted code from the Internet. In this paper we examined an
attack, history sniffing, which appeared as an unintended con-
sequence of the combination of three independently desirable
features: visited-link indication to the user, CSS control of all
aspects of page appearance, and JavaScript monitoring of page
rendering. Automated history sniffing attacks, including timing
attacks, have successfully been blocked in the latest browsers by
David Baron’s restrictions on visited link styling [3]. However,
attacks that involve the user remain possible, as do attacks via
side channels outside of the browser’s control.

We developed proofs of concept of six history sniffing
exploits that remain possible with Baron’s defense in place:
four involving interaction with the user, and two involving
detection of the color of the screen with a webcam. We tested
our exploits on 307 users from Amazon Mechanical Turk, and
found that while they are slower than automated attacks, and
less convenient for an attacker, they are practical for small
numbers of URLs, in the same range as the “wild” automated
exploits found by Jang et al. [4].

All of our exploits, fundamentally, depend only on the
browser having revealed a distinction between visited and
unvisited links on the computer screen, plus some way for
the page to read that information back—via the victim’s eyes
and hands, or via a camera controllable by the webpage. As
browsers continue to add capabilities to the Web platform,
it seems inevitable to us that further ways will appear for
malicious pages to discover what only the user should know.
Link visitedness is not the only case where browsers try to
combine information from mutually distrusting sources into
one apparently-seamless “page,” and all those other cases
are also problematic for security [62], [63]. We consider
finding more reliable ways to make these combinations, without
compromising user privacy or cross-site security, an open
research problem crucial to the future of the Web.

ACKNOWLEDGEMENTS

We thank Adam Barth, Pamela Griffith, Jeremiah Grossman,
Artur Janc, Łukasz Olejnik, Jesse Ruderman, Eric Seidel, Hovav
Shacham, Nathaniel Smith, Venkat Venkatakrishnan, Helen
Wang, and Dara Weinberg for their helpful suggestions and
feedback.

This research was supported by Microsoft Research and
CyLab at Carnegie Mellon under grant DAAD19-02-1-0389
from the Army Research Office. The views and conclusions
contained here are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either express or implied, of Microsoft, ARO,
CMU, or the U.S. Government or any of its agencies.

Data analysis was done in R [64] with the “ggplot2” graphics
package [65].

REFERENCES

[1] A. Clover. (2002) CSS visited pages disclosure. BUGTRAQ mailing list
posting. http://seclists.org/bugtraq/2002/Feb/271

[2] L. D. Baron. (2002) :visited support allows queries into global
history. Mozilla bug 147777.
https://bugzilla.mozilla.org/show_bug.cgi?id=147777

[3] ——. (2010) Preventing attacks on a user’s history through CSS
:visited selectors. Web page.
http://dbaron.org/mozilla/visited-privacy

[4] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An Empirical Study of
Privacy-Violating Information Flows in JavaScript Web Applications,”
in ACM Conference on Computer and Communications Security (CCS),
2010. http://cseweb.ucsd.edu/~d1jang/papers/ccs10.pdf

[5] T. Berners-Lee. (1990) WorldWideWeb: Proposal for a HyperText
Project. Email message. http://www.w3.org/Proposal.html

[6] J. Nielsen, Multimedia and hypertext: the internet and beyond. Academic
Press, 1995.

[7] J. Ruderman. (2008) JavaScript Security: Same Origin. Mozilla
Developer Center article.
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript

[8] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee, “On the Incoherencies
in Web Browser Access Control Policies,” in IEEE Symposium on
Security and Privacy (Oakland), 2010.
http://research.microsoft.com/en-
us/um/people/helenw/papers/incoherencyAndWebAnalyzer.pdf

[9] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell, “Protecting
Browser State from Web Privacy Attacks,” in International World
Wide Web Conference (WWW), 2006.
http://crypto.stanford.edu/sameorigin/sameorigin.pdf

[10] N. Kennedy. (2008) Sniff browser history for improved user experience.
Blog entry.
http://www.niallkennedy.com/blog/2008/02/browser-history-sniff.html

