

SEPT. 2021

ANDRUSPEX: LEVERAGING GRAPH REPRESENTATION LEARNING TO PREDICT HARMFUL APP (PHA) INSTALLATIONS ON MOBILE DEVICES

YUN SHEN

GIANLUCA STRINGHINI (BOSTON UNIVERSITY)

Copyright © 2021 NortonLifeLock Inc. All rights reserved

Overview

- Motivation
- Technical Details
- Results
- Limitations

* Kotzias, Platon, Juan Caballero, and Leyla Bilge. "How did that get in my phone? unwanted app distribution on android devices IEEE S&P, 2021

Norton LifeLock

* Kotzias, Platon, Juan Caballero, and Leyla Bilge. "How did that get in my phone? unwanted app distribution on android devices IEEE S&P, 2021

NortonLifeLock

Very sparse data

Hard to predict

Challenge

Use random walk to model user's random installation behaviour

1. PHAs with larger installations (i.e., popular PHAs) are

NortonLifeLock

Copyright © 2021 NortonLifeLock Inc. All rights reserved.

Random walk length

* Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. 2011. HOGWILDI: A Lock-free Approach to Parallelizing Stochastic Gradient Descent. NIPS, 2011

Edge representation

Observed PHA installations

Dataset

							1					
		Training					Test					
Dataset	Period	Ratio	# Events	# Dev	# Apps	Period	Ratio	# Events	# Devs	# Apps		
DS_1	00:00 - 18:00 (Mar. 1)	0.73	844,531	644,823	63,650	18:00 - 24:00 (Mar. 1)	0.27	317,474	189,327	26,083		
DS_2	March 1 - 6	0.86	2,050,865	1,272,505	99,464	March 7	0.14	334,383	237,594	32,961		
DS_3	March 1 - 24	0.84	3,194,838	1,864,021	131,903	March 25 - 31	0.16	599,458	404,417	47,099		
One day 31 days of PHA detection data in March 2019 One week												

Results

One day						One week					One month				
	DS_1				DS_2					DS_3					
Method	TPR @ 0.0001	TPR @ 0.001	TPR @ 0.005	ROC AUC	АР	TPR @ 0.0001	TPR @ 0.001	TPR @ 0.005	ROC AUC	АР	TPR @ 0.0001	TPR @ 0.001	TPR @ 0.005	ROC AUC	AP
Pref. Attach.	0.072	0.268	0.512	0.977	0.974	0.099	0.310	0.593	0.980	0.978	0.094	0.338	0.584	0.981	0.980
1st-order prox.	0.782	0.898	0.936	0.983	0.986	0.837	0.927	0.950	0.982	0.986	0.844	0.927	0.965	0.990	0.990
2nd-order prox.	0.863	0.922	0.959	0.992	0.993	0.867	0.918	0.953	0.993	0.993	0.868	0.941	0.966	0.993	0.994
high-order prox.	0.873	0.969	0.985	0.997	0.997	0.893	0.957	0.977	0.996	0.996	0.879	0.951	0.978	0.995	0.996
ANDRUSPEX	0.991	0.996	0.998	0.999	0.999	0.994	0.997	0.998	0.999	0.999	0.992	0.996	0.997	0.999	0.999

Andruspex

higher false positive rate leads to worse user experience hence potentially higher customer churn rate

Resilience to data latency

Dataset	Training ratio	Data latency ratio	Test ratio	TPR @ 0.0001	TPR @ 0.001	TPR @ 0.005	ROC AUC	AP
DS_2	0.86	0.00	0.14	0.994	0.997	0.998	0.9994	0.9995
	0.79	0.07	0.14	0.994	0.997	0.998	0.9994	0.9995
	0.70	0.16	0.14	0.993	0.997	0.998	0.9994	0.9995
	0.61	0.25	0.14	0.991	0.994	0.997	0.996	0.995
DS_3	0.839	0.00	0.161	0.992	0.995	0.997	0.9994	0.9995
	0.769	0.07	0.161	0.992	0.995	0.997	0.9992	0.9994
	0.679	0.16	0.161	0.991	0.994	0.995	0.9992	0.994
	0.589	0.25	0.161	0.990	0.992	0.994	0.996	0.997

Limitations

- Node attributes not involved (i.e., structure-based)
- <u>Transductive</u> setting
 - Global installation graph must be rebuilt
 - Frequent retraining required
- Predict known PHAs
- Effective notification system

THANK YOU

YUN SHEN GIANLUCA STRINGHINI

Copyright © 2021 NortonLifeLock Inc. All rights reserved.