
Verified Security for Browser Extensions

Arjun Guha
Brown University

Matthew Fredrikson
University of Wisconsin, Madison

Benjamin Livshits Nikhil Swamy
Microsoft Research

Abstract—Popup blocking, form filling, and many other fea-
tures of modern web browsers were first introduced as third-
party extensions. New extensions continue to enrich browsers
in unanticipated ways. However, powerful extensions require
capabilities, such as cross-domain network access and local
storage, which, if used improperly, pose a security risk. Several
browsers try to limit extension capabilities, but an empirical
survey we conducted shows that many extensions are over-
privileged under existing mechanisms.

This paper presents IBEX, a new framework for authoring,
analyzing, verifying, and deploying secure browser extensions.
Our approach is based on using type-safe, high-level languages
to program extensions against an API providing access to
a variety of browser features. We propose using Datalog to
specify fine-grained access control and data flow policies to
limit the ways in which an extension can use this API, thus
restricting its privilege over security-sensitive web content and
browser resources. We formalize the semantics of policies in
terms of a safety property on the execution of extensions and
develop a verification methodology that allows us to statically
check extensions for policy compliance. Additionally, we provide
visualization tools to assist with policy analysis, and compilers
to translate extension source code to either .NET bytecode or
JavaScript, facilitating cross-browser deployment of extensions.

We evaluate our work by implementing and verifying 17
extensions with a diverse set of features and security policies.
We deploy our extensions in Internet Explorer, Chrome, Firefox,
and a new experimental HTML5 platform called C3. In so doing,
we demonstrate the versatility and effectiveness of our approach.

I. INTRODUCTION

Like operating systems, IDEs, and other complex software
systems, web browsers may be extended by third-party code.
Extensions provide unforeseen new functionality and are sup-
ported by all major browsers. Although a precise count for
each browser is hard to obtain, various sources estimate that
a third of all users of Firefox (some 34 million) use exten-
sions [27], while the 50 most popular Chrome extensions have
each been downloaded several hundred thousand times [13].

Notwithstanding their popularity, extensions can pose a
significant risk to the security and reliability of the browser
platform. Unlike JavaScript served on web pages, extensions
can access cross-domain content, make arbitrary network
requests, and can make use of local storage. A malicious or
buggy extension can easily void many security guarantees that
a browser tries to provide; e.g., with extensions installed, the
same-origin restriction enforced by browser to prevent cross-
domain flows is easily circumvented. Additionally, extensions
affect page load times and browser responsiveness.

In light of these concerns, browser vendors have put in place
various processes to control how extensions are distributed, in-

stalled, and executed. Mozilla, for example, manages a hosting
service for Firefox extensions. Newly submitted extensions are
subject to an ad hoc community review process to identify
extensions that violate best practices, e.g., polluting the global
JavaScript namespace. In contrast, Google Chrome extensions
request privileges they need in an explicit manifest [3], and,
when installing an extension, the user is prompted to grant it
these privileges.

We view the Chrome model as a step in the right direction—
privileges in the manifest can be inspected independently of
extension code; and the browser assumes the responsibility of
enforcing access controls. However, from an empirical study
of over 1,000 Chrome extensions (Section II), we find that
this model is often not very effective in limiting the privileges
of extensions. For example, nearly a third of the extensions
we surveyed request full privileges over data on arbitrarily
many web sites; and as many as 60% have access to a user’s
entire browsing history. In many of these cases, the language of
Chrome’s security manifests makes it impossible to state finer-
grained policies to more precisely capture extension behavior.

In an effort to alleviate some of these shortcomings, we
propose IBEX, a new framework for authoring, analyzing, ver-
ifying, and deploying secure browser extensions. Our model
speaks to three main groups of principals: extension develop-
ers, curators of extension hosting services, and end-users.

While this paper focuses primarily on the subject of browser
extensions, our work is motivated by, and speaks to, several
important trends in software distribution. As evidenced by
app stores for iOS, Windows, and Android devices and web
apps in Chrome OS [32], software distribution is increasingly
mediated by a centralized, curated service. In this context,
automated software checking for both security and reliability
becomes a plausible alternative to manual vetting, since cura-
tors have the ability to reject distributing applications that risk
compromising the integrity of the ecosystem. Our work also
explores the space of policies that apply to a growing number
of HTML5 applications, running on the web, on the desktop,
a mobile device, or within a browser. (Trends in Chrome OS
suggest a convergence between these forms of applications.) A
key component of IBEX is a lightweight, logic-based approach
to policies that aims to find a balance between resources and
rights specified at a flexible level of granularity, while still
allowing for efficient and reliable enforcement.

A. Overview of IBEX and contributions

We discuss the key elements of IBEX (illustrated in Fig-
ure 1) in conjunction with our technical contributions, below.
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Browser-agnostic API for extensions. We provide developers
with an API that exposes core browser functionality to ex-
tensions. We expect programmers to write extensions in high-
level, type-safe languages that are amenable to formal analysis,
including, for example, the .NET family of languages, or
JavaScript subsets like those explored in Gatekeeper [17]. Our
API is designed for the static verification of extension security
and thus mediates access to features that can be abused by
buggy or malicious extensions.
A policy language for stating extension privileges. To de-
scribe an extensions privilege over specific browser resources,
we propose using a logic-based policy language. Our language,
based on Datalog, allows the specification of fine-grained
authorization and data flow policies on web content and
browser state accessible by extensions. We expect policies to
be developed in conjunction with the extension code, either
authored manually by extension developers, or, in the future,
extracted automatically via analysis of extension code.
Tools for curators of an extension hosting service. We
envisage the distribution of extensions to end-users via a
curated extension hosting service, as adopted by Chrome,
or Firefox. Extension developers submit extension code and
policy to the hosting service and curators can avail of policy
analysis tools we provide to determine whether or not an
extension is fit for public distribution. Specifically, we discuss
a policy visualization tool that helps a curator to estimate an
extensions access rights on specific web pages.
A formal semantics of policies and extension safety. We give
a formal notion of extension safety to define precisely when
an extension can be said to be in compliance with a policy.
A distinctive feature of our semantics is that it accounts for
an execution model that involves arbitrary interleavings of
extension code with other untrusted scripts on a web page.
Our safety property is designed to be robust with regard to
the composition of safe extension code with untrusted scripts.
Static checking of extension safety. We develop a method-
ology based on refinement typing (proven sound) to verify
that extensions written in Fine [30], a dependently typed
ML dialect, satisfies our safety condition. Static verification
eliminates the overhead of runtime security monitoring, and
promotes robustness of the browser platform since extensions
can never raise unexpected security exceptions. We expect
our verification tools to be used both by extension developers
and, importantly, by curators prior to accepting extensions for
distribution.
Cross-browser deployment. We utilize multiple code gener-
ators implemented by the Fine compiler (including a new
JavaScript backend) to allow the same extension source to be
deployable in multiple browsers. A key enabler of this feature
is the use of a browser-agnostic core extension API, combined
with the use of a standard ML-like source language. To date,
we have deployed extensions in Internet Explorer 8, Chrome,
and Firefox. Additionally, we show how to deploy extensions
in C3 [23], a new platform for HTML5 experimentation
developed entirely in a type-safe, managed language.
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Fig. 1: Users, developers, and curators: an overview of IBEX.

Empirical evaluation. Our evaluation includes program-
ming 17 extensions in Fine, specifying a range of fine-
grained authorization and data flow properties for each, and
automatically verifying them for policy compliance. Among
these 17 extensions are several ported versions of widely-used
Chrome extensions, which shows that our model also brings
benefits to existing legacy extension architectures.

B. Outline of the paper

We begin in Section II by discussing existing extension
security models. Section III presents an overview of the design
of IBEX. Section IV discusses our policy language and its visu-
alization tool. Section V formalizes the semantics of policies
and our safety property. Section VI shows how to statically
verify extensions using refinement type checking. Section VII
presents our experimental evaluation and discusses the code of
two extensions in detail. Section VIII discusses our support for
cross-browser deployment of extensions. Section IX discusses
limitations and future work. Section X discusses related work,
and Section XI concludes.

II. A SURVEY OF EXISTING EXTENSION MODELS

Extensions have access to browser resources not usually
available to scripts running on web pages. Unlike scripts on
web pages, which can can only affect the page on which
they are hosted, extensions can read and modify arbitrary
web pages, and can even customize browsers’ interfaces.
Extensions are also not subject to the same-origin policy
that applies to scripts on web pages—this allows them to
communicate with arbitrary web hosts. With access to these
and other capabilities, extensions, if malicious, pose a security
risk. Moreover, since extensions interact with web pages, a
malicious page could exploit a vulnerable extension to access
capabilities that web pages do not ordinarily possess.

Below, we discuss the security mechanisms employed by
Internet Explorer, Firefox, and Chrome to motivate the design
of IBEX. Of these browsers, Chrome has the most security-
aware extension system to date. We perform a detailed study
of over 1,000 Chrome extensions to study the effectiveness
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of its security model and conclude that many, if not most,
extensions are unnecessarily over-privileged.

A. Internet Explorer’s extension model

Internet Explorer supports several extension mechanisms of
which browser helper objects or BHOs are probably the most
commonly used. BHOs (usually native binaries) have virtually
unrestricted access to IE’s event model and, as such, have
been used by malware writers in the past to create password
capturing programs and key loggers. This is especially true
because some BHOs run without changes to the user interface.
For instance, the ClSpring Trojan [4] uses BHOs to install
scripts to provide a number of instructions to be performed
such as adding and deleting registry values and downloading
additional executable files, all completely transparent to the
user. Even if the BHO is completely benign, but buggy, its
presence might be enough to open up exploits in an otherwise
fully patched browser.

