

Bullseye Polytope: A Scalable Clean-Label Poisoning Attack with Improved Transferability

Hojjat Aghakhani, Dongyu Meng, Yu-Xiang Wang, Christopher Kruegel, and Giovanni Vigna University of California, Santa Barbara

Security Threats in Machine Learning

Security Threats in Machine Learning

Security Threats in Machine Learning

Targeted Poisoning Against Transfer Learning

- Targeted → No effect on general performance!
- Clean-label
- Introduced first against transfer learning:
 - Feature Collision (Shafahi et al., 2018)
 - Convex Polytope (Zhu et al., 2019)

What Is Transfer Learning?

• Use a pre-trained network as the feature extractor to feed the features of the input to a linear classifier

What Is Transfer Learning?

• Use a pre-trained network as the feature extractor to feed the features of the input to a linear classifier

Goal?

- Goal: The attacker wants sample *t* to be classified into class *P* after the *fine-tuning* phase.
- How? By adding some poisoned data to the fine-tuning set.

Feature Collision (Shafahi et al., 2018)

- f: The feature extractor (known to the attacker and used by victim)
 - White-box!
- g: The linear classifier (used by victim, not known to the attacker)
- t: The attacker wants sample t to be classified into class P.

Class P
$$\rightarrow$$
 x $+ \delta$ x' Victim's Training Set $f(x') \sim f(t)$

• The ultimate linear classifier learns to associate f(x') with the target class P.

Feature Collision Attack

Feature Collision Attack

• Black-box: different feature extractor, i.e., different feature space

Convex Polytope (Zhu et al., 2019)

 Poison samples create a convex shape around the target, instead of all being close to the point!

- Compared to FC, CP creates a bigger shape in the feature space
- Thus, it increases the chance of transferability in black-box settings!
- CP outperforms FC by 20% on average across all experiments.

• But how such a polytope is created?

Using **m** surrogate networks, with corresponding m feature spaces $\left\{\phi^{(i)}\right\}_{i=1}^{i=m}$

$$\begin{split} \underset{\{c^{(i)}\},\{x_{p}^{(j)}\}}{\text{minimize}} & \frac{1}{2m} \sum_{i=1}^{m} \frac{\left\| \phi^{(i)}(x_{t}) - \sum_{j=1}^{k} c_{j}^{(i)} \phi^{(i)}(x_{p}^{(j)}) \right\|^{2}}{\left\| \phi^{(i)}(x_{t}) \right\|^{2}} \\ \text{subject to} & \sum_{j=1}^{k} c_{j}^{(i)} = 1, c_{j}^{(i)} \ge 0, \forall i, j, \\ & \left\| x_{p}^{(j)} - x_{b}^{(j)} \right\|_{\infty} \le \epsilon, \forall j, \end{split}$$

• But how such a polytope is created?

Using **m** surrogate networks, with corresponding m feature spaces $\left\{\phi^{(i)}\right\}_{i=1}^{i=m}$

$$\begin{split} \underset{\{c^{(i)}\},\{x_{p}^{(j)}\}}{\text{minimize}} \; \frac{1}{2m} \sum_{i=1}^{m} \frac{\left\| \phi^{(i)}(x_{t}) - \sum_{j=1}^{k} c_{j}^{(i)} \phi^{(i)}(x_{p}^{(j)}) \right\|^{2}}{\left\| \phi^{(i)}(x_{t}) \right\|^{2}} \\ \text{subject to} \; \sum_{j=1}^{k} c_{j}^{(i)} = 1, c_{j}^{(i)} \ge 0, \forall i, j, \\ \left\| x_{p}^{(j)} - x_{b}^{(j)} \right\|_{\infty} \le \epsilon, \forall j, \end{split}$$

• But how such a polytope is created?

