==
(Y L=
& TINNINE

Z 7 Northeastern University

Attacks on Industrial Control Logic
and Formal Verification-Based
Defenses

Ruimin Sun, Alejandro Mera, Long Lu, David Choffnes

Northeastern University
r.sun@notheastern.edu

mailto:r.sun@notheastern.edu

Motivation

2010

2013

Australia’s
largest
satellite
company

New York dam'mll Ukraine power grid

fl
oodgates knocked offline

compromised
2014 2015

German steel mill
furnace destroyed lf)

/

,.\gl Car transmission

- and brakes a
controlled

safety

%

Trisis/Triton:
Malware designed
to compromise

2017 2018 2019 2021

e e e e . e e e s " —_

Stuxnet disrupts
Iranian nuclear
program

%

Hospital drug
infusion
pumps hacked

Michigan

traffic light
hacked

Merck pharma
global production
shutdown by
ransomware (S1B
loss)

Maersk Shipping
global shutdown
by ransomwarej
(S250M loss)

Global Aluminum
producer
shutdown by
ransomware

Lee

Motivation

Unrestricted Upload Dangerous Type File CWE-434 3 3 1 1 4 1 4 2 2 2
Uncontrolled Resource Consumption CWE-400 = 8 3 4 1 1 2 1 1
Improper AuthenticatonCWE-287 4 S5 3 2 2 2 2 1 1 2
Hard-coded Credentials CWE-798 6 4 3 3 3 3 &5 1 1 1
Cross-site ScriptingCWE-79 ' 8 5 4 3 3 3 3 1 1 1
Out-of-bounds Write CWE-787 6 ¢ 6 3 4 3 3
Improper Access Control CWE-284 5 ¢ [6 1 5 3 2
Out-of-bounds Read CWE-125 6 &8 /7 5 5 4 4
Stack-based Buffer Overflow CWE-121 4 3 4 3
Improper Input Validation CWE-20 2l 5 3
N
&\QQ ég 6(06 *\\)KQ . ‘\;\\@@ \0(0 ,‘\\'O(\ O@&Q R ,\‘\\Q% \O®
P & LS & LS ®
@o < AN &% S ot %
S P9 AN O R K4S
N @ WV 0 N
N4 & & O <& & S
> S 80 ¥ QPN
& & Sk 6@ & L
S 7«0 P P (s\\O&
N

Figure 1: The reported common weaknesses and the affected industrial sectors.
The notation denotes the number of CVEs.

15

10

Background of PLC

Engineering Station

®

PLC

</>

bytecode/
@ binary

sensor input

Of

O

Gy

|
e

O
output to

0O

physical processes

Attacks and Defenses

= Control Logic Modification
= attacks that can change the behavior of PLC control logic.
= program payload/code modification

= program input manipulation.

" Formal Verification

= unique and practical to the PLC industry.

= PLCs have limited memory and are less tolerant to false positives
= the controlled physical processes are safety-critical.

= used in the industry

= Existing research tend to be ad-hoc

A Motivating Example

1 TYPE Light : (Green, Yellow, Red); END_TYPE;

2 PROGRAM TrafficLight A simplified traffic light program
3 VAR_INPUT . .
4 SemsorNS : BOOL; SensorEW : BooL; <——— if emergency vehicles are approaching ~ Writtén in Structure Text.
2 Lo EPORNS ¢ BOOL7 ButtonRN @ BOOL/ «——— whether pedestrians press the
7 - button to cross the intersection = controls the light
8 VAR_OUTPUT .
9 LightNS : Light := Green; the status of lights at the NS and the EW " (e.g. green, yellow, red)
10 LightEW : Light := Red; directions. By default, the NS direction is green, » directions
11 END_VAR and the EW direction is red.
12 = north-south (NS)
13 IF LightNS = RED AND LightEW = RED AND NOT (ButtonNS) — m egst-west (EW)
AND NOT (SensorEW) THEN
14 (* turn green when light is red, button is reset,
and no emergency detected x)
15 LightNS := Green;
16 ELSIF LightNS = GREEN AND LightEW = RED AND SensorEW
THEN
17 (» light must change when emergency approaches in the |ogic of Changing
_ EW direction x) [light status based on
18 LightNS := Yellow; the sensor inputs.
19 ELSIF LightNS = GREEN THEN
20 LightNS := Green;
21 ELSE THEN
22 LightNS := Red;
23 END_IF;
24 B
25 (» The EW light status changes in a similar way x)
26 (*» Omitted =)

