

# SoK: Context Sensing for Access Control in the Adversarial Home IoT

Weijia He (hewj@uchicago.edu), Valerie Zhao, Olivia Morkved, Sabeeka Siddiqui,

Earlence Fernandes, Josiah Hester, Blase Ur





Northwestern University

#### Access Control in Smart Homes



#### Users Desire More Context-Aware Policies

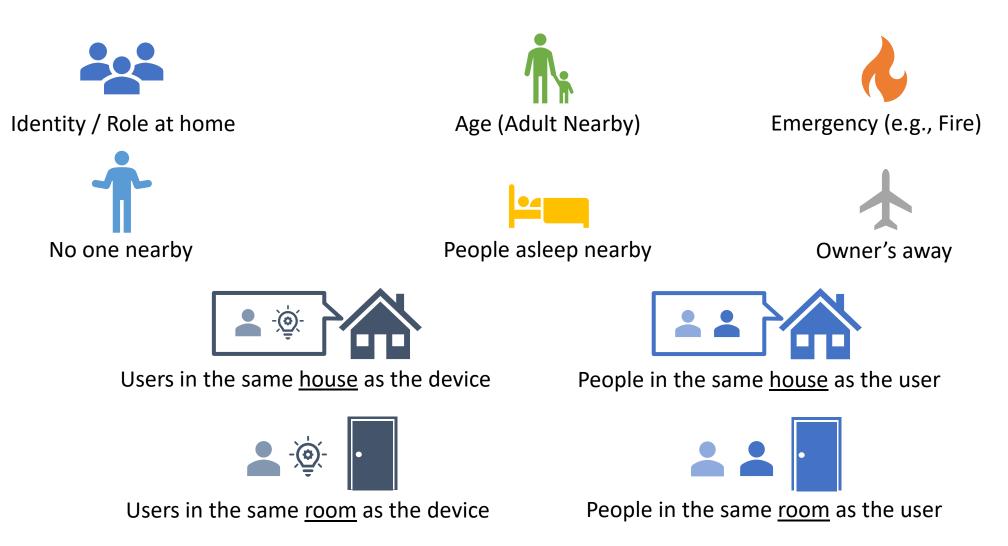
[They can have access] If they are within a set range of the device.



**Context:** User proximity to device

#### Users Desire More Context-Aware Policies

A child can only have access to the device when an adult is around.




