
Defeating UCI: Building Stealthy and Malicious Hardware

Cynthia Sturton

University of California,

Berkeley

Matthew Hicks

University of Illinois,

Urbana-Champaign

David Wagner

University of California,

Berkeley

Samuel T. King

University of Illinois,

Urbana-Champaign

Abstract—In previous work Hicks et al. proposed a method
called Unused Circuit Identification (UCI) for detecting ma-
licious backdoors hidden in circuits at design time. The UCI
algorithm essentially looks for portions of the circuit that go
unused during design-time testing and flags them as potentially
malicious. In this paper we construct circuits that have ma-
licious behavior, but that would evade detection by the UCI
algorithm and still pass design-time test cases. To enable our
search for such circuits, we define one class of malicious circuits
and perform a bounded exhaustive enumeration of all circuits
in that class. Our approach is simple and straight forward,
yet it proves to be effective at finding circuits that can thwart
UCI. We use the results of our search to construct a practical
attack on an open-source processor. Our malicious backdoor
allows any user-level program running on the processor to enter
supervisor mode through the use of a secret “knock.” We close
with a discussion on what we see as a major challenge facing
any future design-time malicious hardware detection scheme:
identifying a sufficient class of malicious circuits to defend
against.

Keywords-hardware; security; attack

I. INTRODUCTION

A computer’s hardware layer is often trusted implicitly.

As a result, a machine that contains untrustworthy hardware

may be open to attack, regardless of its operating system

or software stack. If the hardware contains a backdoor, an

attacker may be able to gain total control of the machine,

bypassing any security protections provided by the software.

This is true even if the OS and application layers are free of

bugs and vulnerabilities. Recent research has demonstrated

how just such an attack could work [1], [2], and the media

have started to report on the United States government’s

concern about the possibility of these attacks occurring in

the real world [3], [4].

There has been a variety of research on the problem

of detecting malicious hardware (see Section VII for an

overview). In this paper we focus on the Hicks et al.

paper [2] which tackles the problem of detecting malicious

hardware inserted at design time. The authors of that work

propose an algorithm, Unused Circuit Identification (UCI),

for identifying portions of a circuit that go unused during

design-time testing. The idea is that an attacker inserting

malicious code into an existing hardware design will work to

ensure the malicious behavior is not activated during design-

time testing. The assumption is that any circuitry inserted by

Figure 1. The UCI Algorithm. Suppose s carries the same value as t

for every test case executed during design-time testing. This means that
the intervening logic could have been replaced by a single wire, without
invalidating any of the tests. In this case, the UCI algorithm flags the
circuitry between s and t as potentially malicious.

the attacker will remain inactive during the entirety of the

design-time testing process.

The UCI algorithm works by creating a dataflow graph

corresponding to the source code under test and then looking

for any pair of signals (s, t), such that t is dependent on

s and the intervening logic between s and t could have

been replaced by a wire without affecting any of the outputs

computed during design-time testing. If such a pair is found,

that pair identifies a portion of the circuit that does not

appear to have been activated during design-time testing and

thus might be malicious. Figure 1 illustrates the idea behind

UCI.

In this work, we identify circuits that have hidden (i.e.,

malicious) behavior, yet can evade detection by the UCI

algorithm. In particular, these circuits have the following

property: for all dependent signal pairs (s, t), there exists

at least one configuration of inputs that would result in

s 6= t and would not cause the circuit to exhibit the hidden

behavior. This configuration of inputs, if present in the suite

of test cases used during design-time testing, ensures the

UCI algorithm will not flag the circuitry between s and t as
potentially malicious. In other words, in our circuits there

is no pair of dependent signals that are always equal during

design-time testing.

To produce these attack circuits, we developed a search

algorithm for finding circuits that are malicious (have hidden

behavior), admissible (would pass design-time testing), and

2011 IEEE Symposium on Security and Privacy

1081-6011/11 $26.00 © 2011 IEEE

DOI 10.1109/SP.2011.32

64

stealthy (would evade UCI). The algorithm is straightfor-

ward, a bounded exhaustive enumeration of possible combi-

national logic circuits from a given set of gates, yet it proves

powerful in finding hardware that defeats UCI.

Using one of the circuits returned by our search, we imple-

ment a practical attack against an open-source processor. We

insert a backdoor into an open-source processor and show

that the backdoor is not detected by the UCI algorithm.

Our backdoor allows a user-level program that knows the

secret handshake to enter supervisor mode and thus take

control of the system. The behavior of our attack is identical

to one described in earlier work on malicious backdoors

in hardware [2], but unlike prior work, our backdoor is

constructed in a way that evades detection by UCI. Our

attack targets the Leon3 processor,1 an implementation of the

SPARCv8 architecture.2 We synthesize a Leon3 processor

with our backdoor added and show that a user-level program

running on Linux on the processor can exploit the attack

and cause the processor to transition into supervisor mode

by executing a special sequence of instructions.

After describing our practical attack, we look at ways

UCI might be strengthened against the type of attacks we

built. Our work suggests there is no easy fix to UCI,

and indeed, any UCI-like algorithm that depends solely

on test cases (which are necessarily non-exhaustive) for

the specification of correct behavior will always run into

difficulty. We identify what we see as a major challenge for

any future UCI-like algorithm: identifying an adequate class

of malicious circuits to defend against. We discuss these

topics further in Section VI.

A. Contributions

This research contributes to the field of malicious hard-

ware detection in the following ways:

• We show that UCI, the malicious hardware detection

scheme proposed by Hicks et al. [2], is flawed. We

design and implement an attack on the Leon3 processor

that can be exploited to launch a software-level attack.

The malicious hardware evades detection by UCI, while

still allowing the processor to pass design-time testing.

• We present an approach for finding malicious circuits

that can be easily tailored and replicated for evaluating

future research in the area of malicious hardware detec-

tion. We use this approach to find simple circuits that

contain malicious behavior, but that UCI would not be

able to detect.

• We present what we feel is a major challenge facing

any future design-time malicious hardware detection

scheme: identifying an adequate class of malicious

circuits to defend against.

1http://www.gaisler.com
2http://www.sparc.org

B. Threat Model and Assumptions

We follow the same threat model and assumptions in-

troduced by Hicks et al. [2]. Namely, we assume a rogue

designer can insert malicious hardware into the circuit de-

sign, but the attack needs to remain hidden during traditional

design-time testing. The rogue designer cannot control the

suite of tests used for design-time testing of the hardware,

but can learn arbitrary information about the test cases (e.g.,

which instructions will appear in a test case).

II. BACKGROUND: UCI

Before describing our approach to finding attacks on

UCI, we first explain how the UCI algorithm works. The

following description is intended only to give a high level

understanding of how the algorithm works. The technical

details can be found in the original paper [2].