B. Firefox’s extension model

Firefox extensions are typically written in JavaScript and
can modify Firefox in fairly unrestricted ways. This flexibility
comes with few security guarantees. Extensions run with the
same privilege as the browser process, so a malicious extension
can cause arbitrary damage. Firefox extensions often employ
highly dynamic programming techniques that make it difficult
to reason about their behavior [22].

To protect end-users, Firefox relies on a community review
process to determine which extensions are safe. Only exten-
sions deemed safe are added to Mozilla’s curated extension
gallery. Firefox ordinarily refuses to install extensions that do
not originate from this gallery. Users are thus protected from
unreviewed extensions, but reviews themselves are error-prone
and malicious extensions are sometimes accidentally added to
the gallery. An example of this is Mozilla Sniffer [28], an
extension which was downloaded close to 2,000 times, before
being removed from the gallery after it was deemed malicious.

C. Chrome’s extension model

Google Chrome extensions are written in JavaScript and
hosted on extension pages, but they have access to APIs that
are not available to web pages. Extension pages run in the
context of the extension process, different from the browser
processes and has the ability to both access and augment the
browser UI. Extension pages can register to listen to special
browser events such as tab switching, window closing, etc.

Extension manifests: Extensions specify their resources and
the capabilities they require in an extension manifest file.
When a user tries to install an extension, Chrome reads the
extension manifest and displays a warning. Figure 2 shows
the manifest of an extension called Twitter Extender and the
warning raised by Chrome before the extension is installed.
In this example, the manifest requests (roughly) read and
write privileges over all content on http://api.bit.ly and
http://twitter.com. Additionally, this extension requires
access to events related to browser tab manipulations. In

"update_url":"http://clients2.google.com/service/...",
"name": "Twitter Extender", "version": "2.0.3",
"description": "Adds new Features on Twitter.com ",
"page_action": { ... }, "icons": { ... }, \\
"content_scripts": [ {

"matches": [
"http://twitter.com/*", "https://twitter.com/*"],

"js": ["jquery-1.4.2.min.js","code.js"]
} ],

"background_page": "background.html",
"permissions": [ "tabs", "http://api.bit.ly/" ]

Fig. 2: A fragment of Twitter Extender’s manifest and the dialog that
prompts a user for access privileges when the extension is installed

Name Behavior

Google Reader client Sends RSS feed links to Google Reader
Gmail Checker Plus Rewrites mailto : links
Bookmarking Sends selected text to delicious.com

Dictionary lookup sends selected text to online dictionary
JavaScript toolbox edits selected text
Password manager stores and retrieves passwords per page
Short URL expander sends URLs to longurlplease.com

Typography modifies values on <input> elements

Fig. 3: Some over-privileged Chrome extensions that require access
to “your data on all websites”

Chrome’s model, access to tabs implies that the extension has
access to the user’s browsing history. This is unfortunate—
this extension does not need access to all of a user’s browsing
history to function properly, but Chrome’s model makes it
impossible to restrict its privilege any further.

Over-privileged extensions: Twitter Extender’s access to
browsing history is not an isolated example of an over-
privileged extension. Chrome’s model also allows extensions
to request rights over other resources, including, the privilege
to access “your data on all websites”. Unfortunately, many
simple, seemingly benign operations require extensions to
request access to this very coarse privilege—Figure 3 lists
several of these. In all these cases, manifests are uninformative
and the extensions require manual code review.

Extension study: We conducted a simple analysis of the
manifests for over 1,139 popular Chrome extensions, to
determine how many require the capability to read and write
to all websites. Our results are shown in Figure 4. Over 10%
of all extensions require access to all https : // sites, and
event more need access to http : // sites. About half of all
extensions use wildcards such as http : // ∗ .facebook.com
to specify the sites they want to access.
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Resource Count

all https 143 12%
all http 199 17%
wildcard 536 47%
1 URL 149 13%
2 URLs 30 2%
3 URLs 15 1%
4 URLs 6 <1%
5 URLs 1 <1%
86 URLs 1 <1%

history (tabs) 694 60%

bookmarks 66 5%
notifications 15 1%

Fig. 4: Chrome extensions per-
missions statistics.

Since new sub-domains can
and do appear under a do-
main such as facebook.com,
policies that use wildcards
can be overly permissive.
Only a small percentage of
extensions restrict their ac-
cess to only several URLs
(about 17%).

What is perhaps most trou-
bling about the Chrome ac-
cess control model is that
about 60% of all extensions
have access to a combination
of browser tabs and local storage. Using these two facilities, an
extension can monitor which sites the user goes to, collecting
browser history.

III. AN OVERVIEW OF IBEX

Internet Explorer’s BHOs and Firefox’s JavaScript exten-
sions are very hard to secure reliably. Chrome’s extension sys-
tem, while being the most advanced browser extension model
in everyday use, still admits a large number of over-privileged
extensions. Our work aims to redress these difficulties using
a number of mutually complementary measures. This section
describes our solution using FacePalm, an extension we wrote,
as a running example.

A. A running example: FacePalm

FacePalm is an extension that allows a user to manage an
address book built from contact information that their friends
make accessible on Facebook, a social networking site. When
a user visits a friend’s Facebook page in a browser extended
with FacePalm, the extension crawls the page to identify
any updated contact information and, if it finds anything,
automatically sends the information to an online address book
for the user maintained on a third-party bookmarking service,
say, delicious.com.

While useful, FacePalm raises several potential security
concerns. For one, it violates the browser’s same-origin re-
strictions by sending data from the facebook.com domain
to delicious.com—however, this is part of the intended
behavior of the extension. More significantly, a user may be
concerned that FacePalm manipulates her Facebook data in
other, less desirable ways. For example, FacePalm may auto-
matically send, accept, or reject friend requests on the user’s
behalf, it might send more than just contact information to
Delicious (e.g., a user’s photographs), update status messages
etc. We would like to be able to specify a security policy for
FacePalm that limits its behavior to its advertised functionality,
thus increasing a user’s confidence in the extension. Existing
approaches are inadequate for this purpose. For example, in
the language of Chrome’s security manifests, all that can be
said about FacePalm is that it may manipulate all data on both
facebook.com and delicious.com.

B. Programming type-safe extensions against a browser API

In contrast to Internet Explorer’s native binaries, or Firefox
extensions that make heavy use of dynamic programming
techniques (e.g., “monkey-patching”), in IBEX, we advocate
extensions to be programmed in high-level languages that
are amenable to formal analysis. In this paper, we focus on
extensions authored in an ML dialect for .NET called Fine.
Our approach also applies naturally to other statically typed
languages such as those provided by the .NET platform. In the
future, we anticipate extending our work to handle extensions
authored in statically analyzable subsets of dynamic languages
like JavaScript.

As in Chrome, we provide APIs that allow extensions to
access to browser resources like the DOM, as well as features
like browsing history and the local file system not usually
available to scripts on web pages. We show a fragment of
this API below as a typed ML interface (we refine this API
shortly).

(∗ Simple DOM API ∗)
val tagName: elt → string
val firstChild: elt → elt
val getAttr: elt → string → string
val textContent: elt→ string
(∗ Extension specific functionality ∗)
val readFile: filename → string
val sendRequest: url → string → string
val historyOnSite: string → list url

Two points about the design of this API are worth noting.
First, we aim to provide extensions with functionality that
is a strict super-set of the functionality available to web
pages. However, we also aim for our interface to be browser-
agnostic (to the extent that it is possible) to enable cross-
browser deployment. Second, we provide access to features
like browser history; however, our API is designed to allow
restricting access to these resources at a fine granularity. For
example, rather than providing an extension with access to all
or none of a user’s browsing history, functions like historyOnSite
provide access to browsing history on a per-site basis. Further
refinements of this interface to, say, browsing history restricted
to a particular time interval are also possible.

We show a fragment of the code of FacePalm below. The
getWebsite function inspects the tag and attributes of an element
e, and returns the contents of e if it is a <div> node tagged with
a website CSS class attribute. The rest of FacePalm traverses the
DOM of a Facebook page, calls this function at various points,
and, if appropriate, sends its result to delicious.com,

(∗ Extension code ∗)
let getWebsite e =

if tagName e = "div" && getAttr e "class" = "website"
then textContent (firstChild e) else ""

C. Policies and tool-support fine-grained specifications

Rather than provide all extensions with unfettered access
to the entire extension API, we provide a policy language to
provide specific privileges to extensions. We base the design
of our policy language on the insight that the structure of web
content can be exploited to specify precise security policies.
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For example, the tree structure of the DOM can be used to
grant extensions access to certain fragments of a page; the
structure in various URL schemes can be used to control cross-
domain data flows, etc.

Our policy language takes the form of an ontology for
Datalog, where the predicates in our ontology are chosen with
the structure of web content in mind. As a first example, we
show below a simplified version of the policy for FacePalm:

(∗ Extension policy ∗)
∀e, p. (EltParent e p && EltTagName p ”div” && EltAttr p ”class” ”website”)

⇒ CanRead e

Our aim is for the policies to capture the security-relevant be-
havior of extensions, allowing reviewers to audit extensions for
security without necessarily having to conduct detailed code
reviews. The policy statement above summarizes the behavior
of getWebsite, the part of FacePalm that reads sensitive data out
of a Facebook page, while hiding other details of FacePalm’s
implementation. Informally, this policy allows an extension
to read text contained within <div class="website"> elements.
(The complete policy for FacePalm also describes the cross-
domain flow from Facebook to delicious.com.)

Of course, the structure of real Facebook web pages are con-
siderably more complicated than this first example suggests,
leading to policies that are also more complicated. Rather than
requiring reviewers to examine and understand Datalog, we
provide a visualization tool that interprets policies on specific
web pages, highlighting the content on a page to which an
extension has been granted access.

