
Attacks on Industrial Control Logic
and Formal Verification-Based

Defenses

Ruimin Sun, Alejandro Mera, Long Lu, David Choffnes
Northeastern University
r.sun@notheastern.edu

mailto:r.sun@notheastern.edu

2010

Stuxnet disrupts
Iranian nuclear
program

2013

Australia’s
largest
satellite
company
New York dam
floodgates
compromised

2014

Hospital drug
infusion
pumps hacked
Michigan
traffic light
hacked

2015

German steel mill
furnace destroyed
Car transmission
and brakes
controlled
Ukraine power grid
knocked offline

2019

Global Aluminum
producer
shutdown by
ransomware

2017

Merck pharma
global production
shutdown by
ransomware ($1B
loss)
Maersk Shipping
global shutdown
by ransomware
($250M loss)

2018

Trisis/Triton:
Malware designed
to compromise
safety

2021

Motivation

Figure 1: The reported common weaknesses and the affected industrial sectors.
The notation denotes the number of CVEs.

Motivation

bytecode/
binary

Engineering Station sensor input

output to
physical processes

1
2

3

Background of PLC

Attacks and Defenses

§ Control Logic Modification
§ attacks that can change the behavior of PLC control logic.

§ program payload/code modification
§ program input manipulation.

§ Formal Verification
§ unique and practical to the PLC industry.
§ PLCs have limited memory and are less tolerant to false positives

§ the controlled physical processes are safety-critical.
§ used in the industry

§ Existing research tend to be ad-hoc

A Motivating Example

A simplified traffic light program
written in Structure Text.

§ controls the light
§ (e.g. green, yellow, red)
§ directions

§ north-south (NS)
§ east-west (EW)

if emergency vehicles are approaching
whether pedestrians press the
button to cross the intersection

the status of lights at the NS and the EW
directions. By default, the NS direction is green,
and the EW direction is red.

the logic of changing
light status based on

the sensor inputs.

A Motivating Example

§ Normally
when the NS light is red, and an emergency
vehicle is sensed in the NS direction, the sensor
will be ON until the NS light is switched to green.

§ Attacks
1. switch the emergency sensor ON (e.g.

SensorNS := TRUE) when the NS light is red
and the EW light is green

2. switch it OFF (e.g. SensorNS := FALSE) when
the NS light is red and the EW light is yellow

Green lights ON simultaneously for NS, EW

A Motivating Example

Specifies the property to verify
e.g. the green lights of NS and EW
can never be ON simultaneously

§ Formal Verification
model the program using SMV
NuSMV
§ verify the property
§ obtain the counterexamples

A Motivating Example

§ Formal Verification
NuSMV
§ verify the property
§ obtain the counterexamples

Systematization Methodology

§ Threat model
§ assumptions on source code, bytecode/binary, runtime.

§ Security goal
§ Confidentiality, Integrity, and Availability

§ Weakness
§ the flaws triggered to perform the attacks.

§ Detection to evade
§ the detection that fails to capture the attacks

§ Challenges in defending the attacks
§ the advance of attacks, and the insufficiency of defenses.

§ Defense focus
§ the specific research topic in formal verification
§ e.g. behavior modeling, state reduction, specification generation, and verification.

Attack papers

Formal Verification papers (a truncated list)

. . .

Challenges

Due to the advances of attacks

§ Expanded attack input surfaces.
§ Predefined hierarchical memory layout.
§ Confidentiality and integrity of the program I/O.
§ Stealthy attack detection.
§ Implicit or incomplete specifications.

Challenges

Behavior Modeling

§ Lack of plant modeling.
§ Lack of modeling evaluation.
§ State explosion.

State Reduction

§ Lack of “ground truth” for continuous behavior.
§ Implicitness and stealthy attacks from reduction

Specification Generation

§ Lack of specification-refined programming.
§ Ad-hoc and unverified specification translations.
§ automated domain-specific property generation.
§ Specification with evolved system design.

Verification

§ Lack of benchmarks for formal verification
§ Open-source automated verification frameworks.
§ High demand for runtime verification.

Due to the insufficiency of defenses

Future Research Recommendations

Behavior Modeling

§ Plant Modeling
§ formalize more accurate and complete program behaviors.

§ granularity and level of abstraction for the plant models and the properties
§ consider the avoidance of state explosion

§ conditions of the plant that can trigger property violations.

§ Input manipulation verification
§ input manipulation is widely adopted by the attackers.
§ Orpheus prototype in a PLC setting

§ event consistency checking between the program and the plant model
§ instrumentation on the input and output variables

Future Research Recommendations

State Reduction

§ the relationship between the “unrelated” states and the original program.
§ “unrelated” states are trimmed to avoid state explosion problems.
§ security validation of “unrelated” code

§ unnoticeable unsafe behaviors?
§ e.g. a stealthy logger to leak program critical information.

§ automatic program cleaning for the stealthy code.

Future Research Recommendations

Specification Generation

§ Domain-specific property definition.
§ consider domain-specific properties as a hybrid program consisted of continuous plant

models as well as discrete control algorithms.
§ aim at security verification
§ support arithmetic operations, multitask programs, in various domains.

§ Incremental specification generation.
§ aim at the fast-evolving system design
§ a full chain of behaviors, and update in a dynamic spectrum.
§ behaviors from new interactions should be compatible with existing properties.

Future Research Recommendations

Verification

§ Real-time attack detection.
§ Depend on the engineering station, which have been exposed to various vulnerabilities
§ Consider a dedicated security monitor, e.g. TSV
§ Meet the scan cycle requirement

§ Open-source tools and benchmarks.
§ have led to adhoc studies without evaluations on models and verification techniques.
§ vendor-independent, industrial complexities, and a set of security metrics

§ Multitasks Verification.
§ use one task to spy or spread malicious code to the other co-located tasks,

§ E.g. PLCInject, PLC-Blaster
§ verify task intervals and priorities at various granularities.

Questions

