

# WE BUILT THIS CIRCUIT: EXPLORING THREAT VECTORS IN CIRCUIT ESTABLISHMENT IN TOR

6th IEEE European Symposium on Security and Privacy (Euro S&P 21), September 9, 2021

Theodor Schnitzler Ruhr-Universität Bochum theodor.schnitzler@rub.de Christina Pöpper New York University Abu Dhabi

Markus Dürmuth Ruhr-Universität Bochum Katharina Kohls Radboud University

## **ANONYMITY IN TOR**



#### EXPLORING THREAT VECTORS IN CIRCUIT ESTABLISHMENT IN TOR

2 IEEE Euro S&P 2021 – Online Event

Theodor Schnitzler, Christina Pöpper, Markus Dürmuth, Katharina Kohls



جامعة نيويورك أبوظبي NYU ABU DHABI **RUHR UNIVERSITÄT** BOCHUM

RUB

### **TRAFFIC ANALYSIS**





RUB

[1] Nasr et al.: DeepCorr: Strong Flow Correlation Attacks on Tor Using Deep Learning (ACM CCS 2018)

EXPLORING THREAT VECTORS IN CIRCUIT ESTABLISHMENT IN TOR

3 IEEE Euro S&P 2021 – Online Event

Theodor Schnitzler, Christina Pöpper, Markus Dürmuth, Katharina Kohls

Radboud Universiteit Nijmegen جامعـة نيويورك أبوظبي NYU ABU DHABI **RUHR UNIVERSITÄT** BOCHUM

## **REQUIREMENTS FOR TRAFFIC ANALYSIS**

### **Monitoring Effort**

Capture and evaluate large amounts of Tor traffic

#### **Access to Traffic**

# capture traffic of 7,000 relays in different geographical locations



300 Gbit/s consumed bandwidth

EXPLORING THREAT VECTORS IN CIRCUIT ESTABLISHMENT IN TOR

4 IEEE Euro S&P 2021 – Online Event

600 Gbit/s

advertised bandwidth

Theodor Schnitzler, Christina Pöpper, Markus Dürmuth, Katharina Kohls



جامعـة نيويورك ابوظبي NYU ABU DHABI

RUHR UNIVERSITÄT BOCHUM

RUB

# **REQUIREMENTS FOR TRAFFIC ANALYSIS Assumptions** Adversary has access to exit traffic of a set of relays Adversary has access to client's entry traffic Targeted scenario **Research Questions** Can an adversary determine if they have access to Tor exit traffic?

**EXPLORING THREAT VECTORS IN CIRCUIT ESTABLISHMENT IN TOR** 

IEEE Euro S&P 2021 – Online Event

5

Theodor Schnitzler, Christina Pöpper, Markus Dürmuth, Katharina Kohls



جامعة نيويورك ابوظبي Y NYU ABU DHABI

RUHR RUB UNIVERSITÄT BOCHUM

## **EXIT PREDICTION**

#### **Goal: Exit Candidate Ranking**

Determine success of traffic analysis from positions of relays that can be accessed

### **Relay Selection**

- More bandwidth → Higher probability
- Few restrictions to avoid collusions



### **Limited Utility**

- Same result for each prediction
- No specific information for particular circuits

EXPLORING THREAT VECTORS IN CIRCUIT ESTABLISHMENT IN TOR

6 IEEE Euro S&P 2021 – Online Event

Theodor Schnitzler, Christina Pöpper, Markus Dürmuth, Katharina Kohls



جامعـة نيويورك أبوظبي NYU ABU DHABI

RUHR UNIVERSITÄT BOCHUM

# **EXIT PREDICTION FOR INDIVIDUAL CIRCUITS**



**nTor Handshake Timings** 

 $\Delta_t(\mathbf{m},\mathbf{x}) = t(hs_3) - t(hs_2)$ 

#### Experiment

- 257k handshake timings
- Transmission models for groups of relays (per country)
- Find most likely model for new observations
- Probability for each exit candidate → ranking

#### **RESEARCH ETHICS**

MEASUREMENTS CONDUCTED AT OUR CLIENTS, **TO NOT RECORD TRAFFIC OF OTHER USERS** 

#### **Evaluation**

- Adversary with access to all relays in a country
- Median exit rank [%] in prediction

| Ranking | DE |    |    |    |    |
|---------|----|----|----|----|----|
| СОМВІ   | 4  | 12 | 7  | 9  | 8  |
| TIME    | 10 | 25 | 13 | 15 | 17 |
| BW      | 11 | 21 | 16 | 23 | 22 |
| RAND    | 49 | 50 | 50 | 51 | 50 |

RUHR UNIVERSITÄT

BOCHUM

جامعة نيويورك أبوظي

Y NYU ABU DHABI

#### EXPLORING THREAT VECTORS IN CIRCUIT ESTABLISHMENT IN TOR

7 IEEE Euro S&P 2021 – Online Event

Theodor Schnitzler, Christina Pöpper, Markus Dürmuth, Katharina Kohls



# **IN THE PAPER**

### **Further Evaluation**

Success rates ⇔ monitoring effort

### Actively Interfering with Circuit Establishment

- Force client to switch to another guard
- Trigger DoS Mitigation
- Benefits: Stealthy Attack

### **Mitigation Options Affect Performance**

- Delays for Timing Obfuscation
- Randomized Relay Selection

EXPLORING THREAT VECTORS IN CIRCUIT ESTABLISHMENT IN TOR

8 IEEE Euro S&P 2021 – Online Event

Theodor Schnitzler, Christina Pöpper, Markus Dürmuth, Katharina Kohls



Radboud

Universiteit

Niimeger

جامعـة نيويورك أبوظـي NYU ABU DHABI

RUHR

BOCHUM

UNIVERSITÄT

RUH





### WE BUILT THIS CIRCUIT: EXPLORING THREAT VECTORS IN CIRCUIT ESTABLISHMENT IN TOR

6th IEEE European Symposium on Security and Privacy Euro S&P ´21, September 9, 2021



Theodor Schnitzler Ruhr-Universität Bochum theodor.schnitzler@rub.de @the0retisch



Illustrations: Katharina Kohls

### Key Takeaways

- Access to traffic is a critical requirement for traffic analysis
- Information leak in Tor circuit establishment can improve the position of the adversary
- Attacks using *defensive* features are hard to mitigate