27 END_PROGRAM

A Motivating Example

1 TYPE Light : (Green, Yellow, Red); END_TYPE;
2 PROGRAM TrafficLight

3 VAR_INPUT

4 SensorNS : BOOL; SensorEW : BOOL;

5 ButtonNS : BOOL; ButtonEW : BOOL;

6 END_VAR

7

8 VAR_OUTPUT

9 LightNS : Light := Green;

10 LightEW : Light := Red;

11 END_VAR
12

13 IF LightNS = RED AND LightEW = RED AND NOT (ButtonNS)

AND NOT (SensorEW) THEN

14 (* turn green when light is red, button is reset,
and no emergency detected x)

15 LightNS := Green;

16 ELSIF LightNS = GREEN AND LightEW = RED AND SensorEW

THEN

17 (* light must change when emergency approaches in
EW direction =x)

18 LightNS := Yellow;

19 ELSIF LightNS = GREEN THEN

20 LightNS := Green;

21 ELSE THEN

22 LightNS := Red;

23 END_IF;

24

25 (» The EW light status changes in a similar way x)

26 (* Omitted =x)

27 END_PROGRAM

= Normally

when the NS light is red, and an emergency
vehicle is sensed in the NS direction, the sensor
will be ON until the NS light is switched to green.

= Attacks

1. switch the emergency sensor ON (e.g.
SensorNS := TRUE) when the NS light is red
and the EW light is green

2. switch it OFF (e.g. SensorNS := FALSE) when
the NS light is red and the EW light is yellow

Green lights ON simultaneously for NS, EW

A Motivating Example

MODULE main o o .
IVAR = Formal Verification
button_NS: boolean; .
button_EW: boolean; model the program using SMV
sensor_NS: boolean;

sensor_EW: boolean; NUSMV

light_NS: {RED, YELLOW, GREEN}; = verify the property

light EW: {RED, YELLOW, GREEN}; obtain the counterexamples

1

2

3

4

5

6

7 VAR
8

9
10 ASSIGN
11
12
13
14
15

init (light_NS) := GREEN;
init (light_EW) := RED;

next (light_NS) := case
light_NS = RED & light_EW = RED & button_NS =
FALSE & sensor_EW = FALSE: GREEN;

16 light_NS = GREEN & light_EW = RED & sensor_EW
= TRUE: YELLOW;

17 light_NS = GREEN: GREEN;

18 TRUE: {RED};

19 esac;

20 . .

21 next (Light_EW) := case Specifies the property to verify

22 light_EW = RED & light_NS = RED & button_EW = e.g. the green lights of NS and EW
FALSE & sensor_NS= FALSE: GREEN; .

23 light_EW = GREEN & light_NS = RED & sensor_NS can never be ON SImUItaneOUSIV
= TRUE: YELLOW;

24 light_EW = GREEN: GREEN;

25 TRUE: {RED};

26 esac;

27

28 SPEC AG ! (light_NS = GREEN & light_EW = GREEN)

A Motivating Example

1 MODULE main o o .
2> TuaR = Formal Verification
3 button_NS: boolean;
4 button_EW: boolean; NuSMV
5 sensor_NS: boolean; .
6 sensor_EW: boolean; " Verlfy the property
7 VAR - ;
. |ight NS: (RED, YELLOW, GREEN); obtain the counterexamples
9 light_EW: {RED, YELLOW, GREEN};
10 ASSIGN -> State: 1.1 <-
11 init (1ight_NS) := GREEN; light_NS = GREEN
12 init (light_EW) = RED; . _
13 light_EW = RED
14 next (light_NS) := case —> Input: 1.2 <-
15 light_NS = RED & light_EW = RED & button_NS = button NS = FALSE
FALSE & sensor_EW = FALSE: GREEN; button EW = FALSE
16 light_NS = GREEN & light_EW = RED & sensor_EW -
= TRUE: YELLOW; sensor_NS = FALSE
17 light_NS = GREEN: GREEN; sensor_EW = TRUE
18 TRUE: {RED}; -> State: 1.2 <-
;3 esacs light_NS = YELLOW
21 next (light_EW) := case -> Input: 1.3 <-
22 light_EW = RED & light_NS = RED & button_EW = sensor EW = FALSE
FALSE & sensor_NS= FALSE: GREEN; -
23 light_EW = GREEN & light_NS = RED & sensor_NS —> State: 1.3 <-
= TRUE: YELLOW; light_NS = RED
24 light_EW = GREEN: GREEN; -> Input: 1.4 <-
gg esazz:UE. {RED}; -> State: 1.4 <-