[11] M. Jakobsson and S. Stamm, “Invasive Browser Sniffing and
Countermeasures,” in International World Wide Web Conference (WWW),
2006. http://research.sidstamm.com/papers/invasivesniff05.pdf

[12] A. Juels, M. Jakobsson, and T. N. Jagatic, “Cache Cookies for Browser
Authentication,” in IEEE Symposium on Security and Privacy (Oakland),
2006.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.8258&rep=
rep1&type=pdf

[13] L. Shepard. (2009) Making OpenID more useful: let’s detect logged-in
state. Blog entry. http://www.sociallipstick.com/?p=167

[14] P. Dixon. (2004) Consumer Tips: How to Opt-Out of Cookies That Track
You. Web page. http://www.worldprivacyforum.org/cookieoptout.html

[15] A. Janc and Ł. Olejnik, “Web Browser History Detection as a
Real-World Privacy Threat,” in European Symposium on Research in
Computer Security (ESORICS), 2010.
http://cdsweb.cern.ch/record/1293097/files/LHCb-PROC-2010-036.pdf

[16] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel, “A Practical Attack
to De-anonymize Social Network Users,” in IEEE Symposium on
Security and Privacy (Oakland), 2010.
http://www.iseclab.org/papers/sonda-tr.pdf

159

[17] E. Goffman, The Presentation of Self in Everyday Life. Anchor Books,
1959.

[18] E. W. Felten, D. Balfanz, D. Dean, and D. S. Wallach, “Web
Spoofing: An Internet Con Game,” in National Information Systems
Security Conference, 1997.
http://www.csl.sri.com/users/ddean/papers/spoofing.pdf

[19] R. Dhamija, J. D. Tygar, and M. Hearst, “Why phishing works,”
in SIGCHI Conference on Human Factors in Computing Systems
(CHI), 2006.
http://www.deas.harvard.edu/~rachna/papers/why_phishing_works.pdf

[20] V. Apparao, S. Byrne, M. Champion, S. Isaacs, A. L. Hors, G. Nicol,
J. Robie, P. Sharpe, B. Smith, J. Sorensen, R. Sutor, R. Whitmer,
and C. Wilson, Document Object Model (DOM) Level 1 Specification,
W3C Recommendation, 1998.
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/

[21] V. D. Gligor et al., A Guide to Understanding Covert Channel Analysis
of Trusted Systems, ser. NSA/NCSC Rainbow Series. Fort Meade, MD:
National Computer Security Center, 1993, no. NCSC-TG-030.
http://www.fas.org/irp/nsa/rainbow/tg030.htm

[22] T. Atkins Jr. (2009) Re: [css3-selectors] No way to select preceding
sibling element. Mailing list post.
http://lists.w3.org/Archives/Public/www-style/2009Jul/0041.html

[23] Z. Weinberg. (2010) CSS timing attack on global history still possible
with MozAfterPaint. Mozilla bug 600025.
https://bugzilla.mozilla.org/show_bug.cgi?id=600025

[24] Amazon. (2005) Amazon Mechanical Turk: Artificial Artificial
Intelligence. Web site. https://www.mturk.com/

[25] L. von Ahn, M. Blum, N. Hopper, and J. Langford, “CAPTCHA:
Using Hard AI Problems for Security,” in Advances in Cryptology —
EUROCRYPT 2003, 2003. http://dx.doi.org/10.1007/3-540-39200-9_18

[26] J. Daggett, CSS Fonts Module Level 3, W3C Working Draft, 2009.
http://www.w3.org/TR/css3-fonts/

[27] J. Schiller. (2010) SVG Support. Web page.
http://www.codedread.com/svg-support.php

[28] Alexa. Top Sites. Data set. http://www.alexa.com/topsites
[29] R. L. Hershman and W. A. Hillix, “Data Processing in Typing: Typing

Rate as a Function of Kind of Material and Amount Exposed,” Human
Factors, vol. 7, pp. 483–492, 1965.
http://www.ingentaconnect.com/content/hfes/hf/1965/00000007/
00000005/art00007

[30] H. A. Landsberger, Hawthorne Revisited: Management and the Worker,
Its Critics, and Developments in Human Relations in Industry. Ithaca,
New York: School of Industrial and Labor Relations, Cornell University,
1958.