UCI operates on the design of some circuit, given in

some hardware description language (HDL).3 The algorithm

proceeds in four phases: static analysis, instrumentation,

verification, and classification. In the first phase, a dataflow

graph is constructed from the source code (which may or

may not contain hidden malicious logic). In the graph, each

edge represents a signal (wire) and each node represents a

gate. The dataflow graph is used to find the set of all dataflow

pairs: the set of pairs of signals (s, t) where there is some

path from s to t in the dataflow graph. Such a path indicates

that data can flow from signal s to signal t. Another way to

think about it is that signal t is dependent on signal s.
Once the set of dataflow pairs has been identified, the

original source code is modified to include tracking hard-

ware: signals that note whenever any dataflow pair becomes

unequal, i.e., whenever s 6= t.
The third phase of the algorithm is verification. The

newly instrumented code is simulated and run through a

battery of tests. At the end of the verification phase, the

tracking signals show which, if any, dataflow pairs were

equal throughout all test cases. These dataflow pairs indicate

places where malicious circuitry may lie. If there is a

dataflow pair (s, t) for which the property s = t holds

throughout all test cases, then it follows that the circuitry

between s and t could be replaced with a single wire

(i.e., short-circuited) without affecting the result of any test

case. This intermediate circuitry is highlighted as potentially

malicious, as this logic seems to serve no purpose in any of

the test cases.

III. CONSTRUCTING ATTACKS: METHODOLOGY

In this section, we define a class of circuits that can

evade detection by UCI and that can be used for malicious

3Hicks et al. [2] state that their approach would work equally well on a
netlist describing the circuit. However, their exposition assumes the HDL
is provided and therefore, in our description, we do as well. This issue has
no bearing on the ability of UCI to detect our attacks.

65

purposes. Then, we conduct a systematic search for circuits

in this class, with the following approach:

1) We fix an upper bound on the number of input signals

to the circuit and on the size of the circuit (total

number of gates). Also, we fix the type of gates that

may be used in the circuit.

2) We enumerate all circuits of the class which fall within

the bounds.

3) We analyze each circuit generated and keep those that

evade UCI, meet our definition of malicious, and could

still pass design-time testing.

All circuits produced by this search defeat UCI and

could be used by an attacker to insert a stealthy, malicious

backdoor into a target hardware design. We define search

criteria that are sufficient for a circuit to evade detection

by UCI, but the criteria are by no means necessary: there

may be other ways to construct circuits that defeat UCI. The

search criteria are designed to keep the search practical. As

shown in Section IV, the class of circuits the search produces

is rich enough to defeat UCI and produce a malicious circuit

that can be used in a practical attack.

A. Definitions

Before defining the class of circuits targeted by our search,

we define the following terms:

Basis of Gates:

The basis of gates is a set G = {g0, g1, . . . , gn}
of logic gates available for use in building circuits.

Circuits generated by our search will use only these

gates.

Circuit:

For our purposes, a circuit C is some combina-

tional logic built using gates from the basis. C(x)
denotes the output of C on input x. We focus on

circuits that produce a single bit of output, so a

circuit C defines an output function f from n-
bit inputs to 1-bit outputs: namely, the function

f : {0, 1}n → {0, 1} given by f(x) = C(x). The
output function f specifies only the input-output

behavior of the circuit, whereas the circuit C itself

also records the internal structure of the circuit.

Each internal wire w of C computes some function

fw. In our search algorithm, for each circuit C we

store only its output function f and the set S =
{fw : w is an internal wire of C} of functions for

each internal wire of C. For conciseness, we often

identify the circuit C with this information: C =
(f, S). Given an arbitrarily complex circuit design,

we can compute f, S recursively, as follows:

1) If C is a single wire connecting an input

x to the output, it computes the projection

function f(x) = x and has no internal wires:

C = (f, ∅).

2) Suppose C1 = (f1, S1) and C2 = (f2, S2)
are circuits, and suppose the circuit C is

formed by combining the outputs of circuits

C1 and C2 with a 2-input gate g from the

basis of gates, i.e., C = g(C1, C2). Then the

resulting circuit can be expressed as

C = (g(f1, f2), S1 ∪ S2 ∪ {f1, f2}).

A similar pattern applies to gates with more

or less than 2 inputs.

Size:

The size of the circuit is the total number of gates

used to construct the circuit.

Trigger Condition:

We define two types of inputs to every circuit con-

structed: trigger and non-trigger. The non-trigger

inputs are the normal inputs, which are used in the

normal functionality of the circuit, while the trigger

inputs are used only to define a rare condition

under which the hidden malicious behavior will be

activated. In particular, the hidden behavior should

appear if and only if the set of trigger inputs

are driven with a single, specific, predetermined,

value (the trigger value). The trigger condition is

the condition that the trigger inputs are driven

with that specific value. Thus, under the trigger

condition, a malicious circuit exhibits its special

hidden behavior.

The input x to the circuit is decomposed into

x = (i, t), where i = (i0, . . . , iℓ) denotes the non-

trigger inputs and t = (t0, . . . , tm) denotes the

trigger inputs.

Non-Trigger Condition:

A circuit is in the non-trigger condition whenever

the trigger inputs are not driven with the trigger

values, i.e., when the trigger condition is false.

Under the non-trigger condition, the circuit exhibits

its expected behavior.

Admissible Circuit:

We say that a circuit is admissible if: (1) there

exists exactly one trigger condition, (2) the circuit

has at least one non-trigger input, and (3) under the

non-trigger condition, the trigger inputs become

don’t-cares (do not have any effect on the output

value of the circuit). Our search algorithm only

examines admissible circuits.

The admissibility requirement defines a clear sep-

aration between trigger and non-trigger inputs and

ensures that any constructed malicious circuits will

still pass design-time testing.

Note that while the definition of admissibility re-

quires the output of the circuit to be independent

of the particular values on the trigger inputs in the

non-trigger condition, we do not place a similar

66

restriction on non-trigger inputs. In the trigger

condition, the output of the circuit is permitted

to depend upon non-trigger inputs (the non-trigger

inputs do not need to be don’t-cares in this case).

Obviously Malicious Circuit:

We define a circuit to be obviously malicious if

there exists any two valuations to the inputs to the

circuit x = (i, t), x′ = (i, t′) where t is in the non-

trigger condition and t′ is in the trigger condition

and C(x) 6= C(x′). In other words, the circuit is

malicious if changing just the trigger inputs from

a non-trigger value to the trigger value can change

the output of the circuit (presumably, activating its

hidden functionality).

Stealthy Circuit:

We define a circuit to be stealthy if UCI will

not flag any part of the circuit as malicious. We

assume the test suite used by UCI includes every

possible input where the trigger condition is false.

(We discuss the implications of this assumption in

Section VI.) Thus, a circuit will be stealthy if there

is no pair of dependent wires that are always equal

during design-time testing. To be more precise, a

circuit C = (f, S) will be stealthy if there is no

pair si, sj of internal wires (si ∈ S, sj ∈ S ∪{f})
such that data can flow from si to sj , and such that

si = sj always holds for all inputs satisfying the

non-trigger condition.

B. Defining Malice and Requiring Admissibility

Our definitions of admissible and obviously malicious cir-

cuits require further discussion. We emphasize that these are

intended to serve as a sufficient, but not necessary, condition

under which a circuit could be used in an attack. They are

by no means an exhaustive characterization of when a circuit

might contain a hidden backdoor. For instance, we can

imagine circuits that do not have a clear separation between

trigger and non-trigger inputs, and which exhibit hidden

behavior if the entire input satisfies a certain rare condition;

such circuits might be useful to an attacker, but would not

be found by our search. Our definitions are intended solely

to make algorithmic search easier, by focusing the search

on a particular type of dangerous circuit. Our results show

that this is sufficient to find serious attacks against the UCI

algorithm—but we do not claim that it can be used to create

all possible attacks.