D. Static verification of policy compliance

While our visualization tool helps provide an informal
understanding of policies, it can also be imprecise. We provide
a formal semantics of policies and define a property, (ℒ;P)-
safety, on program executions that policies are intended to
induce. The main technical development of this paper shows
how, despite the richness of our policy language, we can
statically verify extensions for compliance with a policy.

Our verification methodology involves annotating the API
exposed to extensions with refinement types that capture
security-related pre- and post-conditions. For example, the
fragment of the DOM API shown earlier is annotated as shown
below. This API makes use of dependent refinement types
as provided by the Fine programming language—Section VI
includes a detailed review of Fine, but we give a taste of our
approach here.

(∗ Refined DOM API ∗)
val tagName: e:elt → t:string{EltTagName e t}
val firstChild: p:elt → e:elt{EltParent e p}
val getAttr: e:elt → a:string → v:string{EltAttr e a v}
val textContent: e:elt{CanRead e} → string

The code above declares types for four common functions in
our API that allows extensions to manipulate the DOM. The
type of tagName says that it is a function that takes a DOM
element e (given the abstract type elt) as an argument, and
returns a string t as a result. Additionally, the type of tagName
is annotated with a post-condition asserting that the returned

string t is related to the argument e according to EltTagName e t,
a proposition used in our authorization policies. The types
of firstChild and getAttr are similar. In contrast, the type of
textContent shows it to be a function from DOM elements
e to strings, where the returned string could be security-
sensitive data on a page, e.g., it could represent the contents
of a password field. To ensure that extensions cannot access
such sensitive content without appropriate privileges, the type
of textContent is annotated with a pre-condition that requires
the caller to have the CanRead e privilege on the argument e.
Extension code (like getWebsite) can be statically verified
against this API for policy compliance using refinement type
checking. Extensions that pass the type checker are guaranteed
to be (ℒ;P)-safe.

Static verification has a number of benefits. (1) Extension
code is untrusted and never has to be manually inspected for
potential vulnerabilities or malice. Curators (and interested
end-users) need only look at their policies. (2) Verification
also rules out potential runtime failures that can compromise
the reliability of the browser platform. (3) By requiring access
privileges to be determined statically, we avoid the pitfalls of
dynamic discovery of access privileges identified by Koved
et al. [21] in the context of Java access rights, namely that
it is either error-prone or leads to over privilege. (4) We
also observe that certain policies are not easily or efficiently
enforced dynamically, including those based on (ℒ;P)-safety,
since this requires maintaining additional state at runtime, and
also requires adding taint tags to arbitrary data values. Despite
recent advances, dynamic taint tracking can be prohibitively
expensive [8]. (5) Finally, we note that IBEX’s deployment
model makes the centralized extension hosting service a nat-
ural place for enforcement based on static analysis; such a
facility is absent in decentralized software distribution.

E. Cross-browser deployment of extensions

In addition to verifying extensions, our approach allows
extensions to be developed in a platform-independent manner.
Our tools include a new code generator that allows us to
compile extension code either to JavaScript or to .NET. This
allows extensions to be authored once in Fine, and deployed
on multiple browsers, including, via JavaScript, in Chrome and
Firefox; via bindings from .NET to native code for Internet
Explorer; and directly in .NET for C3.

In addition to cross-browser deployment, JavaScript code
generation allows our approach to be used in combination
with existing extension security models. In particular, we show
how to verify authorization properties for Chrome extensions
by partially porting their content scripts (the interface of a
Chrome extension to the DOM) from JavaScript to Fine—the
much larger extension core can remain in JavaScript and inter-
operates with code generated from Fine. While such hybrid
approaches are attractive for the ease of use and migration,
the security guarantee in such a configuration is, of course,
weaker; for instance, unverified extension cores are free to
violate information flow properties.
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IV. A LANGUAGE FOR FINE-GRAINED POLICIES

This section introduces our policy language, a Datalog-
based framework for specifying fine-grained data confidential-
ity and integrity policies for browser extensions. We present
our policy visualization tool, and discuss how policies may be
analyzed for robustness.

A. Language design

Distinguishing data from metadata: We take the view that
the structure of web content can be interpreted as security
metadata, and can be used to restrict the privilege of extensions
at a fine granularity. As such, we think of page structure as
inducing a kind of dynamic, data-driven, security labeling [35]
on web content. From this perspective, since the extension’s
behavior depends on the metadata of a page, it is most
convenient if the metadata itself can be considered to be not
security sensitive.

Determining which elements of semi-structured web content
constitute metadata is a design decision that involves weighing
several factors. In this work, we view elements’ tag-names
and certain attributes (e.g., styles and identifiers) as security
metadata that an extension can freely inspect but not modify.
In contrast, the text, links, images, and all other content on a
web page is considered, by default, to be high confidentiality
(secret) and immutable. Extension-specific policies must ex-
plicitly grant an extension privileges to access or modify non-
metadata content. Our experience indicates that this choice
represents a good balance of concerns—it leads to a familiar
programming model for extensions, while still providing good
protection for a user’s sensitive web content.

Stability of a security policy and the choice of Datalog: An-
other constraint in the design of our policy language is driven
by the execution model for extensions. Specifically, JavaScript
that appears on the web page can interact with extensions via
shared state in the DOM. Furthermore, while JavaScript and
extension code share a single thread of control, their execution
can be interleaved arbitrarily. A key property that we wish
for our policy language is that the security policies should be
stable. This notion is spelled out in the next section; intuitively,
stability ensures that a well-behaved extension that is deemed
to comply with a policy will never become insecure because
of the actions of unanticipated JavaScript on the web page.

Accounting for these considerations, we choose to base our
policy language on Datalog. We define a set of predicates to
use with policies, where these predicates reflect the structure of
web content. Importantly, Datalog’s restricted use of negation
ensures that policies are always stable.

Figure 5 shows a selection of the predicates we provide. The
figure is split into two parts, the top showing the predicates
we use to speak about security metadata; the bottom showing
predicates that grant privileges to extensions. Most of the
predicates listed in the figure are self-explanatory. However, a
few are worth further discussion. The predicates EltTextValue and
EltAttr appear in the metadata section of the figure. However,
both the text and attribute content of a web page are, by

Metadata predicate Description

DocDomain doc string the document, doc has domain string

EltDoc elt doc the element elt is in the doc

EltParent elt p p is the parent-element of elt

EltTagName elt tagName elt’s tag-name is tagName

EltTextValue elt v elt’s text-value is v

EltAttr elt k v elt has an attribute k, with value v

EltStyle elt sty elt’s style is sty

UrlScheme url s url’s scheme is s (e.g., “http:”, “ftp:”, etc.)

UrlHost url h url’s host is h

UrlQuery url p url’s query parameters are p

FlowsFrom a b a was derived from b

Permission predicate

CanReadSelection doc the extension can determine user’s selection on doc

CanAppend elt the extension can append elements to elt

CanEdit elt the extension can modify elt

CanReadValue elt the extension can read the text value of elt

CanWriteValue elt the extension can write text to elt

CanWriteAttr elt k v the extension can write v to the k-attribute of elt

CanReadAttr elt k the extension can read the attribute named k on elt

CanStyle sty the extension can modify the style sty

CanRequest str the extension can send HTTP requests to url str

CanFlowTo a b the extension is allowed to write a to b

CanReadHistory site the extension is allowed to read history on site

CanReadFile file the extension is allowed to read the local file

Fig. 5: A selection of the predicates in our policies

default, considered sensitive information. In order to be able
to access the text values and attributes of an element e, an
extension must be granted explicit CanReadValue and CanReadAttr

privileges on e. We show an example of this shortly. Note also
that we provide predicates FlowsFrom and CanFlowTo, which allow
a policy to impose data flow constraints on extensions—this is
particularly important for controlling access to resources such
as browsing history (Section VII-B).
An example policy: The top of Figure 6 shows part of
the policy we use with FacePalm. The first rule grants the
extension the ability to read class attributes on all elements in
the page, i.e., class attributes are considered metadata in this
policy. The second rule states that for all elements e that have
their class attribute set to the value ”label”, the extension has
read access to the text content of their immediate children.
The third rule is the most complicated: it states, roughly, that
for a specific sub-element website of a node tagged with the
”label” attribute and ”Website:” text value, the extension has the
right to read a link stored in the website node.

B. Understanding policies

Extensions are often designed with specific websites in
mind, e.g., FacePalm’s code closely tied to the structure of a
Facebook web page. Policies, being an abstraction of the code,
can also be closely tied to the page structure. Such policies
can be hard to understand, unless the reader also understands
the structure of the HTML used on the relevant websites.

We provide a visualization tool to assist users with the task
of understanding security policies. Our idea is to interpret

120



(∗ Required to select elements by class (i.e., the ”label” class) ∗)
1. ∀e. CanReadAttr e ”class”
(∗ Requires to read the label text ∗)
2. ∀e, child. EltParent child e

&& EltAttr e ”class” ”label” ⇒ CanReadValue child
(∗ Permission to read website links ∗)
3. ∀data, label, labelText, website, parent.

EltParent data parent && EltParent label parent
&& EltParent website data && EltParent labelText label
&& EltAttr label ”class” ”label” && EltTextValue labelText ”Website:”
⇒ CanReadAttr website ”href”

Fig. 6: FacePalm’s policy and its visualization on a Facebook page

predicates in a policy as XML selectors, and to highlight
elements in a web page for which an extension has read or
write access. Our tool takes the form of an extensions for
Chrome and the bottom of Figure 6 shows a screen-shot of this
extension when applied to FacePalm’s policy. Specifically, it
highlights the elements accessible to FacePalm on a particular
Facebook profile. Various labels such as “Interests”, “Chat”,
“Music”, and “Website:” are highlighted, since the extension
needs to search through the labels until it finds “Website:”.
The websites on the profile are highlighted, since they are
the data that FacePalm reads and sends to delicious.com.
Most important, consider the data that is not highlighted—
email addresses, phone numbers, likes and dislikes, etc.—this
data is inaccessible to FacePalm, as advertised. Therefore, we
can be confident that FacePalm is secure when it runs on this
particular web page.