[31] C. Henry. (2009) CAPTCHAs’ Effect on Conversion Rates. Blog entry.
http://www.seomoz.org/blog/captchas-affect-on-conversion-rates

[32] A. Smith, “Home Broadband 2010,” Pew Internet & American Life
Project, Report, 2010.
http://pewinternet.org/Reports/2010/Home-Broadband-2010.aspx

[33] P. G. Ipeirotis, “Demographics of Mechanical Turk,” Center for Digital
Economy Research, NYU Stern School of Business, Working paper,
2010. http://hdl.handle.net/2451/29585

[34] J. Ross, L. Irani, M. S. Silberman, A. Zaldivar, and B. Tomlinson,
“Who are the Crowdworkers? Shifting Demographics in Mechanical
Turk,” in alt.CHI, 2010.
http://www.ics.uci.edu/~jwross/pubs/RossEtAl-
WhoAreTheCrowdworkers-altCHI2010.pdf

[35] G. Aggarwal, E. Burzstein, D. Boneh, and C. Jackson, “An Analysis of
Private Browsing Modes in Modern Browsers,” in USENIX Security
Symposium, 2010.
http://crypto.stanford.edu/~dabo/pubs/papers/privatebrowsing.pdf

[36] R. Hansen and J. Grossman. (2008) Clickjacking. Web page.
http://www.sectheory.com/clickjacking.htm

[37] Adobe. (2008) Flash Player workaround available for “Clickjacking”
issue. Security advisory.
http://www.adobe.com/support/security/advisories/apsa08-08.html

[38] W. Chisholm, G. Vanderheiden, and I. Jacobs, Web Content Accessibility
Guidelines 1.0, W3C Recommendation, 1999.
http://www.w3.org/TR/WCAG10/

[39] A. Ternovskiy et al. (2009) Chatroulette. Web site.
http://www.chatroulette.com/

[40] I. Hickson, HTML: The device element, WHATWG Living Standard,
2011.
http://www.whatwg.org/specs/web-apps/current-
work/multipage/commands.html#devices

[41] C. Marrin, WebGL Specification, Khronos Working Draft, 2011.
http://www.khronos.org/registry/webgl/specs/latest

[42] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T. Landray,
D. Pinnel, A. Karlin, and H. Levy, “Organization-Based Analysis of
Web-Object Sharing and Caching,” in USENIX Symposium on Internet
Technologies and Systems, 1999.
http:
//www.cs.washington.edu/research/networking/websys/pubs/usits99.ps

[43] E. W. Felten and M. A. Schneider, “Timing Attacks on Web Privacy,”
in ACM Conference on Computer and Communications Security (CCS),
2000.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.6864&rep=
rep1&type=pdf

[44] S. Krishnan and F. Monrose, “DNS prefetching and its privacy
implications: when good things go bad,” in USENIX Conference on
Large-Scale Exploits and Emergent Threats (LEET), 2010.
http://www.usenix.org/event/leet10/tech/full_papers/Krishnan.pdf

[45] L. Grangeia, “DNS Cache Snooping, or Snooping the Cache for Fun
and Profit,” SideStep Segurança Digital, Tech. Rep., 2004.
http:
//www.rootsecure.net/content/downloads/pdf/dns_cache_snooping.pdf

[46] T. Theurer. (2007) Performance Research, Part 2: Browser Cache
Usage—Exposed! Blog entry.
http://www.yuiblog.com/blog/2007/01/04/performance-research-part-2/

[47] S. Souders. (2010) Call to improve browser caching. Blog entry.
http://www.stevesouders.com/blog/2010/04/26/call-to-improve-browser-
caching/

[48] K. Brewster. (2008) Patching Privacy Leaks. Blog entry.
http://kentbrewster.com/patching-privacy-leaks/