Our focus on circuits that have a clean separation between

trigger and non-trigger inputs is motivated by the need

for some objective way to recognize malicious circuits.

Consider, for example, a single AND gate with two inputs

and one output. Without any further context, there is no

meaningful way to classify this circuit as benign or ma-

licious. Since we can not determine a priori whether a

constructed circuit is malicious, we instead look for hidden

functionality. Hidden functionality should be triggered only

in a special condition that is unlikely to arise in normal

design-time testing. A simple special case arises when some

of the inputs are used only to trigger the hidden functionality,

and do not otherwise affect the circuit’s behavior. This

motivates separating the inputs into non-trigger vs. trigger

inputs. If the circuit exhibits new behavior when the trigger

inputs are set to a special value, then we consider that the

circuit has hidden behavior and thus may be malicious.

We impose the admissibility requirement only to facilitate

algorithmic search. It is possible to imagine a malicious

circuit in which all inputs affect the output at all times, but

one particular combination of inputs produces an unwanted,

malicious behavior. (Indeed, in a real-world setting, this is a

particularly plausible type of attack.) However, recognizing

that such a circuit is malicious requires some semantic

knowledge of desirable vs. undesirable behavior.

To see why this is so, we consider an example. Suppose

C is a circuit with two trigger inputs t = (t0, t1) and with

trigger condition t0 ∧ t1 (i.e., the trigger condition holds if

t = (1, 1)). The admissibility constraint requires

∀i . C(i, (0, 0)) = C(i, (1, 0)) = C(i, (0, 1)),

i.e., so long as the trigger inputs are not both “1”, they do not

affect the output of the circuit. If the circuit is admissible,

we can easily recognize it as malicious if we have

∃i, t . C(i, t) 6= C(i, (1, 1)),

since this means that when the trigger inputs are fed with a

special value (namely, (1, 1)), the circuit behaves differently.
Now assume that the circuit C is not admissible. In this

case, it would be easy to find a pair of inputs (i, t), (i, t′)
such that C(i, t) 6= C(i, t′), which implies that either

C(i, t) 6= C(i, (1, 1)) or C(i, t′) 6= C(i, (1, 1)). This is true
regardless of whether the circuit is malicious or not. In other

words, if C is not admissible, it is always true that

∃i, t . C(i, t) 6= C(i, (1, 1)),

whether C is malicious or not. Therefore, in the absence

of any kind of specification of desirable behavior, there is

no clear basis for distinguishing a malicious circuit from a

non-malicious circuit.

Even though we only include admissible circuits in our

search results, as we show in Section IV-B, we were able

to easily translate one of the circuits from our search results

into a real-world attack.

C. Methodology

With the definitions in place, we can now explain our

methodology more precisely. We enumerate all circuits in

the class defined by the following parameters:

• 1 or 2 non-trigger inputs: i = (i0, i1) or i = (i0).
• 2 trigger inputs: t = (t0, t1).

67

• Basis of gates given by the set G, where

G ⊆ {AND,OR,NOT,NAND, 2-input MUX}.
• Trigger condition given by t0 ∧ t1 (i.e., the trigger

condition holds if t = (1, 1)).
• Circuit size: N ≤ 3.

For each circuit enumerated, if it is admissible, obviously

malicious, and stealthy, we add it to our set of malicious

circuits that can evade detection by UCI.

D. Searching for Circuits

Our search algorithm works as follows. We maintain a

workqueue of newly formed circuits—these will serve as

building blocks for future circuits. We also maintain a set of

completed circuits R. Roughly speaking, in each iteration of

the algorithm we remove one circuit C from the workqueue,

consider all ways to expand C by adding one gate, add each

new circuit generated in this way to the workqueue, and then

add C to the list of completed circuits.

More precisely, we initialize the search by setting R := ∅
and populating the workqueue with four circuits: C0 =
(i0, ∅), C1 = (i1, ∅), C2 = (t0, ∅), C3 = (t1, ∅). In

each iteration, we remove one circuit from the front of the

workqueue, say C = (f, S). If C is admissible, obviously

malicious, and stealthy, we output C and the search contin-

ues with the next circuit in the queue. Otherwise, for each

gate g ∈ G and each circuit C ′ ∈ R∪ {C}, we build a new

circuit C ′′ as C ′′ = g(C,C ′). If C ′′ is stealthy and not in R,

it is appended to the workqueue, otherwise it is discarded.

Once C has been combined with every circuit in R ∪ {C},
using every gate in G, C is added to the set R.

This approach only explores circuits where every subcir-

cuit is stealthy. Note that for a circuit C to be stealthy,

it is necessary for every subcircuit of C to be stealthy;

therefore, there is no point in exploring circuits with a

subcircuit that is not stealthy. Also, the algorithm does not

distinguish between two circuits C1, C2 with the same output

function and set of internal functions: if C1 = (f, S) and

C2 = (f, S), then these two circuits are indistinguishable

in terms of UCI and in terms of their externally observable

behavior, so we keep one of C1, C2 and discard the other.

This partitions circuits into equivalence classes and only

keeps one representative of each equivalence class in the

workqueue and completed set.

We conducted the above search multiple times, each

time using a different basis G of gates. In particu-

lar, we conducted a separate search for each subset

of {AND,OR,NOT,NAND, 2-input MUX}, excluding the

empty set. The pseudo-code for the algorithm is shown

below. We summarize the results of this search in Section

V-D.

IV. ATTACKS

From the set of admissible, obviously malicious, and

stealthy circuits returned by our search, we select a small

Algorithm 1 Searching for stealthy, admissible, obviously

malicious circuits

// Initial circuits, one for each input.

C0 = (i0, ∅)
C1 = (i1, ∅)
C2 = (t0, ∅)
C3 = (t1, ∅)

// The set of already-considered circuits.

completed_circuits = ∅
// The circuits to use as building blocks in larger circuits.

workqueue = [C0, C1, C2, C3]
// The set of gates to use in building circuits.

gate_basis = {AND,OR,NOT}

/∗ While there are still circuits in the workqueue, pop

the next one off and combine it with every previously-

considered circuit and with itself. ∗/
while length(workqueue) > 0 do

curr_circuit = workqueue.pop()

if curr_circuit is stealthy, admissible, and obvi-

ously malicious then

print curr_circuit

else

for all gate in gate_basis do

for all circ in completed_circuits ∪
{curr_circuit} do

new_circuit = gate(curr_circuit,

circ)

if new_circuit is stealthy and not in

completed_circuits then

workqueue.append(new_circuit)

end if

end for

end for

completed_circuits.add(curr_circuit)

end if

end while

circuit to analyze in order to gain an understanding of how it

evades UCI. We then select a more complex circuit with the

desired trigger condition and non-trigger condition output

behavior for use in creating a privilege escalation attack in

the Leon3 processor. We show that the attack evades UCI

analysis.