**Contexts:** User age; people in the same room

#### Users Desire More Context-Aware Policies

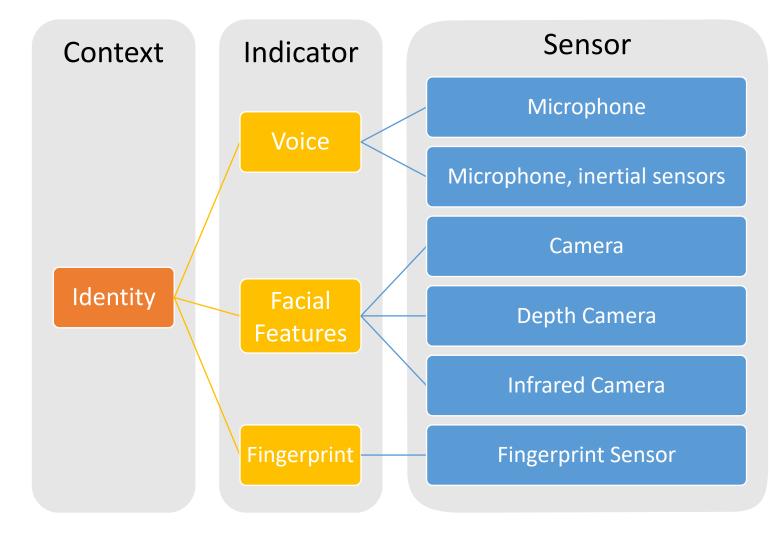


# **Desired** Contexts

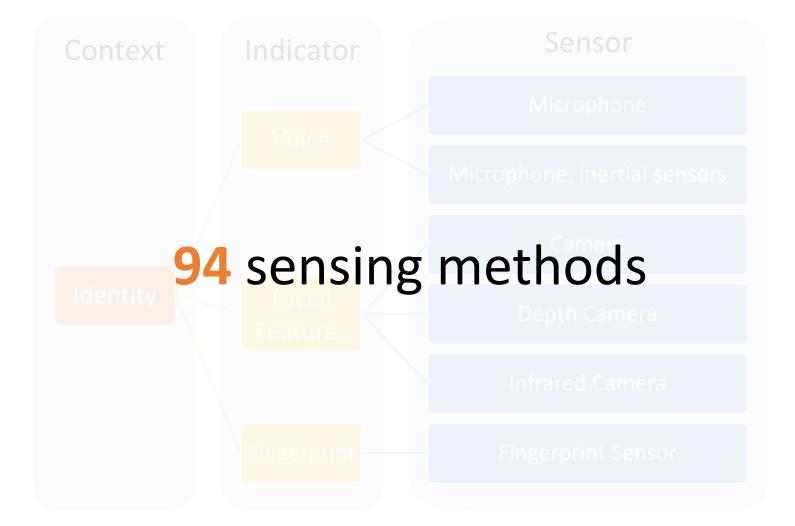


#### Literature Review




Sensing: SenSys, MobiSys, MobiCom

Ubiquitous Computing: UbiComp/IMWUT


HCI: CHI, UIST

**Commercial Products** 

## Context Sensing for Access Control



## **Context Sensing for Access Control**



## Decision Framework

|         |           |       | Security                | Privacy             | Usability                |
|---------|-----------|-------|-------------------------|---------------------|--------------------------|
|         |           |       | Replay Attacks          | Required Data       | Wide Availability        |
|         |           |       | Spoofing                | Overprivileged Data | Reusability              |
| Context | LS        | (0)   | Sensor Hardware Attacks | Data Storage        | Initial Setup            |
|         | ndicators | ISOr  | Adversarial Examples    | Retention Time      | Registration             |
|         | ndia      | Senso | Physical DoS            |                     | Retraining / Maintenance |
|         |           |       |                         |                     | Device Dependency        |
|         |           |       |                         |                     | Limitations              |
|         |           |       |                         |                     | Removal                  |

## A Threat Model



#### **Remote Attackers**

#### A New Threat Model - Attackers



#### Local Attackers

Non-Technical / Technical

Access to devices / Proximate to devices

Familiar wit the victim

## A New Threat Model – Goals

A child can only have access to the device when an adult is around.



Impersonation

#### A New Threat Model – Goals



Invisibility

# Security

**Replay Attacks** Spoofing . . . t at a Impersonation Invisibility **Physical DoS** 

Sensor Hardware Attacks Adversarial Examples

# Privacy

Required DataData that must be collected for functionality.Overprivileged DataData that is collected but not necessary for functionality.Data StorageWhere the data needs to be stored for functioning.Retention TimeHow long the data must be retained for functioning.

# Privacy

#### **Required Data**

**Facial features** 

#### **Overprivileged Data**

Surroundings, bystanders, etc.

#### **Data Storage**

Cloud (video/image processing can be expensive in

both storage and computation)

#### **Retention Time**

The model data must be stored for identification.



Facial Identification

# Usability

Wide Availability

Reusability

The sensor can be used for multiple sensing methods (e.g. camera)

**Initial Setup** 

Registration

Retraining / Maintenance

**Device Dependency** 

#### Limitations

The sensing method doesn't work

for some groups of people.

Removal

## Decision Framework

|         |           |       | Security                | Privacy             | Usability                |
|---------|-----------|-------|-------------------------|---------------------|--------------------------|
|         |           |       | Replay Attacks          | Required Data       | Wide Availability        |
|         |           |       | Spoofing                | Overprivileged Data | Reusability              |
| Context | LS        | (0)   | Sensor Hardware Attacks | Data Storage        | Initial Setup            |
|         | ndicators | ISOr  | Adversarial Examples    | Retention Time      | Registration             |
|         | ndia      | Senso | Physical DoS            |                     | Retraining / Maintenance |
|         |           |       |                         |                     | Device Dependency        |
|         |           |       |                         |                     | Limitations              |
|         |           |       |                         |                     | Removal                  |