[49] ThinkerMade. (2008) How to Tell if a User is Signed in to Facebook
and Other Services. Blog entry.
http://replay.waybackmachine.org/20081020072934/http:
//www.thinkermade.com/blog/2008/07/how-to-tell-if-a-user-is-signed-in-
to-facebook-and-other-services/

[50] D. M. Kristol and L. Montulli, HTTP State Management Mechanism
(RFC 2965), IETF Proposed Standard, 2000.
https://datatracker.ietf.org/doc/rfc2965/

[51] A. Barth, HTTP State Management Mechanism, IETF Internet-Draft,
2010. https://datatracker.ietf.org/doc/draft-ietf-httpstate-cookie/

[52] Adobe. (2006) What are local shared objects? Web page.
http://www.adobe.com/products/flashplayer/articles/lso/

[53] I. Hickson, Web Storage, W3C Working Draft, 2011.
http://www.w3.org/TR/webstorage/

[54] S. Kamkar, Evercookie — Never Forget, 2010. http://samy.pl/evercookie/
[55] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall, and

J. Reagle, The Platform for Privacy Preferences 1.0 Specification, W3C
Recommendation, 2002. http://www.w3.org/TR/P3P/

[56] P. Leon, L. Cranor, A. McDonald, and R. McGuire, “Token Attempt:
The Misrepresentation of Website Privacy Policies through the Misuse
of P3P Compact Policy Tokens,” in Workshop on Privacy in the
Electronic Society, 2010.
http://www.cylab.cmu.edu/files/pdfs/tech_reports/CMUCyLab10014.pdf

[57] J. R. Mayer, “Any person. . . a pamphleteer: Internet Anonymity in the
Age of Web 2.0,” Undergraduate Senior Thesis, Princeton University,
2009. http://stanford.edu/~jmayer/papers/thesis09.pdf

[58] P. Eckersley, “How Unique Is Your Browser?” in Privacy Enhancing
Technologies Symposium (PETS), 2010.
http://www.defcon.org/images/defcon-18/dc-18-
presentations/Eckersley/DEFCON-18-Eckersley-Panopticlick.pdf

[59] M. Perry and S. Squires. (2007) Torbutton. Software.
https://www.torproject.org/torbutton/

[60] W. Palant et al. (2006) Adblock Plus. Software. http://adblockplus.org/
[61] J. Mayer and A. Narayanan. (2010) Do Not Track: Universal Web

Tracking Opt-Out. Web site. http://donottrack.us/
[62] R. O’Callahan. (2011) Distinguishing “Embeddable” Versus “Readable”

Web Resources Considered Harmful. Blog entry.
http://weblogs.mozillazine.org/roc/archives/2011/02/distinguishing.html

[63] A. van Kesteren. (2011) Breaking Web Platform Consistency Considered
Harmful. Blog entry.
http://annevankesteren.nl/2011/02/web-platform-consistency

160

[64] R Development Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2010. http://www.r-project.org

[65] H. Wickham, ggplot2: elegant graphics for data analysis. Springer
New York, 2009. http://had.co.nz/ggplot2/book

APPENDIX A
DEMOGRAPHIC SURVEY

This is the demographic survey presented to participants in
the interactive experiment. In the actual study, the response
choices shown for each question were presented with an HTML
drop-down selection widget. Participants were required to
answer all questions.

We’d like to know a little bit about you and your
experience with computers.
Roughly how old are you?
• 18–29
• 30–49
• 50–69
• 70+

When did you first use a computer?
• Less than 5 years ago
• 5 to 10 years ago
• 10 to 15 years ago
• Before Windows 95
• Before the Macintosh

How long do you spend on the Internet each day?

• Barely at all
• 1 hour
• 2-4 hours
• 4-8 hours
• More than 8 hours

How many computers do you own?
• 0
• 1
• 2
• 3
• 4
• More

Do you know how to program computers or build
websites?
• No
• I’ve tried it a few times
• Yes
• Yes, and I’ve done it for a living

What kind of mouse are you using?
• Regular mouse
• Trackball
• Touchpad
• Eraser-head mouse
• Other

161