A. Example Circuit

The smallest circuit we found that satisfied our criteria

was a two-gate circuit with basis G = {MUX}. This circuit
is shown below in Figure 2. The inputs to the circuit are

i = (i0, i1) (non-trigger inputs) and t = (t0, t1) (trigger

inputs). The trigger condition is t0∧ t1. The output function
of the circuit is f = (i0 ∧ i1) ∨ (t0 ∧ t1 ∧ ¬i1). Under

68

non-trigger conditions the output function is fNT = i0 ∧ i1.
Under trigger conditions the output is fT = i0 ∨ ¬i1.

t0

t1
f

i0

i0

i1

h

Figure 2. Two-gate, stealthy, admissible, and malicious circuit.

This circuit evades detection by UCI because there is no

pair of dependent signals that are always equal under the

non-trigger condition. The truth table in Figure 3 shows the

input values and associated output values for this stealthy

MUX circuit. In addition to showing the output function f ,
the table shows the values for the lone internal signal h.
The rows below the dashed horizontal line are the signal

values under the trigger condition, which are not seen

during design-time testing. The final column notes when

an input makes a dependent pair of signals unequal. The

data in the table shows that if the test suite includes the

inputs (t1, t0, i1, i0) = (0, 0, 0, 1), (0, 1, 0, 1), (1, 0, 0, 1),
and (1, 0, 1, 0), then UCI will not flag any part of the circuit

as malicious. Since the trigger condition for all of these

inputs is false and fNT = i0 ∧ i1, for every test case this

circuit will behave identically to an AND gate applied to i0
and i1.

If a rogue designer has access to the source code of

some security-critical hardware, he can replace any AND

gate with the malicious circuit in Figure 2 and cause it to

behave differently under a special condition that might not

be exercised during design-time testing. If this affects some

security-critical element of the hardware, it might introduce

a hidden vulnerability or backdoor that is not detected by

UCI.

UCI misses this behavior because the way the circuit was

constructed, there is no intermediate function equivalent to

i0 ∧ i1 that UCI can short-circuit the output with. This idea

of creating a non-trigger function which is not equivalent to

any internal function is the key to defeating UCI.

B. Practical Attack

The previous example indicates there are ways to con-

struct simple circuits with hidden behavior that evade UCI.

In this section, we show how an attacker can replace the

functionality of a larger design with one of these circuits

t1 t0 i1 i0 h f Comments

0 0 0 0 0 0

0 0 0 1 1 0 h 6= t1, h 6= t0, h 6= i1
0 0 1 0 0 0

0 0 1 1 1 1

0 1 0 0 0 0

0 1 0 1 1 0 f 6= t0, f 6= i0, f 6= h
0 1 1 0 0 0

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 1 0 0 h 6= i0
1 0 1 0 0 0 f 6= t1, f 6= i1
1 0 1 1 0 1

1 1 0 0 1 1 Trigger condition is true.

1 1 0 1 1 0 Trigger condition is true.

1 1 1 0 1 1 Trigger condition is true.

1 1 1 1 1 1 Trigger condition is true.

Figure 3. Truth table for two-gate circuit shown in Figure 2.

containing some hidden behavior and use the hidden behav-

ior to create an attack. We insert our malicious hardware into

a processor and show that UCI does not detect the attack.

The UCI paper describes what the authors call a malicious

foothold: malicious hardware inserted into a processor that

allows the attacker to later gain entry to the machine

and launch a system-level attack. One such foothold they

describe is the supervisor transition foothold. This is a

piece of hardware inserted into the processor’s core pipeline

that, upon detecting a secret trigger sequence of instructions

(“knock”), transitions the current process into supervisor

mode.

Hicks et al. [2] show that UCI is able to detect their

implementation of the supervisor transition foothold. In this

section, we show how to implement the same attack, but in

a way that UCI can not detect. We introduce a backdoor

into the Leon3 processor, which implements the SPARCv8

architecture. The configuration of the processor and system

are identical to the configuration used in the paper proposing

UCI.

In order to implement a stealthy attack, we looked for

a place in the code where the value of the supervisor-

mode bit was set by the output of some n-input function
super ⇐ g(i0, i1, . . . , in−1). Then we searched through

our library of example stealthy, admissible, and malicious

circuits to find one with the appropriate output function. We

needed fNT = g(i0, i1, . . . , in−1) and fT = 1, which will,

when triggered, artificially increase the privilege level of the

executing process.

We inserted our attack in to the processor’s integer unit

pipeline. The process we modified is one that writes values

computed in the previous clock cycle by each stage in the

pipeline for use by the subsequent stages in the next clock

cycle. Shown in Figure 4 is the fragment of the process

69

pertaining to the setting of the super signal, the bit that

will put the processor in supervisor mode. (This is not

the actual code, but a more readable representation of the

code’s behavior.) On holdn = 1 4 the supervisor-mode bit

gets updated with the value computed in the previous cycle

(in.super). On resetn = 0 (active low) the processor

is put in supervisor mode. Otherwise, the supervisor-mode

bit remains as it was in the previous cycle.

reg : process (clk)

begin

if rising_edge(clk) then

if (holdn = ’1’) then

super <= in.super;

end if;

if resetn = ’0’ then

super <= ’1’;

end if;

end if;

end process;

Figure 4. Original processor pipeline code responsible for setting the
supervisor-mode bit. This is the code before we inserted our backdoor.

holdn

holdn

super

in.super

holdn

super

f

instruct_prev

instruct_curr

resetn

holdn

in.super

super <= ((NOT holdn AND super) OR

(holdn AND in.super)) OR

((NOT resetn) OR (instruct_curr AND

(instruct_prev OR ((NOT holdn AND super)

OR (holdn AND in.super)))));

Figure 5. The attack circuit we use for the hidden backdoor. The top shows
the structure of the attack. The bottom shows the HDL implementation of
the attack.

Our attack sets super ⇐ 1 when the processor sees a

specific instruction repeated two times in a row. Not shown

4holdn is an active low signal that depends on a similar hold signal in
the data and instruction caches

here are the two processes used to track when this instruction

has been seen. The attack circuit we inserted is shown

in Figure 5. We inserted the line of code shown there as

a replacement to the code shown in Figure 4. As in our

simple example (Figure 2), in this circuit there is no pair of

dependent signals that could have been replaced by a wire

during design-time testing without changing the behavior of

the output signal. In the absence of the “knock” instructions,

the attack code works as the original code did. For additional

confidence that our modified processor could pass design-

time testing, we tested it using the official SPARC certifica-

tion test benches from SPARC International. The processor

passed all tests, allowing the malicious process to carry the

SPARC trademark.

In total, we inserted 19 lines of code into the processor.

This includes the code to set the supervisor bit as well as

the code to track the presence of the trigger instructions. We

also removed 7 lines of the original code from the processor,

for a net increase of 12 lines of code. This is comparable to

the number of changes required for the attack used in the

UCI paper.

Using the same tools and environment as in the UCI

paper, we performed UCI analysis on the processor pipeline

augmented with our attack. We used the test bench that

comes bundled with the Leon3 processor for the UCI

analysis. While the original UCI experiments used additional

test cases, adding additional test cases does not increase the

chance of detection by UCI. The number of circuits flagged

by UCI as potentially malicious only decreases with the

use of additional test cases. We discuss this point further in

Section VI.

UCI was unable to detect our attack, with one caveat,

which the next section describes.