While helpful, visualization is necessarily imprecise and is
not intended to be a substitute for either manual inspection
or formal analysis of the policy. Visualization only renders
the impact of a policy on a particular web page and, as such,
cannot be used to provide complete coverage since visiting
all Facebook pages is impractical. Second, there are elements
of policies which cannot easily be depicted in visual manner,
e.g., information-flow policies.

Robustness of a policy: Visualization is one tool to assist
with understanding and vetting policies. We envisage building
several other useful tools for policy analysis. An advantage of
using Datalog as the basis of our language is the availability of

tools on which to base such analyses. One obvious analysis is
to check for policies that use specific undesirable patterns. For
example, a policy should not grant an extension the privilege to
modify a page in a way that allows the extension to grant itself
access to protected resources. The following policy illustrates
this undesirable pattern: the attribute (class) that protects access
to an element is mutable by the extension.
∀e. CanWriteAttr e ‘‘class’’
∀e,k. EltAttr e ‘‘class’’ ‘‘readable’’ ⇒ CanReadValue e

Detecting such situations is relatively straightforward since
Datalog policies can be automatically analyzed to enumerate
the set of attributes over which an extension has write privi-
lege. A simple syntactic check to ensure that none of these
attributes ever appear within a metadata predicate ensures
the integrity of security-sensitive metadata. We leave the
implementation of such an analysis to future work.

V. THE SEMANTICS OF SECURITY POLICIES

This section formalizes a core language and execution
model for browser extensions. The distinctive feature of this
model is that the execution of extension code is interleaved
arbitrarily with JavaScript on the web page. We use this
model to provide a semantics for security policies and define
a safety property for extensions—safe extensions never cause
runtime security failures. In the following section, we show
how refinement type checking can be used to soundly decide
extension safety.

A. �BX: A core calculus for browser extensions

The listing below shows the syntax of �BX, a (tiny) lambda
calculus that we use to model extensions and their interactions
with the DOM. We also show a syntax (P) for a model of the
policy language of the previous section. Both �BX and P are
to be understood as minimal core models—we leave out many
elements of our practical implementation, including network
access, event handling, local storage, and browsing history.

Syntax of �BX and policies P
const. c ::= () ∣ true ∣ false ∣ op ∣ s (string) ∣ � (nodes)
values v ::= x ∣ c ∣ (v1, v2) ∣ �x.e
expr. e ::= v ∣ e1 e2 ∣ (e1, e2) ∣ �1e ∣ �2e

∣ if e then e1 else e2
opers. op ::= getAttr ∣ setAttr ∣ getChildren ∣ strEq
policy P ::= ⋅ ∣ ∀x⃗.�1, . . . , �n ⇒ � ∣ P,P ′

preds. � ::= Parent v1 v2 ∣ EltAttr v1 v2 v3
∣ CanReadAttr v1 v2 ∣ CanWriteAttr v1 v2 v3
∣ FlowsFrom v1 v2 ∣ CanFlowTo v1 v2

Values in �BX include variables x, constants c, pairs, and
lambda abstractions. Expressions additionally include applica-
tion, projection, and conditional forms. Constants include the
unit value, booleans, identifiers � (which we use as abstract
handles to DOM nodes), and string literals (for attributes of
DOM nodes). The primitive operators of �BX are the most
interesting parts. These include getAttr and setAttr to access
and mutate the attributes of a node; getChildren to traverse
the DOM (modeled as a binary tree of nodes); and strEq for
primitive equality on strings.

121



A policy P is a finite list of Horn clauses. The base predi-
cates � are drawn from the ontology of Figure 5. Importantly,
in order to establish a connection between �BX programs and
their policies, the base predicates of P are defined over the
(first-order) values of �BX.

To relate the syntax of our core language to our other
examples, we reproduce the extension code from Section III-D
below and show its �BX version.
(∗ In Fine ∗)
let extensionCode (e:elt) =

if tagName e = "div" && getAttr e "class" = "website"
then textContent (firstChild e) else ""

(∗ In �BX∗)
�e.if (strEq(getAttr(e, “tagName”), “div”))
then if (strEq(getAttr(e, “class”), “website”))

then getAttr(�1(getChildren e), “textContent”)
else ””

else ””

B. Dynamic semantics of �BX

This section presents a dynamic semantics for �BX programs
governed by P policies. Our semantics is carefully designed to
account for the possibility of interleavings between untrusted,
page-resident JavaScript and extension code. This design of
our semantics and its corresponding safety property results in
a fine-grained security model for extensions that is robust with
respect to the effects of JavaScript on the web page.

To appreciate the design of our semantics, we first dis-
cuss (a straw-man) security property that depends on the
instantaneous dynamic state of a web page. In this model,
consider a well-behaved implementation of an extension like
FacePalm. Such an extension could query a metadata attribute
on a DOM node (e.g., check that the class attribute of a
node is label); decide according to the policy that it has read
privilege over the node; and, could then proceed to read the
contents of the node. If the node’s metadata changes just
prior to the read (due the effect of page-resident JavaScript),
under an instantaneous view of the policy, the read must
be rejected as insecure. Effectively, due to the behavior of
unforeseen JavaScript, unpredictable time-of-check to time-
of-use (TOCTOU) discrepancies can arise. Worse, under this
model, an adversarial web page can cause extensions to throw
runtime security exceptions, making the browser platform
unstable.

To counter such difficulties, the key insight behind our
semantics is to make the security behavior of extensions de-
pendent only on a dynamic log, a monotonically increasing set
ℒ of ground facts about page metadata. While page-resident
JavaScript can cause additional facts to be introduced into the
log, it can never remove facts from the log. In conjunction with
our use of (strictly positive) Datalog as a policy language,
this design ensures that page-resident JavaScript, and any
TOCTOU discrepancies that it may introduce, can never cause
security failures in extension code.

Figure 7 defines a reduction relation P ⊢ (ℒ, e)⇝ (ℒ′, e′),
according to which a runtime configuration (ℒ, e), consisting
of a dynamic log ℒ of ground facts and a �BX term e, reduces

to (ℒ′, e′), while under the purview of an unchanging policy
P . This is a small-step reduction relation for a call-by-value
language, with a left-to-right evaluation order, extended with
reductions for the primitive operators of �BX. The definition
of the relation makes use of an auxiliary judgment ℒ;P ∣=
�, a standard entailment relation for Datalog, stating that the
fact � is derivable from the database of ground facts ℒ and
intensional rules P . We omit the definition of the standard
entailment relation for Datalog.

The rules (E-Ctx), (E-�), (E-If) and (E-�) are standard.
The rule (E-Eq) is unsurprising—it represents an equality test
on string values. (E-SetAttr) is more interesting. It represents
an attempt by the extension program to alter the DOM by
altering the attribute skey on the node � to the value sval.
Our model views attribute mutation as a security-sensitive
event, so the premise of (E-SetAttr) contains a security check.
Specifically, we require the CanWriteAttr � skey sval privilege
to be derivable from the facts in the log ℒ and the policy P .

As discussed in Section IV-A we view the tree structure of
a page as security metadata not subject to access restrictions
itself. This design is reflected in the rule (E-GetCh), which
contains no security check in the premise—an extension is
always free to traverse the structure of the page. However, in
the conclusion of the rule, we record facts in the log ℒ′ to
indicate that the parent/child relationships between �, �1 and
�2. These facts can be used in subsequent security checks to
grant privileges to extensions. Note that for the purposes of
this model, we consider DOM trees as having infinite depth,
i.e., it is always possible to access the children of a node. In
practice (cf. Section VI-B), getChildren returns an option.

Finally, we have (E-GetAttr), which combines elements
from (E-SetAttr) and (E-GetCh). Depending on the policy,
some attributes of a node (say, its innerText field) are con-
sidered security sensitive and are subject to access controls;
other attributes (say, a CSS class) can be treated as security
metadata. For this reason, the premise of (E-GetAttr) contains
a check to ensure that an extension has read privilege on the
requested attribute. Additionally, we record facts in the log ℒ′.
The first fact indicates that the node � indeed has the attribute
(skey, sval); the second records the fact that the value sval was
derived from �. The latter fact is useful for enforcing data flow
properties—we discuss this in Section VII-B.
Modeling the effects of JavaScript via non-determinism:
Extensions and page-resident JavaScript interact via shared
DOM state. In most browsers, extensions and JavaScript
share a single thread of control. An event handler, whether
JavaScript or extension, runs to completion on receiving an
event, and then yields control back to the browser, which
can then schedule another event handler. In general, when
extension code regains control, the page may have evolved
arbitrarily since the last time the extension had control.