Using **m** surrogate networks, with corresponding **m** feature spaces $\left\{\phi^{(i)}\right\}_{i=1}^{i=m}$ $\underset{\left\{c^{(i)}\right\},\left\{x_{n}^{(j)}\right\}}{\text{minimize}} \frac{1}{2m} \sum_{i=1}^{m} \frac{\left\|\phi^{(i)}(x_{t}) - \sum_{j=1}^{k} c_{j}^{(i)}\phi^{(i)}(x_{p}^{(j)})\right\|^{2}}{\left\|\phi^{(i)}(x_{t})\right\|^{2}}$

subject to
$$\sum_{j=1}^{k} c_j^{(i)} = 1, c_j^{(i)} \ge 0, \forall i, j,$$
$$\left\| x_p^{(j)} - x_b^{(j)} \right\|_{\infty} \le \epsilon, \forall j,$$

Bullseye Polytope – BP

Using **m** surrogate networks, with corresponding m feature spaces $\left\{\phi^{(i)}\right\}_{i=1}^{i=m}$

$$\begin{array}{l} \underset{\{x_{p}^{(j)}\}}{\text{minimize}} \ \frac{1}{2m} \sum_{i=1}^{m} \frac{\left\| \phi^{(i)}(x_{t}) - \frac{1}{k} \sum_{j=1}^{k} \phi^{(i)}(x_{p}^{(j)}) \right\|^{2}}{\left\| \phi^{(i)}(x_{t}) \right\|^{2}} \\ \text{subject to} \ \left\| x_{p}^{(j)} - x_{b}^{(j)} \right\|_{\infty} \leq \epsilon \ , \forall j. \end{array}$$

What About End-to-end Transfer Learning?

 We enforce the convex hull heuristic at each layer of the neural network

Much More Scalable, With Improved Transferability

- Experiments Setup:
 - Using surrogate networks with 6 different architectures
 - Tested against two unseen architecture (black-box), and 6 known architectures, but with unseen parameters (different random seed is used)
 - #poisons=5, $\epsilon = 0.1$, #fine-tuning-set = 500.

Much More Scalable, With Improved Transferability

- Experiments Setup:
 - Using surrogate networks with 6 different architectures
 - Tested against two unseen architecture (black-box), and 6 known architectures, but with unseen parameters (different random seed is used)
 - #poisons=5, $\epsilon = 0.1$, #fine-tuning-set = 500.
- In linear transfer learning, BP outperforms CP by 10%, while being 7x faster!

Much More Scalable, With Improved Transferability

- Experiments Setup:
 - Using surrogate networks with 6 different architectures
 - Tested against two unseen architecture (black-box), and 6 known architectures, but with unseen parameters (different random seed is used)
 - #poisons=5, $\epsilon = 0.1$, #fine-tuning-set = 500.
- In linear transfer learning, BP outperforms CP by 10%, while being 7x faster!
- In end-to-end transfer learning, BP outperforms CP by 27%, while being 12x faster!

Why is BP better?

- Is it the "bullseye idea" contributing to its superior performance?
- Or its faster algorithm allows for better optimization?

Why is BP better?

BP with different fixed coefficients.

20

Independent Benchmark (Schwarzschild et al., 2020)

• Linear transfer learning:

	Linear Hundrer Learning											
				TinyImageNet								
Attack	White-box ResNet18	Gray-box ResNet18	ResNet34	Blac ResNet50	ck-box VGG11	MobileNetV2	White-box VGG16	Black-box ResNet34+MobileNetV2 2				
FC	22	6	4	4	7	7	49	2				
СР	33	7	5	4	8	7	14	1				
BP	85	10	8	6	9	7	100	10.5				
WiB	-	-	-	-	-	-	-	-				
CLBD	5	5	4	4	7	6	3	1				
HTBD	10	6	6	3	14	6	3	0.5				

Linear Transfer Learning

Independent Benchmark (Schwarzschild et al., 2020)

- Training from scratch:
 - Specifically taken into consideration by another attack, Witches' Brew (WiB) (Geiping et al., 2020)
 - Was published on arXiv (parallel to this work).