C. Analysis of UCI Results

The caveat is that, to test our attack, we extended the

test bench slightly. The instruction we used as our trigger

did not appear anywhere in the original test bench. There-

fore, UCI was able to detect that the instruct_prev

and instruct_curr signals (which indicate whether the

previous/current instruction is the trigger instruction) were

constant at 0. We added one instance of this instruction to

the test bench, and confirmed that UCI is then unable to

detect any sign of the attack circuit.

This modification to the test bench violates our assump-

tion that the attacker can not control the tests used during

design-time testing. However, as we argue next, this is not

an inherent limitation of our attack, but rather an accidental

artifact of a sub-optimal implementation of the attack, and

it would be straightforward for an attacker to adjust the

attack to avoid this issue. In particular, it would be easy

to pick some other instruction that appears at least once in

the test bench, but that does not appear twice in a row. It

seems reasonable to assume that the attacker would know the

70

contents of the test bench, or at least some of the test cases,

making it easy to choose a trigger instruction that already

exists in the test bench. In retrospect, we chose our triggering

instruction poorly: we overlooked the need to choose a

trigger instruction that already occurs in the test bench. It

would have been trivial to choose a different instruction, and

if we had chosen more wisely, no modification to the test

bench would have been necessary.

We also verified that none of the false positives produced

by UCI would inadvertently reveal our backdoor. The UCI

algorithm produces a fair number of false positives: pairs of

dependent signals that happen to always be equal during the

design-time testing that was done, but that can be non-equal

under legitimate, untested input configurations. If the attack

circuit happens to fall within the dependency chain of a pair

of such signals, the attack would be highlighted by UCI as

potentially malicious. In other words, UCI might get lucky

and catch the attack by sheer chance. If the system designers

reviewed everything highlighted by UCI, then they might

notice the attack circuit as they reviewed the false positives.

To see if this was the case with our attack, we looked at

all the pairs of signals highlighted by UCI and verified that

none of the gates involved in our attack were involved in

the dependency chain between two such signals.

We also verified that our attack is successfully able to

defeat BlueChip, a hybrid software/hardware solution that

builds upon UCI to defend against backdoors [2]. BlueChip

removes any hardware flagged by UCI as potentially ma-

licious and replaces it with a trap. During execution, any

instruction that would have used the removed circuitry gets

simulated in software using alternate instructions. Because

our attack circuit is not detected by UCI, it is not removed

by BlueChip, and thus BlueChip is not able to detect or

defend against our backdoor. However, our attack relies upon

the assumption that the trigger instructions will be executed

natively, in hardware, and will not trap; we verified that this

is indeed the case and that our trigger instructions will not

cause an unwanted trap. In particular, we compared the set

of (false positive) signals flagged by UCI when run on the

processor using the regular test bench to that returned by

UCI when using a test bench augmented with a test that

executes our trigger instructions. There was no difference

between the two. This demonstrates that our trigger instruc-

tions do not cause BlueChip to trap and simulate them in

software; the instructions execute normally and successfully

engage the backdoor.

To test our attack, we used an environment identical to that

used in the UCI paper. We synthesized the Leon3 processor

with our embedded attack on a Xilinx Virtex 5 FPGA

development board and successfully booted the SnapGear

Embedded Linux distribution (linux-2.6.21.1 kernel). Then,

we wrote a user-level program that triggers the backdoor.

The program was able to successfully transition the proces-

sor into supervisor mode, using the backdoor we built.

D. Multiple Triggers

The above example is not perfectly stealthy, since there

is always a chance the two-input trigger condition could

occur as part of the traditional design-time testing all cir-

cuits are put through. Arguably, if the trigger instruction

is chosen carefully, the chance that the test suite includes

some sequence where the trigger instruction is executed

twice in a row (thus detecting the backdoor) is low, but there

still remains some chance that the backdoor is accidentally

exposed during design-time testing.

We note that a smart attacker can virtually eliminate

the chances of accidental exposure by choosing a trigger

condition that holds only for a vanishingly small proportion

of inputs. If the attacker uses an n-bit trigger condition, there
is only a 1/2n probability that a randomly chosen test will

expose the backdoor; by choosing n sufficiently large, the

attacker can make the probability that any test reveals the

backdoor negligible.

All of the malicious circuits discussed until now have

only a 2-bit trigger. It is natural to wonder whether these

attacks can be generalized to work with an n-bit trigger

condition, for arbitrary n. Through manual analysis, we

identified several malicious circuits that could be extended to

an n-bit trigger condition, and we show one such circuit in

Figure 6. This circuit has two non-trigger inputs i = (i0, i1)
and n trigger inputs t = (t0, t1, . . . , tn−1), with the trigger

condition t0 ∧ t1 ∧ · · · ∧ tn−1. The output function of this

circuit is f = (i0 ∧ i1) ∨ (t0 ∧ t1 ∧ · · · ∧ tn−1). Under
non-trigger conditions the output function is fNT = i0 ∧ i1.
Under trigger conditions the output is stuck at fT = 1.

The attack from Section IV-B can be extended to use an

n-bit trigger, thereby making the backdoor even harder to de-

tect through design-time testing. Figure 7 demonstrates one

way to do so. This figure shows a design where executing a

single specially chosen instruction n times in a row triggers

the backdoor. To make the figure cleaner, we don’t show

the sub-circuit (¬holdn∧ super)∨ (holdn∧ in.super) and
instead show only its output. The circuit remains stealthy

when the sub-circuit is put back in place. Other general-

izations are possible; for instance, we could choose a secret

sequence of n different instructions and trigger the backdoor

only when those n instructions are executed consecutively.

In this way, the attacker can make it vanishingly unlikely that

the backdoor will be detected through black-box testing.

V. POSSIBLE DEFENSES

Given the two attack circuits covered so far, there are a

number of modifications to the UCI algorithm it might be

natural to suggest. In this section, we look at a number of

possible fixes to UCI and discuss the validity of each one.

We argue that none of the natural modifications to UCI is

secure: they can all be defeated through simple variations on

our attacks. This suggests that it will not be straightforward

to develop effective defenses against these attacks.

71

resetn

resetn

(holdn ∧ in.super)

(¬holdn ∧ super) ∨

f

(¬holdn ∧ super) ∨ (holdn ∧ in.super)

(¬holdn ∧ super) ∨ (holdn ∧ in.super)

triggern

triggern−1

trigger0

trigger1

Figure 7. Practical attack circuit augmented to use n triggers.

i1

i0

i1

t0

t0

t1

t1
f

i0

i1

tn−1

i0

i0

i1

tn

tn

tn−1

Figure 6. Stealthy and malicious circuit with n trigger inputs.

A. Handling of MUX Control Inputs

The UCI algorithm, as described in the original UCI

paper [2, §5.3], does not treat the output of a MUX gate

as data-dependent upon the control input to the MUX, and

thus does not include these among the pairs of signals

it analyzes, potentially missing some attacks. The original

paper suggested that it would be straightforward to extend

the UCI algorithm to treat MUX outputs as data-dependent

upon their control signals (by converting MUX gates to their

AND and OR gate representation and treating them as pure

data flow elements).

This extension to UCI does not stop our attacks. The

attack circuit in Figure 5 does not use any MUX gates,

and thus is not affected by this modification to UCI: the

attack remains effective and undetected by UCI. Therefore,

our backdoor for the Leon processor would be unaffected

by this extension to the UCI algorithm.