We model this characteristic feature of the extension exe-
cution model by making the rules (E-GetCh) and (E-GetAttr)
non-deterministic. The non-determinism in our formal model
is at an arbitrarily fine level of granularity, e.g., successive calls
to (E-GetAttr) with the same arguments are allowed to return
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log ℒ ::= ⋅ ∣ � ∣ ℒ1,ℒ2 eval. contexts E[∙] ::= ∙ ∣ E e ∣ v E ∣ (E, e) ∣ (v,E) ∣ �iE ∣ if E then e1 else e2

P ⊢ (ℒ, e)⇝ (ℒ′, e′)
P ⊢ (ℒ, E[e])⇝ (ℒ′, E[e′])

E-Ctx
P ⊢ (ℒ, �x.e v)⇝ (ℒ, e[v/x])

E-�
e′ = e1 when v = true e′ = e2 when v = false

P ⊢ (ℒ, if v then e1 else e2)⇝ (ℒ, e′)
E-If

P ⊢ (ℒ, �i(v1, v2))⇝ (ℒ, vi)
E-�

v = true when s1 = s2 v = false otherwise
P ⊢ (ℒ, strEq (s1, s2))⇝ (ℒ, v)

E-Eq
ℒ;P ∣= CanWriteAttr � skey sval

P ⊢ (ℒ, setAttr (�, (skey , sval)))⇝ (ℒ′, ())
E-SetAttr

ℒ′ = ℒ,Parent � �1,Parent � �2
P ⊢ (ℒ, getChildren �)⇝ (ℒ′, (�1, �2))

E-GetCh
ℒ;P ∣= CanReadAttr � skey ℒ′ = ℒ,EltAttr � skey sval,FlowsFrom � sval

P ⊢ (ℒ, getAttr (�, skey))⇝ (ℒ′, sval)
E-GetAttr

Fig. 7: Dynamic semantics of �BX: P ⊢ (ℒ, e)⇝ (ℒ′, e′)

different results, modeling the fact that JavaScript code can be
interleaved between the two calls. In practice, interleavings are
not arbitrarily fine—extension code in a single event handler
runs to completion without preemption. However, closures and
shared state across event handler invocations allow extensions
to observe the effects of JavaScript, essentially, between any
pair of syntactically adjacent instructions.

C. (ℒ;P)-safety: A security property for �BX

The main security definition of this paper is a notion of
safety of �BX programs, defined above as a traditional type
soundness property on the reduction relation.
Definition 1 (Safety): An extension e is (ℒ;P)-safe if either
e is a value, or there exists an expression e′ and a log ℒ′ such
that P ⊢ (ℒ, e)⇝ (ℒ′, e′) and e′ is (ℒ′;P)-safe.

(ℒ;P)-safety has the pleasing property that the security of
an extension does not depend on the actions of page-resident
JavaScript. However, it also limits the kinds of security policies
that can be defined. In particular, policies that involve dynamic
revocations cannot be modeled using (ℒ;P)-safety. We leave
to future work the investigation of a security property for
extensions that is suitable for use with revocation, while still
being robust to the effects of untrusted JavaScript on the page.

VI. STATIC ENFORCEMENT OF EXTENSION SAFETY

This section describes a methodology based on refinement
type checking that we use to statically verify that extensions
comply with their policies. Section VI-A briefly reviews
refinement types and Fine. We then discuss the high-level
architecture of our verification methodology and present frag-
ments of the refined APIs that we expose to extensions. We
then present several small examples of extension code and
show how these are verified against the APIs. The section
concludes with a discussion of the main theorem of the paper,
namely that well-typed Fine programs are (ℒ;P)-safe.

Our approach has a number of benefits, some of which
were discussed in Section III-D. In light of the presentation
of our safety property, we begin this section by highlighting
two further benefits of our approach.
Robustness and modular verification: While (ℒ;P)-safety
is weak in the sense that it cannot model revocation, we find it
particularly useful since it lends itself to a modular verification
strategy. We can verify extensions for compliance with this
property independently of page-resident JavaScript, and reason
that this property is still preserved under composition with

JavaScript. As such, this notion of safety is similar to the
notion of robust safety, as formulated for use with model
checking concurrent programs [16], or for verifying authen-
ticity properties of cryptographic protocols [14].
Efficient policy enforcement: Static verification of extension
safety removes the performance cost of runtime monitoring. In
the context of (ℒ;P)-safety, runtime monitoring is particularly
expensive, since it requires a dynamic log to be maintained
at runtime as well as a Datalog interpreter to be invoked
(potentially) on each access to the DOM. Static enforcement
allows the dynamic log to be virtualized, so no log need be
maintained at runtime, and, of course, no runtime Datalog
interpretation is necessary either. Additionally, (ℒ;P)-safety
also allows us to enforce data-flow like taint-based properties
with no runtime overhead.

A. A review of refinement types in Fine

Fine is a verification system for a core, functional subset of
F#. The principal novelty of Fine is in its type system, which
is designed to support static verification of safety properties
via a mixture of refinement and substructural types—for the
purposes of this paper, substructural typing is unimportant.
This section describes the syntax and intuitions behind re-
finement types in Fine. For details, we refer the reader to a
recent comprehensive presentation of Fine and other related
languages [31].
Value-indexed types: Types in Fine can be indexed both by
types (e.g., list int) as well as by values. For example, array int 17
could represent the type of an array of 17 integers, where the
index 17:nat is a natural number value. Value indexes on types
can be used to specify a variety of security constraints, e.g.,
example, labeled int x could represent the type of an integer
whose security label is described by the program variable x.
Note that for uniformity, unlike ML, type applications are
written in prefix notation (e.g., list int instead of int list).
Dependent function types: Functions in Fine are, in general,
given dependent function types, i.e., their range type depends
on their argument. These are written x:t → t’, where the formal
name x of the parameter of type t is in scope in t’. For example,
the type of a function that allocates an array of n integers can
be given the type n:nat → array int n. When a function is non-
dependent, we drop the formal name.
Refinement types: A refinement type in Fine (technically, a
ghost refinement) is written x:t{�}, where � is a formula in
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which the variable x is bound. Fine is parametric in the logic
used for formulas, �, however, in practice, the logic is often a
first-order logic with equality. In this paper, rather than use the
full power of first-order logic, we limit the formula language to
strictly positive Datalog, which, as explained earlier, is suitable
for (ℒ;P)-safety. Formulas are drawn from the same syntactic
category as types, although, for readability, we use italicized
fonts for formulas.

Refinements as pre- and post-conditions: We can use
refinement types to place pre- and post-conditions on func-
tions. For example, we may give the following (partial)
specification to a list permutation, where the refinement for-
mula on the return value m corresponds to a post-condition
of the function, relating the return value to the argument.
∀� .l:list �→m:list � {∀x. In x l ⇔ In x m}. Refinement types can also
be used to state pre-conditions of functions. For example, to
rule out divide-by-zero errors, we could give the following
type to integer division: x:int → y:int{y != 0} → int.

Kind language: Types in Fine are categorized according to
a language of kinds. Types are divided into four basic kinds,
although we only consider two of these kinds in this paper.
The kind ★ is the kind of normal types; and, P , the kind of
propositions. Type constructors are given arrow kinds, which
come in two flavors. The first, �::k ⇒ k′ is the kind of type
functions that construct a k′-kinded type from a k-kinded type
� . Just as at the type level, kind-level arrows are dependent—
the type variable � can appear free in k′. Type functions that
construct value-indexed types are given a kind x:t⇒ k, where
x names the formal of type t and x can appear free in k. In
both cases, when the kind is non-dependent, we simply drop
the formal name. For example, the kind of list is ★⇒ ★ ; the
kind of the value-indexed array constructor is ★⇒ nat ⇒ ★ ; the
kind of the propositional connective And is P ⇒ P ⇒ P ; the
kind of the user-defined predicate In is �::★⇒ �⇒ list �⇒ P .

Top-level assumptions: The predicates that appear in a refine-
ment formula can be axiomatized using a collection of user-
provided assumptions. For example, in order to axiomatize
the list membership predicate In, the standard library of Fine
contains assumptions of the form assume ∀hd, tl. In hd (Cons hd tl).
In the context of this paper, in addition to axiomatizing
standard predicates, top-level assumptions are used to specify
the security policy that applies to an extension.

Refinement type checking: A refinement type x:t{�} is in-
habited by values v:t, for which �[v/x] is derivable. Formally,
derivability is defined with respect to assumptions induced by
the program context (e.g., equalities due to pattern matching),
the top-level assumptions, and any formulas in a purely
virtual dynamic log ℒ, where the contents of the log is itself
soundly approximated using refinement types. The derivability
of refinement formulas is decided by Fine’s type checker by
relying on Z3 [7], an SMT solver. We show an example
program and its typing derivation in Section VI-C.

B. Refined APIs for extensions

Our verification methodology involves giving refinement-
typed interfaces to browser functionality that is exposed to
extensions. This section presents a fragment of this interface
in detail and discusses how the types of these interfaces map to
the semantics of Section V. We focus here on the API for the
DOM; our implementation uses a similar approach to provide
refined APIs for local storage, network, and browsing history.

The listing below shows a fragment of the refined DOM API
we expose to extensions. It begins by defining two abstract
types, doc and elt, the types of web documents and document
nodes, respectively. Well-typed extensions can only manipulate
values of these types using our exposed APIs.

Next, we define a number of type constructors correspond-
ing to the predicates of our policy language (Figure 5)—Fine’s
type and kind language makes it straightforward to define these
predicates. We start at lines 4-8 by showing the definitions of
several metadata predicates that can be used to speak about
the structure of a web page. Lines 10-14 show predicates
corresponding to authorization privileges. For example, at line
4, DocDomain is defined to construct a proposition (a P -kinded
type) from a doc and a string value. Fine’s kind language
also makes it possible to define polymorphic propositions. For
example, the FlowsFrom proposition at line 8 relates a value v1
of any type � to another value v2 of some other type � , to
indicate that v1 was derived from v2; CanFlowTo is similar.