# Evaluation

|                 |                    |                                 |                 | Security |                |                      |              |                         |          | Usability     |                     |              |                |                   |                          |              |            |             |                   |             |
|-----------------|--------------------|---------------------------------|-----------------|----------|----------------|----------------------|--------------|-------------------------|----------|---------------|---------------------|--------------|----------------|-------------------|--------------------------|--------------|------------|-------------|-------------------|-------------|
| Contexts        | Indicators         | Sensor                          | Example         | Error    | Replay Attacks | Adversarial Examples | Physical DoS | Sensor Hardware Attacks | Spoofing | Required Data | Overprivileged Data | Data Storage | Retention Time | Wide Availability | Initial Set-up / Removal | Registration | Retraining | Reusability | Device Dependency | Limitations |
|                 | Voice              | Microphone, inertial sensors    | [37]            | 0.1%     |                |                      |              |                         | 1        | A,Bm          | 4                   | *            | 0              | 4                 | 1                        | 1            | 1          | 4           | <b>9</b> 1        | 4           |
|                 |                    | Microphone-only                 | [75]            | 5-6%     |                |                      |              | _                       |          | A, C, M       | -                   |              | ٠              | -                 | 1                        |              | 1          | 1           | -                 | -           |
|                 |                    |                                 | [ <b>46</b> ]†  | _        | !              |                      | 1            | 1                       | 1        | A             | - 21                | -            | 0              | 1                 | 1                        |              |            |             | - <b>1</b>        | - 21        |
|                 | Breathing patterns | Microphone                      | [19]            | 0.4-2%   | ?              |                      |              |                         |          | A             | -                   |              | ٠              |                   | 1                        |              | -          | 1           | 1                 | -           |
|                 | Facial features    | Camera                          | [ <b>102</b> ]† | Variable | - 1            |                      | 1            |                         |          | V V           | -                   |              | ٠              | 1                 | 1                        |              | 1          | 1           | 1                 | 1           |
|                 |                    | Depth camera                    | [ <b>8</b> ]†   | <0.001%  |                |                      |              |                         |          | P'            | -                   | *            | •              | 1                 | 1                        |              |            |             |                   | -           |
|                 |                    | Infrared (IR) camera            | [ <b>93</b> ]†  | <0.001%  |                |                      | 1            |                         |          | P'            | -                   |              | ٠              |                   | 1                        | -            | -          |             | 1                 | 1           |
|                 |                    | Camera, inertial, light sensors | [20]            | 4.7%     |                |                      | 1            |                         |          | V, C, E       | -                   |              | ٠              |                   |                          | 1            | 1          | -           | 1                 | 1           |
|                 | Eye features       | Iris scanner                    | [119]†          | _        | 1              |                      | 1            |                         |          | P'            | -                   |              | •              | -                 | _                        |              | 1          | -           | 1                 | -           |
| User's identity | Fingerprint        | Fingerprint sensor              | [ <b>9</b> ]†   | 0.002%   | ?              |                      |              |                         |          | F             |                     | *            | ٠              | -                 | 1                        |              | 1          | -           |                   | -           |
|                 |                    | Microphone                      | [116]           | 2-16%    |                |                      | 1            | 1                       |          | A             | -                   |              | ٠              |                   |                          |              |            |             |                   | -           |
|                 | Body shape         | Radar (RF) sensor               | [68]            | 10-21%   |                |                      | 1            |                         |          | В             | -                   |              | •              | -                 | 1                        |              | 1          |             |                   | -           |
|                 | Bioimpedance       | Bioimpedance sensor             | [26]            | 2%       |                |                      |              |                         |          | El            | 1                   |              | ٠              | -                 | 1                        |              | 1          | <b>9</b> 1  | -                 |             |
|                 | Distingeduice      | Diompedance sensor              | [122]           | 11-21%   |                |                      |              |                         |          | El            |                     | <b>^</b>     | ٠              | -                 |                          | -            | -          | -           | 1                 | -           |
|                 | Cardiac motion     | Radar sensor                    | [83]            | 1.39%    |                |                      | 1            | _                       |          | Bm            |                     |              | ٠              | -                 | 1                        |              | 1          | -           | 1                 | -           |
|                 |                    | Camera                          | [85]            | 1.4-4.5% |                |                      |              | 1                       |          | Bm            | -                   | 1            | •              | 1                 | 1                        |              | 1          | 1           | 1                 |             |
|                 | Hand gestures      | IMU sensors                     | [115]           | 10-36.2% |                |                      | 1            | 1                       |          | M             | 1                   |              | ٠              | -                 | 1                        | -            | 1          | -           | 1                 | 16          |

# Security Implications



68.1% of sensing methods are vulnerable towards physical DoS attacks.

Redundant sensors of different types

Carefully constructed default policies



Naïve audio- and video-based sensing methods can be vulnerable to all attacks.

Defenses should consider both impersonation and invisibility.

# Privacy Implications



79.8% of sensing methods do not require computationally heavy processing.

Federated learning or edge computing can also mitigate the privacy concerns.



Audio- and video-based sensing methods are invasive, but also indispensable.

Contexts like "age" cannot be detected otherwise.

Mitigations (e.g., blurring images) may weaken security.

#### Another Use Case

As a smart home designer...

Scenario: A child can only have access to smart oven when an adult is around.

Involved Contexts: Age, People present in the same room as the user

**Priority:** Security

**Solution:** Use a microphone with liveness detection for age estimation, and a RF sensor for people detection. Extra default policy is required.

# **On-going Efforts**

The evaluation table is available on GitHub and accepts Issues (for changes) and Pull Requests (for new sensors).



https://github.com/UChicagoSUPERgroup/eurosp21



New threat model that considers local attackers



Decision framework for security, privacy, and usability



Trade-offs in deploying sensors for access control

SoK: Context Sensing for Access Control in the Adversarial Home IoT

<u>Weijia He</u>, Valerie Zhao, Olivia Morkved, Sabeeka Siddiqui, Earlence Fernandes, Josiah Hester, Blase Ur





Northwestern University