The example in Figure 2 does use MUX gates, but as

it happens, even the extended UCI algorithm does not flag

it as malicious, since there are test cases where the MUX

outputs differ from their control inputs (e.g., (0, 0, 0, 1),
(1, 0, 1, 0)). Our search algorithm considers the output of

every gate to be dependent upon all of its input signals,

without differentiating between control vs. data flow, so

every stealthy circuit output by our search algorithm already

defeats the extended UCI.

B. Shrinking the Basis of Gates

The example shown in Figure 2 uses two MUX gates. One

might wonder if the reason UCI fails to detect the malicious

circuit is because the MUX gate is a macro element that

contains three basic operations. It would take two AND

gates and one OR gate to compute h, the intermediate signal

72

computed by the first MUX gate. It feels as though the

MUX gate is hiding some intermediate signals that might

be present once this gate is compiled to silicon. It is natural

to conjecture that, if these intermediate signals were exposed

to UCI, UCI might be able to detect the attack. For instance,

if we restrict the circuit so that it can only use simple gates

such as {AND,OR,NOT}, then perhaps it would not be

possible to defeat UCI (one might hope).

This defense does not work. As our practical attack

on the Leon3 processor shows, it is possible to build a

circuit that defeats UCI using only that three-gate basis.

Moreover, with an additional search, we were able to find

admissible, malicious, and stealthy circuits that used only

NAND gates, as well as attacks that used only MUX gates.

This demonstrates that even if we compile the circuit to

NAND gates and then run UCI on the result, UCI still does

not detect all malicious circuits.

We also performed
(

5

2

)

additional searches with an ex-

panded basis, to examine each two-gate basis possible

from the set {AND,OR,NOT,NAND, 2-input MUX}. We

found admissible, malicious, and stealthy circuits for each

of these
(

5

2

)

bases. This indicates that exposing additional

intermediate values or shrinking the set of allowed gates is

not sufficient to make UCI secure.

C. Replacing Circuitry with a Single Gate

For each of the malicious circuits shown in Section IV,

there exists some sub-circuitry that could have been replaced

with a single gate without changing the output under the

non-trigger condition. The UCI algorithm looks for a de-

pendent pair of signals where the intervening sub-circuit

could be replaced with a wire. It seems natural to extend

UCI to also look for any triplet of dependent signals (s, t, u)
where u is dependent on both s and t and check whether the

intervening circuitry between them could have been replaced

by a single gate from the basis.

Unfortunately, this too can be broken. Figure 8 is a

counter-example that shows this approach is insufficient. The

circuit was built using the basis G = {MUX}. The output

function of the circuit is f = (i0 ∧ ¬i1) ∨ (t0 ∧ t1 ∧ i1).
Under non-trigger conditions the output is fNT = i0 ∧ ¬i1.
Under trigger conditions the output is fT = i0∨ i1. There is
no portion of the circuit that could be replaced with a single

MUX gate without changing the function output under non-

trigger conditions.

D. Expressiveness of Attacks

While the attack we demonstrated is very powerful, the

function of the malicious circuit we used was very simple.

(For instance, the attack in Figure 2 acts like a simple

AND gate, in the non-trigger condition.) It is reasonable to

ask how much the attacker is constrained by evading UCI.

While we don’t have any definitive answer to that question,

the results from our search for admissible, malicious, and

f

i0

t0

i1 t1

i1

t0

i1

Figure 8. Stealthy and malicious circuit in which no portion of the circuit
could be replaced with a single MUX gate.

stealthy circuits suggests that there are enough distinct

functions for the attacker to have a reasonable chance of

implementing her malicious hardware of choice while still

evading UCI.

For each search we explored all circuits up to a size of

three gates. Once we had seen all circuits with less than four

gates we stopped creating new circuits. Although our focus

was on enumerating all circuits with at most three gates,

as a consequence of our searching algorithm we ended up

building some circuits with more than three gates along the

way. Therefore our results do include some larger circuits.

We found 2,317 unique circuits that are admissible, ob-

viously malicious, and stealthy. Of those, 75 had unique

output functions. To put this number in perspective, the total

number of unique output functions (for a circuit comprising

any number of gates, but given our constraints of two

non-trigger and two trigger inputs) that would meet our

definition of obviously malicious and admissible (although

not necessarily stealthy) is 24×24 = 256. The total number

of unique output functions for any four-input circuit of any

size is 216 = 65536. Of the 75 unique output functions

we found, 27 could be expressed by a circuit with 3 or

fewer gates. The circuits for the other 48 output functions

contained between 4 and 7 gates. The smallest admissible,

obviously malicious, and stealthy circuit we found used 2

MUX gates. The smallest circuit that did not use a MUX

gate required 3 gates.

In addition to bounding the search, we also forced the

search to time out after ten minutes, regardless of whether

all one-, two-, and three-gate circuits had been explored.

Therefore, 27 represents a lower bound on the number of

73

unique output functions available when using up to three

gates.

VI. DISCUSSION

Our experience working with UCI revealed a counter-

intuitive property of the algorithm. For a fixed circuit with

a hidden attack, the chances that UCI detects the attack

decreases as we increase the number of test cases in the test

suite: the more thorough the test suite, the easier it becomes

to defeat UCI.

To see why this is so, suppose we have a circuit that

contains some malicious logic between signals s and t.
Suppose there exists a single input x to the circuit that

makes s and t non-equal and that doesn’t fall into the

trigger condition. For a reasonably complex circuit there will

be thousands of non-trigger input configurations, not all of

which will be used during design-time testing. If the input

x is not found in the test suite, then UCI will (correctly)

flag the logic between s and t as malicious. But if another

test is added that does evaluate the circuit on input x, then
there will now exist a test where s and t are non-equal and

therefore UCI will (incorrectly) remove the flag, treating the

circuit as benign. It is counter-intuitive, but we found that

the number of false negatives (missed attacks) increases as

one adds more test cases (and, conversely, the number of

false positives decreases as the number of tests increases).

Of course, we must not lose sight of the bigger picture.

The goal is to catch the malicious hardware by whatever

means possible. Increasing the number of test cases increases

the chances the attack is uncovered during traditional design-

time testing. Each additional test case is an opportunity to

detect that the hardware failed to behave as expected, so

increasing the number of tests increases the effectiveness of

design-time testing even as it decreases the effectiveness of

UCI. In constructing malicious hardware, the attacker must

walk a line between evading UCI and remaining hidden

during design-time testing.

However, the n-bit trigger version of our practical attack

demonstrates how the attacker may be reasonably confident

of avoiding detection through design-time testing or UCI,

regardless of the amount of testing conducted. This points

to a larger challenge facing any UCI-like technique. Any

malicious hardware detection scheme that uses test cases as

its sole specification of correct behavior is working with an

incomplete specification. It is impractical (and, in the case of

a microprocessor, effectively impossible) for a test suite to

exhaustively cover all possible test cases, and consequently

a test suite provides only an incomplete specification of the

intended behavior of the circuit. In the absence of a complete

specification of the desired behavior, it is not clear how to

define malicious behavior. (Given a complete specification,

malicious behavior may be defined as any behavior falling

outside the specification.)