The DOM API (partial)
1module DOM
2 type doc (∗ abstract type of documents ∗)
3 type elt (∗ abstract type of DOM element nodes ∗)
4 (∗ DOM metadata predicates ∗)
5 type DocDomain :: doc ⇒ string ⇒ P
6 type EltDoc :: elt ⇒ doc ⇒ P
7 type EltTagName :: elt ⇒ string ⇒ P
8 type EltAttr :: elt ⇒ string ⇒ string ⇒ P
9 type FlowsFrom :: �::★ ⇒ �::★ ⇒ �⇒ �⇒ P

10 (∗ DOM permission predicates ∗)
11 type CanAppend :: elt ⇒ elt ⇒ P
12 type CanEdit :: elt ⇒ P
13 type CanReadAttr :: elt ⇒ string ⇒ P
14 type CanWriteAttr :: elt ⇒ string ⇒ string ⇒ P
15 type CanFlowTo :: � ::★ ⇒ � ::★ ⇒ �⇒ �⇒ P
16 (∗ Metadata queries ∗)
17val getChild : p:elt→ int→
18 r:option elt{∀ ch. r=Some ch⇒ EltParent p ch && FlowsFrom r p}
19val parentNode: ch:elt → p:elt{EltParent p ch}
20val getEltById: d:doc→ x:string→ c:elt{EltDoc c d && EltAttr c ”id” x}
21val tagName : ce:elt → r:string{EltTagName ce r}
22 (∗ Protected access to data ∗)
23val getAttr : e:elt → k:string{CanReadAttr e k} →
24 r:string{EltAttr e k r && FlowsFrom r e}
25val setAttr : e:elt→ k:string→ v:string{CanWriteAttr e k v}→
26 :unit{EltAttr e k v}
27val getValue : e:elt{CanReadValue e} → s:string{EltTextValue ce s}
28val createElt : d:doc → t:string →
29 e:elt{EltDoc e d && EltTagName e t && CanEdit e}
30val appendChild : p:elt → c:elt{CanAppend c p} → :unit{EltParent p c}

Lines 16-21 show a sampling of functions that extensions
can use to inspect the structure of a page. Each of these
functions is given a refined type, where the refinement on the
return value corresponds to a post-condition established by
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the function. At lines 24-31 we show functions that provide
extensions with access to security sensitive data, e.g., the
attributes of an element. The types of these functions are
refined with both pre- and post-conditions, where the pre-
conditions correspond to authorization privileges that the caller
must possess in order to access, say, an attribute; while the
post-conditions, as with the metadata queries, record properties
of the page structure.

At one level, one can understand pre- and post-conditions
as predicates that relate the arguments and return value of
each function. However, a more precise reading is in terms
of the dynamic semantics of �BX. To illustrate, consider the
primitive operator getAttr of Figure 7. In our formal model,
the reduction rule for getAttr � skey was guarded by a
premise that required the proposition CanReadAttr � skey
to be derivable from the policy and the facts in the log.
We capture this requirement by giving getAttr a type that
records the corresponding CanReadAttr e k predicate as a pre-
condition. Going back to the formal model, if the policy check
succeeds CanReadAttr � skey reduces to an attribute sval,
and. importantly, records the facts EltAttr � skey sval and
FlowsFrom � sval in the log. We capture this effect on the log
by giving getAttr a type that includes the corresponding version
of these predicates in its post-condition.

With the understanding that log effects correspond to post-
conditions, and that policy checks in the premises of our
reduction rules correspond to pre-conditions, we discuss the
remaining functions in our DOM API. The function getChild is
the analog of the operator getChildren of our formal semantics,
adapted for use with a more realistic DOM. At the moment,
our logical model of the DOM ignores the relative ordering
among the children of a node—we simply record the fact that
a pair of nodes are in a parent/child relationship. Enhancing
this model to include ordering constraints is certainly possible,
however, our examples have so far not required this degree of
precision on the structure of a page to state useful security
policies. Extensions can traverse the DOM in both directions,
using getChild and parentNode. The DOM also includes a
function, getEltById, which provides random access to nodes
using node identifiers—notice that the post-condition of this
function is relatively weak, since the exact placement of the
returned nodes in the DOM is undetermined.

Our API also provides functions that allow extensions to
mutate the DOM. For example, using createElt and appendChild,
a suitably privileged extension can alter the structure of a
web page. The observant reader may wonder how such side-
effecting operations can be soundly modeled using refinement
types in a functional language. The key point here is that we
model such mutation effects purely in terms of their effects
on the dynamic log. Since the log grows monotonically, a
property that was once true of an elt remains valid in the logic
even after the element is mutated.

Concretely, for the example below, suppose we have a pair
of elt values e1 and e2. Then, in a context where CanAppend e2
is derivable, the predicates derivable at each line are shown in
comments.

let p1 = getParent e1 in (∗ EltParent p1 e1 ∗)
appendChild e2 e1 (∗ EltParent p1 e1 && EltParent e2 e1 ∗)

Importantly, even after e1 has been added as a child of e2
on the second line, the predicate EltParent p1 e1 continues to be
derivable, since it remains as a ground fact in the dynamic log.
This behavior reveals two subtleties, which we discuss next.

First, this model of side-effects rules out the possibility of
strong updates, or, equivalently, dynamic revocation. Despite
this weakness, as discussed earlier, the monotonic nature of
our model lends itself to verifying properties of extensions that
are interleaved with arbitrary JavaScript code. By ensuring that
all log effects are strictly positive formulas, we ensure that the
effects of unverified JavaScript cannot undo properties estab-
lished by extensions. This strict positivity condition and its
corresponding monotonic behavior is a characteristic feature
of (ℒ;P)-safety, and our model of side effects is set up to
precisely model this property. Additionally, the robustness of
(ℒ;P)-safety with regard to the effects of JavaScript allows
extension authors (at least from a security standpoint) to be
largely unconcerned with the interleavings of extension code
and JavaScript, which is a significant simplification of the
programming model.

Second, when programming against this model, intuitions
about the meaning of certain predicates, like EltParent, have to
be adjusted slightly. Specifically, we must view EltParent as a
many-to-many relation, since, as the example above illustrates,
the element e1 can have more than one parent. As such, our
logical model of the DOM is a graph recording the history of
parent/child relationships between nodes.

C. Safety by typing

The listing below shows a highly simplified fragment from
FacePalm, code that was presented informally in Section III.
We discuss how this code is verified against the DOM API.

A simplified fragment of FacePalm
1prop EltAncestor :: elt ⇒ elt ⇒ P
2assume ∀e1, e2. EltParent e1 e2 ⇒ EltAncestor e1 e2
3assume ∀e1, e2, e3. EltParent e1 e2 && EltParent e2 e3 ⇒ EltAncestor e1 e3
4assume ∀(e:elt). CanReadAttr e ‘‘class’’
5assume ∀(e:elt), (p:elt). (EltAncestor e p && EltTagName p ”div” &&
6 EltAttr p ”class” ”website”) ⇒ CanReadValue e
7 let extensionCode e =
8 let t = tagName e ‘‘div’’ in
9 let a = getAttr e ‘‘class’’ in

10 if t = "div" && a = "website"
11 then match getChild e 0 with
12 ∣ Some c →Some (getValue c)
13 ∣ None →None
14 else None

Lines 1–6 above show the policy used with the extension
written in Fine using a collection of assumptions. The policy
defines a relation EltAncestor, the transitive closure of EltParent,
and at lines 4 and 5, grants the extension the privilege to
1) read the “class” attribute of every element on the page; and
2) to read the contents of any sub-tree in the page rooted at a
div node whose class attribute is “website”.

Lines 7–14 show the code of the extension. At line 8,
we extract the tag t of the element e; the post-condition
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of this function allows the Fine type checker to conclude,
after line 8, that the proposition EltTagName e p is in the dy-
namic log. In order to check the call at line 9, we have to
prove that the pre-condition CanReadAttr e ‘‘class’’ is derivable—
this follows from the top-level assumptions. After line 9,
we can conclude that the fact EltAttr e ‘‘class’’ a is in the dy-
namic log. At line 11, in the then-branch of the conditional,
the type checker uses the types of the equality operation
(=):x:�→ y:�→ b:bool{b=true ⇔ x=y} and of the boolean operator
(&&):x:bool → y:bool → z:bool{z=true ⇔ x=true && y=true} to refine its
information about the contents of the dynamic log. In particu-
lar, the type checker concludes that if control passes to line 11,
then both EltTagName e ‘‘div’’ and EltAttr e ‘‘class’’ ‘‘website’’ are in the
dynamic log, and, using similar reasoning, it concludes that
if control passes to line 12, EltParent e c is in the dynamic log.
Finally, at the call to getValue c at line 12, we need to show
that the pre-condition CanReadValue c is derivable. Given the top-
level assumptions, and all the accumulated information about
the contents of the dynamic log, the theorem prover Fine uses
can establish this fact.

The main formal result of this section is the theorem
below. It states that a program e that is well-typed against an
interface ΓDOM (representing the type and value signatures
in the module DOM listing), a set of assumptions representing
a Datalog policy P , and a set of ground facts in an abstract
dynamic log ℒ, is guaranteed to be (ℒ;P)-safe.

Theorem 1 (Type-correct programs are (ℒ;P)-safe): Given
a policy P and its translation to a signature S = [[P]];
a dynamic log ℒ and its translation to an environment
ΓL = [[ℒ]]; such that S; ΓDOM ,ΓL is well-formed (i.e.,
⊢ S; ΓDOM ,ΓL). Then, for any assumption-free program e
and type t, if S; ΓDOM ,ΓL ⊢ e : t, then e is (ℒ;P)-safe.
Proof: A straightforward extension of the main soundness
result of Fine, as described by Swamy et al. [31], wherein
a reduction relation for Fine is given while accounting for a
dynamic log of assumptions. We extend the core reduction
rules with four additional cases corresponding to (E-StrEq),
(E-GetAttr), (E-SetAttr), and (E-GetCh). In each case, we
show that reduction preserves typing, according the types
given to the primitive operations in ΓDOM . Finally, we appeal
to a relation between first-order and Datalog derivability,
showing that the former subsumes the latter.

