
Bullseye Polytope:  
A Scalable Clean-Label Poisoning Attack with 

Improved Transferability 
Hojjat Aghakhani, Dongyu Meng, Yu-Xiang Wang,  

Christopher Kruegel, and Giovanni Vigna  
University of California, Santa Barbara 



Security Threats in Machine Learning

2



Security Threats in Machine Learning

2

Training:

Testing:

Training Data
Trained 

Classifier

Trained 
Classifier

Test Sample Prediction

Adversarial Examples/Evasion Attacks



Security Threats in Machine Learning

2

Training:

Testing:

Training Data
Trained 

Classifier

Trained 
Classifier

Test Sample Prediction

Dataset Poisoning
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• Targeted ! No effect on general performance! 
• Clean-label  
• Introduced first against transfer learning: 
• Feature Collision (Shafahi et al., 2018) 
• Convex Polytope (Zhu et al., 2019) 
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• Use a pre-trained network as the feature extractor to feed the 
features of the input to a linear classifier
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Goal?
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• Goal: The attacker wants sample t to be classified into class P after 
the fine-tuning phase. 
• How? By adding some poisoned data to the fine-tuning set. 



Feature Collision (Shafahi et al., 2018)
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• f: The feature extractor (known to the attacker and used by victim) 
• White-box! 

• g: The linear classifier (used by victim, not known to the attacker) 
• t: The attacker wants sample t to be classified into class P.

xClass P x’ Victim’s Training Set

• The ultimate linear classifier learns to associate f(x’) with the target 
class P.
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Linear classifier

• Black-box: different feature extractor, i.e., different feature space



Convex Polytope (Zhu et al., 2019)
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• Poison samples create a convex shape around the target, instead of 
all being close to the point!

Linear classifier



Convex Polytope – CP
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• Compared to FC, CP creates a bigger shape in the feature space 
• Thus, it increases the chance of transferability in black-box settings! 
• CP outperforms FC by 20% on average across all experiments.

Feature CollisionConvex Polytope  
with a bigger attack zone
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• But how such a polytope is created?
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What happens in practice!
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Using m surrogate networks,  

with corresponding m feature spaces {!(")}"=#
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Bullseye Polytope – BP
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What About End-to-end Transfer Learning?

• We enforce the convex hull heuristic at each layer of the neural 
network  

…

!_1 !_2 !_$



Much More Scalable, With Improved 
Transferability
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• Experiments Setup: 
• Using surrogate networks with 6 different architectures 
• Tested against two unseen architecture (black-box), and 6 known 

architectures, but with unseen parameters (different random seed is used) 
• #poisons=5, , #fine-tuning-set = 500. % = 0.1
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• Experiments Setup: 
• Using surrogate networks with 6 different architectures 
• Tested against two unseen architecture (black-box), and 6 known 

architectures, but with unseen parameters (different random seed is used) 
• #poisons=5, , #fine-tuning-set = 500. 

• In linear transfer learning, BP outperforms CP by 10%, while being 7x 
faster! 
• In end-to-end transfer learning, BP outperforms CP by 27%, while 

being 12x faster!

% = 0.1



Why is BP better?
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• Is it the “bullseye idea” contributing to its superior performance? 
• Or its faster algorithm allows for better optimization?
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BP with different fixed coefficients.



Independent Benchmark (Schwarzschild et al., 2020)
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• Linear transfer learning:



Independent Benchmark (Schwarzschild et al., 2020)
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• Training from scratch: 
• Specifically taken into consideration by another attack, Witches’ Brew (WiB) (Geiping et al., 2020) 
• Was published on arXiv (parallel to this work).  



Defenses (Peri et al. 2019)
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• Neighborhood conformity tests to sanitize the dataset! 
• We evaluated against the only two effective defenses:  
• l2-norm centroid 
• Deep K-NN 



Deep K-NN
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• For each sample in the training set: 
• Looks at its k nearest neighbors, if the sample’s label is not the mode, it’s 

flagged!



Bullseye Polytope Attack - Summary
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• Clean-label data poisoning against transfer learning 
• Fixes an inherent flaw of Convex Polytope! 
• An order of magnitude faster! 
• Higher attack success rate! 
• More resilient against defenses!
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