Given this constraint, one approach for defending against

malicious circuitry is to define a particular class of malicious

hardware and then work to defend against that class. UCI

implicitly defines one such class of circuits as the set of

malicious circuits that will stay inactive during design-time

testing. We were able to break UCI by finding malicious

circuits that fall outside that class of circuits, i.e., by finding

malicious circuits that are active during design-time testing

but not detected by it. In short, our work demonstrates the

class of malicious hardware UCI defends against is not

comprehensive enough.

In general, the problem of malicious code detection is

equivalent to the problem of proving the circuit is correct.

The best solutions we have for tackling this problem at

design time are exhaustive simulation and formal verifi-

cation. However, with the current state of the art, neither

of these techniques can feasibly be complete. Therefore,

a challenge for any future work in the area of malicious

hardware detection at design time is to clearly identify a

class of malware to defend against and justify why this class

is sufficient to capture every attack we might care about.

It is important to note that we made no attempt, nor do we

claim, to define the class of all possible malicious circuits.

We artificially imposed a significant constraint on our search

for malicious circuits: in all of the attack circuits described

in this paper, the input wires can be separated into trigger in-

puts and non-trigger inputs. Moreover, the definitions given

in Section III consider only circuits where such a complete

separation exists. We focused on this special class of circuits

solely because it is easy to reason about algorithmically

and it made it easier to find attacks. However, there is

no reason to assume malicious backdoors will necessarily

exhibit this separation in practice. Therefore, any proposed

fix to the UCI algorithm or any future design-time algorithm

for detecting malicious circuits should, like UCI, not assume

that such a separation exists between trigger and non-trigger

inputs.

VII. RELATED WORK

There has been considerable prior research on methods for

protecting against malicious hardware. We do not attempt

to summarize all of that work here. Rather, our discussion

of related work focuses on research involving the design-

time insertion or detection of malicious hardware. There are

other possible points along the hardware life-cycle where

malicious logic could be inserted or detected (for example,

the fabrication and supply chain stages [5]–[13]), but in this

paper we focus on the RTL-level design stage, as that is the

target of the UCI algorithm. Other stages have very different

properties and constraints.

We first present attack-oriented research, then cover re-

search on defense mechanisms, and lastly, highlight formal

methods that may be applicable to the design-time attack

model.

74

A. Hardware Attacks

Hadzic et al. were the first to look at what hardware

attacks might look like and what they could do [14]. They

specifically targeted FPGAs, showing it is possible to add

malicious logic to the FPGA’s configuration file that would

short-circuit wires, driving them with logic high values. A

wire with multiple high drivers increases the device’s current

draw, possibly causing the destruction of the device through

overheating or wear-out failures. Hadzic et al. also proposed

both a change to the FPGA architecture and a configuration

analysis tool that would defend against the proposed attacks.

Agrawal et al. describe three attacks on RSA hardware as

a part of a larger paper describing a defense against supply-

chain attacks [15]. One of their attacks uses a built-in counter

that shuts down the RSA hardware after a prescribed number

of clock cycles. The other two attacks use a comparison

based trigger that contaminates the results of the RSA

hardware when activated. These attacks show that targeted

hardware attacks can have a small footprint in terms of

circuit area, power, and coding effort required.

The Illinois Malicious Processor (IMP) by King et al. [1]

is the first work to propose the idea of malicious hardware

being used as a support mechanism for attack software.

These hardware security vulnerabilities, inserted during de-

sign time, are termed footholds. Since footholds can be

introduced without changing many lines of code and without

much effect on the rest of the design, they can be difficult

to detect using conventional means or side-channel analysis.

IMP demonstrates two attacks in particular: unauthorized

memory access, which allows user processes to access

restricted memory addresses, and shadow mode, where the

processor executes in a special, hidden mode. As a part of

IMP, King et al. showed how malicious software services

can leverage the inserted footholds to escalate privileges,

circumvent the login process, or steal passwords. In follow-

on work, Hicks et al. [2] reimplemented the attacks and

verified that the attacked hardware passed SPARCv8 certi-

fication tests.

Jin et al. developed eight attacks on the staged military

encryption system codenamed Alpha [16]. The attacks cor-

rupted four different units and three of the data paths of the

encryption system. The eight attacks ranged in area overhead

from less than 1% to almost 7% while still managing to pass

design-time testing. The results highlight the risk of small,

buried, but powerful attacks.

B. Defenses to Hardware Attacks

Research on detecting and defending against malicious

hardware can be categorized into purely design-time meth-

ods and methods that involve a run-time aspect.

1) Design Time: Huffmire et al. study how to integrate

untrusted IP cores with trusted IP cores by enabling ar-

chitects to restrict communication between IP cores. They

propose using areas of dead logic (moats) around each IP

core and a verifiable inter-module communication philos-

ophy (drawbridges) [17]. This approach ensures that no

trusted IP core is contaminated or spied upon by an untrusted

IP core, not even over a side channel. Because UCI and

moats and drawbriges attempt to solve different problems,

our attacks on UCI do not affect moats and drawbridges.

2) Run Time: Waksman et al. propose TrustNet and

DataWatch [18]. Instead of preventing the inclusion of

malicious circuits during design time as UCI attempts to do,

TrustNet and DataWatch attempt to suppress malicious be-

havior during run time. The goal of TrustNet and DataWatch

is to prevent untrusted hardware units in a processor’s core

pipeline from leaking information (i.e., producing too much

output information) or stopping the flow of information (i.e.,

producing too little output information). For each input value

to an untrusted pipeline stage, the pipeline stages before and

after the untrusted stage determine if the output produced

by the untrusted stage contains exactly the expected amount

of information (e.g., when multiplying two 32-bit operands,

was the result precisely 64 bits wide?). Because only the

amount of output data is checked, TrustNet and DataWatch

fail to detect incorrect output values of the correct width.

Consequently, TrustNet and DataWatch are vulnerable to

malicious backdoors that tamper with the results of com-

putations without affecting the size of those results, so both

TrustNet and DataWatch and UCI can be defeated if the

attacker chooses the backdoor appropriately.

C. Formal Analysis of Hardware

Hardware, due to its limited resources and cycle-based

behavior is generally quite amenable to formal analysis.

Currently, the majority of research on formal methods, as

applied to hardware, focuses on verifying that the hardware

faithfully implements a given specification.

Model checking is one formal verification technique that

verifies the behavior of a hardware design satisfies a set of

properties, which are specified using temporal logic formu-

las [19], [20]. The verification is done through a bounded

exhaustive search of the design state space. However, model

checking is limited in its ability to scale to complex designs

due to the size of the state space to be explored, which

is exponential in the size of the state [21]. One approach

that partly addresses the state-space explosion problem is to

apply model checking to an abstract model of the proces-

sor [22], but many challenges remain.

Another formal verification technique is to develop a

proof that an abstract model of the processor behaves as

prescribed by the given specification [23]–[28]. The proof

may be developed by hand and verified by a checker, or

developed interactively with a theorem prover.