VII. EXPERIMENTAL EVALUATION

We have, to date, written 17 extensions to evaluate our
framework. Some of these extensions are prototypes written
from scratch; others are third-party extensions that we partially
ported and verified. This section summarizes these exten-
sions, their security policies, and discusses our experience
programming and verifying them in Fine. Our experience
suggests that while authoring extension code is relatively
easy and verification times reasonably fast, stating precise
security policies for extensions still demands a non-trivial
amount of work from the programmer. We plan future work to

Name LOC # Assumes Compile (s) #Z3 q’s

Verified for access control properties

Magnifier 23 1 6.0 11
PrintNewYorker 45 2 6.2 15
Dictionary lookup 70 3 6.6 24
FacePalm 142 5 10.7 26
Bib Parser 262 2 5.9 15

Verified for access control and data flow properties

Password Manager 52 2 5.7 14
Twitter Miner 36 2 5.6 18
Bing Miner 35 4 5.7 37
Netflix Miner 110 17 6.2 57
Glue Miner 101 11 8.9 77
News Personalizer 124 7 13.1 125
Search Personalizer 382 12 83.6 339

Partially ported Chrome extensions

Bookmarking (6K) 19 1 5.8 9
Gmail Checker Plus (7K) 43 3 6.5 19
JavaScript Toolbox (2K) 19 1 6.3 9
Short URL Expander (494) 22 1 5.2 9
Typography (20K) 44 2 6.2 15

TOTAL 1,529 78 194.2 819

Fig. 8: Summary of experimental evaluation.

infer policies via program analysis, and expect this to reduce
programmer burden.

A. Summary of results

Figure 8 summarizes our experimental results. It lists the
17 extensions we wrote, the number of lines of code, the
number of policy rules (assumptions), and the time taken
to verify and compile each extension, and the number of
theorem prover queries that were issued during verification.

API LOC

Events + network 31
Local storage 37
JSON + Utilities 58
Behavior mining 260
DOM, URLs, Styles 267

TOTAL 653

Fig. 9: Extensions APIs

Each of these extensions was
programmed against some sub-
set of our refined APIs. Fig-
ure 9 alongside shows the var-
ious components in our APIs
and the lines of code in each.
It is worth pointing out that al-
though most of our extensions
use only a few policy assump-
tions, as illustrated in Section IV-B, logic-based policies are
not always easier to read than code—our visualization tools
go some way towards assisting with policy understanding.

Our extensions fall into three categories. This first group
includes five extensions that we wrote from scratch and veri-
fied for access control properties. Magnifier is an accessibility
extension: it enlarges text under the mouse on any web
page—its policy ensures that only the styling of a page is
changed. PrintNewYorker rewrites links on newyorker.com

to go directly to print-view, removing ads and the multi-page
layout of the site—its policy ensures that the host of a link is
never changed and that only known constants are appended
to the query string of a url. Dictionary queries an online
dictionary for the selected word—only the selected word is
allowed to be sent on the network. Bib Parser uses its own
language of XML patterns to parse the contents of one of the
authors’ bibliography from a web format to bibtex—its policy
guarantees that it only reads data from a specific URL.
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The second group of extensions are all verified for a
combination of authorization and information flow properties.
The miners and personalizers in this group were developed in
conjunction with a project that was specifically investigating
the use of browser extensions for personalizing web content
by mining user behaviors [11]. The next section discusses a
variation of one of these extensions in detail—the others have a
similar flavor. The last group of extensions includes 5 Chrome
extensions that we partially ported to Fine. We discuss these
in detail in Section VII-C.

B. NewsPers: Controlling data flows and browsing history

NewsPers is an extension that personalizes nytimes.com.
It re-arranges the news stories presented on the front page to
link to stories more likely to be interesting to the user. It does
this in four steps, outlined below.

1) When the user browses to nytimes.com, NewsPers
reads a configuration file on the local file system, that
specifies a user’s news preferences.

2) It sends data from this preferences file to digg.com, a
social news website, and obtains a response that lists
currently popular stories.

3) It consults the user’s browsing history to determine
which of these popular stories on nytimes.com have
not been read before by the user.

4) Finally, it re-arranges the nytimes.com page, placing
unread popular stories towards the top.

For this extension, we aim to enforce a policy that ensures
1) that digg.com only obtains data from the configuration file,
and 2) that no information about browsing history is leaked
to nytimes.com (in addition to what it may already know).
Figure 10 shows a fragment of NewsPers.

We begin by showing a fragment of our API that provides
extensions with access to features beyond the DOM. We start
with an API to access the local filesystem, using the readFile
function, which is guarded by the CanReadFile privilege. Next,
we show the API for working with URLs and making network
requests. And, finally, we show the API to the local browsing
history. Rather than providing extensions with access to the
entire browsing history, our API provides finer controls by
which an extension can request to view the history of URLs
that a user may have visited at a particular site.

Using this API, our policy grants NewsPers the privilege
to read the configuration file it needs and to read a user’s
browsing history only for nytimes.com. The assumption at
line 15 illustrates how (ℒ;P)-safety policies can be used to
enforce flow controls. Here, we state that only information
derived from the prefs file can be sent to digg.com.

Lines 16–17 specify that the NewsPers has the privilege
to append an element e2 as the child of another element
e1, but only if e1 is a nytimes.com node, and if e2 was
derived from a node on the same domain. In other words, this
assumption gives NewsPers to reorder the structure of nodes
on an nytimes.com page, but not to add any new content.
This specification is particularly important since NewsPers
has access to a user’s browsing history. If it is able to

1 (∗ Partial API to local file system, URLs, network, and history ∗)
2 type url
3 type CanReadFile :: string ⇒ P
4 type UrlHost :: url ⇒ string ⇒ P
5 type CanRequest :: url ⇒ string ⇒ P
6 type CanReadHistory :: string ⇒ P
7 val readFile: f:filename{CanReadFile f} → s:string{FlowsFrom s f}
8 val mkUrl: s:string → h:string → ... → u:url{UrlHost u h && ...}
9 val sendRequest: u:url → s:string{CanRequest u s} → resp:string

10 val historyOnSite: host:string{CanReadHistory h} → list url
11 (∗ Policy ∗)
12 let prefs = ‘‘AppData∖NewsPers∖prefs.txt’’
13 assume CanReadFile prefs
14 assume CanReadHistory ‘‘nytimes.com’’
15 assume ∀s, u. FlowsFrom s prefs && UrlHost u ‘‘digg.com’’ ⇒

CanRequest s u
16 assume ∀e1 e2 e3. FlowsFrom e2 e3 && EltDomain e3 ‘‘nytimes.com’’
17 EltDomain e1 ‘‘nytimes.com’’ ⇒ CanAppend e1 e2
18 assume ∀e e2 e3. EltAncestor e2 e3 && FlowsFrom e e2 ⇒ FlowsFrom e e3
19 (∗ Sending request to digg.com ∗)
20 val parseResponse: string → list url
21 let getPopularStories () =
22 let p = readFile prefs in
23 let url = mkUrl ‘‘http’’ ‘‘digg.com’’ ... in
24 let resp = sendRequest url p in
25 parseResponse resp
26 (∗ Rearranging nytimes.com ∗)
27 val munge: digg:list url → history:list url → list url
28 val nodesInOrder: o:list url → r:elt → list (e:elt{FlowsFrom e r})
29 let start root =
30 if (domain root) = ‘‘nytimes.com’’ then
31 let popular = getPopularStories () in
32 let h = getHistoryOnSite ‘‘nytimes.com’’ in
33 let ordering = munge popular h in
34 let nodes = nodesInOrder ordering root in
35 iter (fun e → appendChild root e) nodes
36 else ()

Fig. 10: A fragment of NewsPers.

write arbitrary elements to an nytimes.com page, it could,
for example, insert image tags to send requests to a third
party, leaking information about the browsing history. Of
course, by rearranging the structure of the nytimes.com page,
NewsPers reveals the user’s browsing history on nytimes.com

to nytimes.com itself—but this is not a serious concern.
At lines 20–26, we show an implementation of a function

that reads data from the local preferences file and sends it to
digg.com. Lines 27–36 show the high-level structure of the
code that rearranges nytimes.com. We elide the implementa-
tions of several helper functions, but show their signatures—
these are largely free of security-sensitive operations. Notice
that the implementation itself is pleasingly free of type an-
notations. While decorating APIs with precise types requires
some effort, this burden is assumed, once and for all, by us,
the API developers.

Finally, the model of flow controls we adopt here fits natu-
rally into the (ℒ;P)-safety framework. However, in compar-
ison to noninterference-based approaches to information flow
controls, the security property we obtain is relatively weak. In
particular, what we obtain is a form of syntactic secrecy, rather
than an observational equivalence property. Practically, what
this means is that an extension can leak information about the
browsing history to digg.com by choosing to send various
fragments of the user preference information to digg.com
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depending on what URLs appear in the browsing history,
i.e., via a form of implicit flow. While prior work on Fine
shows how to eliminate this form of leak using value-indexed
types, for simplicity, we choose not to discuss this approach
here. Other extensions, including several of the miners, adopt
this approach (with additional programmer effort) to protect
against leaks via implicit flows.

C. Retrofitted security for Chrome extensions

In section II-C, we argued that many Chrome extensions are
over-privileged because Chrome’s access-control system is too
coarse-grained. We also described the innocuous behavior of
eight over-privileged extensions (figure 3). Now that we have
a fine-grained security system, we can consider securing them.