	Training From Scratch								
	CIFAR-10	TinyImageNet							
Attack	$rac{ extsf{VGG16}+ extsf{ResNet34}+ extsf{MobileNetV2}}{3}$	VGG16							
FC	1.33	4							
СР	0.67	0							
BP	2.33	44							
WiB	26	32							
CLBD	1	0							
HTBD	2.67	0							

Defenses (Peri et al. 2019)

- Neighborhood conformity tests to sanitize the dataset!
- We evaluated against the only two effective defenses:
 - I2-norm centroid
 - Deep K-NN

Deep K-NN

- For each sample in the training set:
 - Looks at its k nearest neighbors, if the sample's label is not the mode, it's flagged!

k	# Deleted BP	l Poisons CP	# Deletee BP	d Samples CP	Adv. Suc BP	cess Rate (%) CP	k	# Delete BP	d Poisons CP	# Deleted BP	l Samples CP	Adv. Suce BP	cess Rate (%) CP
0	-	-	-	-	42.5	37.25	0	-	-	-	-	57.75	51.25
1	3.18	4.28	36.46	37.02	20.50	6.75	1	4.30	7.56	38.77	41.22	49.25	14.00
2	2.42	3.86	21.91	23.07	24.75	8.00	2	2.71	6.38	22.75	25.77	51.75	21.25
3	3.81	4.66	27.86	27.87	11.75	1.50	3	4.92	8.16	30.36	31.88	38.75	11.00
4	3.48	4.60	25.83	26.69	14.75	2.50	4	3.94	7.76	26.74	29.72	46.75	12.50
6	4.22	4.85	25.39	25.91	8.25	1.25	6	4.82	8.51	26.57	29.44	40.00	7.25
8	4.77	4.94	25.69	25.80	1.25	0.00	8	5.68	9.03	27.24	29.87	31.25	3.25
10	4.97	4.95	26.36	26.33	0.00	0.25	10	6.53	9.31	28.30	30.54	26.50	2.25
12	4.98	4.96	26.58	26.54	0.00	0.00	12	7.42	9.44	29.19	30.82	17.75	1.25
14	4.98	4.96	26.21	26.21	0.00	0.00	14	8.17	9.54	29.42	30.54	15.25	0.25
16	4.98	4.96	26.95	26.92	0.00	0.00	16	8.86	9.59	30.63	31.20	8.00	0.00
18	4.98	4.96	26.36	26.37	0.00	0.00	18	9.50	9.61	30.60	30.63	3.00	0.00
22	4.98	4.96	26.62	26.59	0.00	0.00	22	9.91	9.61	31.18	30.85	0.25	0.00

(a) # Poisons = 5

(b) # Poisons = 10

Bullseye Polytope Attack - Summary

- Clean-label data poisoning against transfer learning
- Fixes an inherent flaw of Convex Polytope!
- An order of magnitude faster!
- Higher attack success rate!
- More resilient against defenses!

References

- J. Geiping, L. Fowl, W. R. Huang, W. Czaja, G. Taylor, M. Moeller, and T. Goldstein, "Witches' brew: Industrial scale data poisoning via gradient matching," *arXiv preprint arXiv:2009.02276*, 2020.
- A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and T. Goldstein, "Poison frogs! targeted clean-label poisoning attacks on neural networks," in *Advances in Neural Information Processing Systems*, 2018, pp. 6103–6113.
- Zhu, C., Huang, W.R., Li, H., Taylor, G., Studer, C. and Goldstein, T., 2019, May. Transferable cleanlabel poisoning attacks on deep neural nets. In International Conference on Machine Learning (pp. 7614-7623). PMLR. Vancouver
- Schwarzschild, Avi, Micah Goldblum, Arjun Gupta, John P. Dickerson, and Tom Goldstein. "Just How Toxic is Data Poisoning? A Benchmark for Backdoor and Data Poisoning Attacks." (2020).