Given sufficient time, computational power, and a com-

plete specification, formal verification techniques can be a

powerful tool for detecting malicious circuits. Even without

unlimited resources or a complete specification, defenders

75

might reasonably apply formal methods to the problem of

detecting malicious backdoors in processors. It is possible

to apply formal verification to only certain security-critical

modules of the processor. If these modules are simple

enough that a complete specification can be written for them,

it may be possible to fully formally verify such modules,

thereby assuring they are free of backdoors. For instance,

it would have been possible to detect our backdoor from

Section IV by formally verifying the logic for when to

transition to supervisor mode without full formal verification

of the entire processor. The use of formal verification is

not guaranteed to detect all malicious backdoors, but it

might make it harder for an attacker to successfully evade

detection.

VIII. CONCLUSION

We demonstrate an attack against UCI, a recently pro-

posed algorithm for malicious hardware detection. UCI

attempts to detect malicious hardware inserted at design

time by identifying pairs of dependent signals in the source

code that could seemingly be replaced by a wire without

affecting the outcome of any test cases. Experiments show

that it is possible to build malicious circuits in which no

two dependent signals are always equal during design-time

testing, yet where the circuit exhibits hidden behavior upon

receiving a special input, called the trigger input. Using these

circuits, we implement a malicious backdoor in the Leon3

processor that UCI is unable to detect. The attack allows

a user-level program, with knowledge of the secret trigger,

to enter supervisor mode, bypassing any OS-level checks.

This work demonstrates that detecting malicious backdoors

in hardware remains an open problem and suggests that it

may not be easy to devise a reliable algorithm for detecting

such attacks.

IX. ACKNOWLEDGMENT

We thank our shepherd Kevin Fu for his guidance and

we thank the anonymous reviewers for their feedback and

suggestions. This research was funded in part by National

Science Foundation grants CCF 0811268, CNS 0953014,

and CCF 0424422 and by AFOSR MURI grant FA9550-

09-01-0539. Any opinions, findings, conclusions or recom-

mendations expressed in this paper are solely those of the

authors.

REFERENCES

[1] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and
Y. Zhou, “Designing and implementing malicious hardware,”
in Proceedings of the First USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET), 2008, pp. 1–8.

[2] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and
J. M. Smith, “Overcoming an untrusted computing base:
Detecting and removing malicious hardware automatically,”
in Proceedings of the 2010 IEEE Symposium on Security and
Privacy, 2010, pp. 159–172.

[3] J. Markoff, “Old trick threatens the newest weapons,” The
New York Times, p. D1, October 27 2009.

[4] S. Adee, “The hunt for the kill switch,” IEEE Spectrum,
vol. 45, no. 5, pp. 34–39, 2008.

[5] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Sil-
icon physical random functions,” in Proceedings of the 9th
ACM Conference on Computer and Communications Security,
2002, pp. 148–160.

[6] B. Moyer, “A PUF piece: Revealing secrets buried deep
within your silicon,” EE Journal, January 24 2011,
http://www.techfocusmedia.net/archives/articles/20110124-
puf/.

[7] D. Du, S. Narasimhan, R. S. Chakraborty, and S. Bhunia,
“Self-referencing: a scalable side-channel approach for hard-
ware trojan detection,” in 12th International Conference on
Cryptographic Hardware and Embedded Systems (CHES).
Springer-Verlag, 2010.

[8] Y. Jin and Y. Makris, “Hardware trojan detection using
path delay fingerprint,” in IEEE International Workshop on
Hardware-Oriented Security and Trust, 2008.

[9] R. Rad, M. Tehranipoor, and J. Plusquellic, “Sensitivity
analysis to hardware trojans using power supply transient sig-
nals,” in IEEE International Workshop on Hardware-Oriented
Security and Trust, 2008.

[10] T. Kean, D. McLaren, and C. Marsh, “Verifying the authen-
ticity of chip designs with the designtag system,” in IEEE
International Workshop on Hardware-Oriented Security and
Trust, 2008.

[11] A. Das, G. Memik, J. Zambreno, and A. Choudhary, “De-
tecting/preventing information leakage on the memory bus
due to malicious hardware,” in Design, Automation & Test in
Europe, 2010.

[12] M. Potkonjak, “Synthesis of trustable ICs using untrusted
CAD tools,” in Design Automation Conference (DAC).
ACM/IEEE, 2010.

[13] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable
functions,” in Proceedings of the 17th ACM Conference on
Computer and Communications Security, 2010.

[14] I. Hadžić, S. Udani, and J. M. Smith, “FPGA Viruses,” in
Proceedings of the 9th International Workshop on Field-
Programmable Logic and Applications. Springer, 1999.

[15] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and
B. Sunar, “Trojan detection using IC fingerprinting,” in
Proceedings of the 2007 IEEE Symposium on Security and
Privacy, 2007, pp. 296–310.

[16] Y. Jin, N. Kupp, and Y. Makris, “Experiences in hardware
trojan design and implementation,” IEEE International Work-
shop on Hardware-Oriented Security and Trust, 2009.

76

[17] T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kast-
ner, T. Levin, T. Nguyen, and C. Irvine, “Moats and draw-
bridges: An isolation primitive for reconfigurable hardware
based systems,” in Proceedings of the 2007 IEEE Symposium
on Security and Privacy, 2007.

[18] A. Waksman and S. Sethumadhavan, “Tamper evident micro-
processors,” in Proceedings of the 2010 IEEE Symposium on
Security and Privacy, 2010.

[19] C. Seger, “An introduction to formal hardware verification,”
University of British Columbia, Vancouver, BC, Canada,
Canada, Tech. Rep., 1992.

[20] C. Kern and M. R. Greenstreet, “Formal verification in hard-
ware design: a survey,” ACM Trans. Des. Autom. Electron.
Syst., vol. 4, no. 2, pp. 123–193, 1999.

[21] R. Pelanek, “Fighting state space explosion: Review and
evaluation,” Formal Methods for Industrial Critical Systems,
vol. 5596, pp. 37–52, 2009.

[22] V. A. Patankar, A. Jain, and R. E. Bryant, “Formal verification
of an ARM processor,” in Twelfth International Conference
On VLSI Design, 1999.

[23] M. Srivas and M. Bickford, “Formal verification of a
pipelined microprocessor,” Software, IEEE, vol. 7, no. 5, pp.
52–64, 1990.

[24] J. R. Burch and D. L. Dill, “Automatic verification of
pipelined microprocessor control,” in CAV ’94: Proceedings
of the 6th International Conference on Computer Aided
Verification. London, UK: Springer-Verlag, 1994, pp. 68–80.

[25] J. U. Skakkebaek, R. B. Jones, and D. L. Dill, “Formal verifi-
cation of out-of-order execution using incremental flushing,”
in CAV ’98: Proceedings of the 10th International Conference
on Computer Aided Verification. London, UK: Springer-
Verlag, 1998, pp. 98–109.

[26] M. N. Velev and R. E. Bryant, “Formal verification of
superscale microprocessors with multicycle functional units,
exception, and branch prediction,” in DAC ’00: Proceedings
of the 37th Annual Design Automation Conference. ACM,
2000, pp. 112–117.

[27] R. Hosabettu, G. Gopalakrishnan, and M. Srivas, “Formal ver-
ification of a complex pipelined processor,” Formal Methods
System Design, vol. 23, no. 2, pp. 171–213, 2003.

[28] J. Bormann, S. Beyer, A. Maggiore, M. Siegel, S. Skalberg,
T. Blackmore, and F. Bruno, “Complete formal verification of
TriCore2 and other processors,” in DVCon, February 2007.

77