The last section of Figure 8 lists five full-featured exten-
sions. Chrome extensions are split into two components—
the content script and the extension core—that communicate
by message-passing. The size of the extension core ranges
from 500–20,000 lines of JavaScript (shown in parentheses).
The extension core can perform various privileged operations
(e.g., local storage, cross-domain requests, etc.), but it cannot
directly read or write to web pages. Content scripts, on the
other hand, can modify web pages, but they cannot access
the resources that the extension core can. Of course, the two
components can cooperate to provide extension core with
access to the web page, and vice versa, or content script with
access to storage. Nevertheless, the separation does provide a
reasonable degree of isolation.

In principle, we could port the entire Chrome extensions
to Fine and verify them for end-to-end properties. However,
we chose to rewrite only the content scripts in Fine, leaving
extension cores in JavaScript. This approach, while involving
much less effort, provides Chrome extensions with a measure
of the benefits of our fine-grained DOM authorization policies.
As Figure 3 shows, these extensions interact with web pages
in limited ways. However, their limited behavior cannot be
precisely expressed in Chrome manifests, hence they require
access to “your data on all websites”. We can precisely state
the limited privileges that these extensions actually need, and
to verify them automatically for compliance.

Our policy language and API remains the same, with the
exception of trivial, Chrome-specific message-passing func-
tions that allow our Fine-based content-scripts to commu-
nicate with extension cores. Deploying these extensions in
Chrome involves compiling content-scripts written in Fine to
JavaScript—we discuss this next.

VIII. CROSS-BROWSER EXTENSIONS

A significant benefit of IBEX comes from the fact that once
an extension is verified, it can be re-targeted to run in a variety
of modern browsers. To date, we have run our extensions
on four distinct web browsers: Internet Explorer, Google
Chrome, and C3, a research Web browser under development
at Microsoft Research. Additionally, because we can compile
from .NET to JavaScript, we have also retargeted some of our
extensions to run on Firefox. Each browser employs distinct
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Fig. 11: C3 hosting architecture.

back-ends and TCBs. In this section, we discuss system-level
security guarantees that these browsers provide.

Internet Explorer: BHOs: To target Internet Explorer, we
compile our Fine extensions to .NET libraries. These libraries
are then loaded by a single native IE extension, or a BHO,
in IE parlance. The BHO is implemented in F# and hosts our
Fine extensions in an unprivileged AppDomain, a software-
isolated process for .NET. The AppDomain allows us to easily
load and unload extensions while the browser is running, but
is not necessary for security guarantees, which are provided
by Fine’s type system. Although, of course, both the .NET
runtime and the browser itself are part of the TCB.

Google Chrome: porting the content scripts: As discussed
in Section II, Google Chrome’s extension model cannot ade-
quately express least privilege for a large class of extensions.
Using a new JavaScript back-end for Fine, based on the �JS
software [19], we compile our Fine extensions to ordinary
Chrome extensions by translating them to JavaScript. In ad-
dition, we provide a trivial JavaScript runtime system that
exposes JavaScript’s object-oriented DOM API as functions.
Note that we can afford to only translate the content script
of an extension, leaving the extension core of the extension
running separately, in a different Chrome process. However,
by rewriting extension content scripts in Fine, we gain the
ability to reason and restrict how the extension interacts with
HTML pages in a manner that is more restrictive and fine-
grained than the default extension manifest.

A. C3: A fully-managed hosting platform

C3 is an HTML5 experimentation platform written from
the ground up exclusively in C#. Because C# code ultimately
runs in a memory-managed environment, it is not susceptible
to the memory corruption vulnerabilities that are responsible
for many existing browser attacks. Our extension hosting
architecture leverages this characteristic and benefits from the
added safety.

Hosting architecture: Figure 11 illustrates the architecture we
use to host Fine extensions inside of C3. When C3 initializes, it
creates a new AppDomain, used to host all Fine extensions. C3
then loads a hosting module into the new application domain,
which serves a dual purpose. First, the module searches a
pre-defined directory for .NET assemblies that implement the
interface supported by our Fine extensions. On finding such an
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assembly, the module loads it into the new application domain,
and invokes its main function. This process is performed only
once, on browser start-up.

Second, the hosting module acts as a “shim” layer between
the Fine extension API and the internals of C3. This function-
ality is implemented using a .NET proxy object, which is a
type-safe cross-AppDomain communication mechanism. The
proxy object contains one method for each internal C3 method
needed by the API’s, which are then implemented in terms of
methods on the proxy object. When an API function is invoked
by an extension, each subsequent call to a proxy method causes
the CLR to create a remote request to code in C3. Finally,
C3 objects referenced by the proxy object are associated with
integer GUIDs, communicated across AppDomain boundaries
instead of serialized versions of the original objects.

We implemented extension APIs for C3 in about 270 lines
of F#, and the proxy object implementation is 918 lines of F#.
We find these requirements to be modest, and the gains due
to the added type safety to be well worth the effort.

IX. LIMITATIONS AND FUTURE WORK

This section discusses several limitations of approach and
considers directions for future work.

Extension evolution and policy inference: Extension code
is closely tied to the structure of the page. A web-site update
can cause the extension to stop functioning properly. To help
with this situation, we plan to investigate tool support to
help extension authors update their code to account for page
structure changes. In addition to assisting with code changes,
we anticipate making use of weakest pre-condition inference
for refinement types to automatically extract policies from
code, reducing the programmer effort required to produce
verified IBEX extensions.

Verified translation to JavaScript: We can deploy our ex-
tensions on various browsers because our compiler has two
backends. To build extensions for Internet Explorer and C3, we
use Fine’s DCIL backend, which was previously proven type
preserving [5]. To build extensions for Chrome and Firefox,
we use Fine’s new JavaScript backend. This paper does not
establish the soundness of compilation to JavaScript; we leave
this for future work.

Information flow: As presented, our extension APIs do not
support non-interference based information flow control. Prior
work shows that non-interference based information flow con-
trol can be enforced in Fine using monadic libraries equipped
with value-indexed types. However, for simplicity, we restrict
ourselves to policies based on taint-tracking, which yields a
weaker security guarantee. In the future, we aim to make use
of type coercions [29] to transform programs to automatically
use monadic information flow controls.

Revocation: Our log-based model of DOM side effects rules
out the possibility of specifying dynamic revocation policies.
Devising a security property and a verification methodology
that provides a higher fidelity model of effects, while still

being robust to the effects of untrusted JavaScript is an open
problem which we aim to address in the future.

X. RELATED WORK

Browser extension security: Ter Louw et al. [25] monitor
calls by extensions to a subset of Firefox’s privileged APIs, in
order to secure the extension installation process. While this
establishes a form of access control for extension installation,
the primary extension APIs remain unprotected, so extensions
are still over-privileged. Barth et al. [3] develop the security
model used for Google Chrome extensions. While this is the
first extension model with native support for policy enforce-
ment, the policies it supports are significantly more coarse-
grained than the examples we presented in this paper. We
survey the policies in use with Chrome extensions, and find
many extensions to be needlessly over-privileged. Our survey
results are complemented by recent unpublished work by Felt
et al. [10], who also study the permissions used by Chrome
extensions.

A number of researchers have explored the use of infor-
mation flow for browser extension verification. Dhawan et al.
present Sabre [8], a tool that instruments Firefox’s JavaScript
interpreter to track security labels at runtime. Bandhakavi et
al. [2] presented Vex, a tool that statically analyzes Firefox
extensions for a set pre-determined patterns of suspicious
information flows. While not specifically tied to extensions,
other projects such as Chugh et al. [6] and Guarnieri et
al. [17, 18] present information flow analyses for JavaScript
that look for specific patterns of suspicious flows. However,
because of the inherently dynamic nature of JavaScript, fully
static approaches are difficult to apply to large segments
of existing JavaScript code, generating interest in runtime
enforcement [26]. Our Fine-based approach allows us to stati-
cally and soundly verify authorization and data flow properties
of extensions; and our formal model characterizes safety even
in the presence of unverified third-party code.

Many have addressed the problems that arise due to browser
plugins, which consist of native code that executes in the
context of the browser. Internet Explorer’s entire extension
model fits into this description, and much recent research
has addressed the problems that arise. In particular, spyware
extensions have received attention [9, 20, 24]; these systems
use binary taint-tracking to ensure that sensitive personal
information does not flow to untrusted parties. Addressing a
more general set of concerns, Janus [12] and Google’s Na-
tive Client [34] considers system-level sandboxing techniques
for browser extensions. The OP [15] and Gazelle [33] web
browsers are constructed to address this issue, but do so by
applying general principles of secure system design to the
architecture of new browsers. In general, all these works target
the enforcement of isolation and memory safety properties, not
the more fine-grained authorization properties we address.

Verified extensibility: Outside the specific setting of browser
extensions, the question of providing verified extension mech-
anisms for system-level code has received much attention.
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With the SLAM project [1], Ball et al. show that software
model checking is effective at verifying device drivers. More
recently, Zhou et al. explore the use of type safety to provide
fine-grained isolation for drivers [36], and show how to apply
their findings in a nearly backwards-compatible manner. Our
work is in this tradition of static extension verification, but
rather than focusing on system-level properties, we target those
relevant to browser extension functionality.

XI. CONCLUSIONS

This paper proposes a new model for authoring, verifying,
distributing, and deploying safe browser extensions that can
run on all the most popular browser platforms. Our motivation
stems from the fact that even in the case of Chrome, which is,
arguably, the most secure of the browser extension models in
common use, extensions tend to be over-privileged, rendering
many protection mechanisms useless. We propose a finer-
grained access control model for browser extensions, formally
characterize a security property for extensions, and develop
a methodology to enforce safety statically. We evaluate our
approach by developing 17 non-trivial browser extensions,
demonstrating that our approach is viable in practice. It is
our hope that IBEX will pave the way for a static verification
mechanism of HTML5-based centrally-distributed browser ex-
tensions and applications on top of the HTML5 platform.
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