27 light_NS = GREEN
28 SPEC AG ! (light_NS = GREEN & light_EW = GREEN) light_EW = GREEN

Systematization Methodology

» Threat model

= assumptions on source code, bytecode/binary, runtime.

= Security goal
= Confidentiality, Integrity, and Availability

= Weakness
= the flaws triggered to perform the attacks.

= Detection to evade
= the detection that fails to capture the attacks

® Challenges in defending the attacks
= the advance of attacks, and the insufficiency of defenses.

» Defense focus

= the specific research topic in formal verification
= e.g. behavior modeling, state reduction, specification generation, and verification.

Attack papers

TABLE 1: The studies investigating control logic modification attacks.

Threat Paper Weakness Security Attack Detection Network PLC Tools

Model P Goal Type to Evade Access Language/Type

T1 Serhane’ 18 [84] W1,2,3 GI1,GC,GA | both Programmer | ES LD, RSLogix N/A

source Valentine’ 13 [88] W1,2,3,6 GI1,GC passive | Programmer | N/A LD PLC-SF, vul. assessment

code McLaughlin’11 [70] | W4 GI3 both State verif. ES generic N/A

T2 ICSREF [55] w4 GI3 passive | NA ES, PLC Codesys-based angr, ICSREF

bytecode | SABOT [68] W4 GI3 passive | N/A ES, PLC IL NuSMV

/binary McLaughlin’11 [70] | W4 GI3 both State verif. ES, PLC generic N/A
PLClInject [58] W5 GC both N/A ES, PLC IL, Siemens PLClInject malware
PLC-Blaster [£5] W5 GC,GA active N/A ES, Sensor, PLC | Siemens PLC-Blaster worm
Senthivel’18 [83] w4 GI1 active ES ES, PLC LD, AB/RsLogix | PyShark, decompiler Laddis
CLIK [54] w4 GI1 both ES PLC IL, Schneider Eupheus decompilation
Beresford’11 [11] W4,5 GI2 both N/A ES, PLC Siemens S7 Wireshark, Metasploit

T3 Lim’17 [64] W4,5 GI4,GA active ES ES, PLC Tricon PLC LabView, PXI Chassis, Scapy

runtime Xiao’16 [92] w4 Gl4 both State verif. Sensor, PLC generic N/A
Abbasi’ 16 [3] W4 GI2 both Others N/A Codesys-based Codesys platform
Yo0’19 [94] W5 GI1 both Others ES, PLC Schneider/AB DPI and detection tools
LLB [43] W4,6 GI1,GI2 both Programmer | ES, PLC LD, AB Studio 5000, RSLinx, LLB
CaFDI [69] W4 Gl4 both State verif. N/A generic CaFDI
HARVEY [37] W4,5 GI4,GC both ES ES, PLC AB Hex, dis-assembler, EMS

Engineering Station (ES), Allen-Bradley (A

). Tools: vulnerability (vul.). Detection to evade: verification (verif.).

Formal Verification papers (a truncated list)

TABLE 3: Existing studies using formal verification to detect control logic attacks

Threat

Security

Defense

Verification

PLC

Model Paper Goal Focus Techniques Property Language Tools
Adiego’15 [4] Gl BM, SG MC CTL, LTL ST,SFC nuXmv, PLCVerif, Xtext, UNICOS
Bauer’04 [9] GI1,GI3 FV MC CTL SEC Cadence SMV, Uppaal
Bender’08 [10] GI3 SG, FV MC seLTL LD Tina Toolkit
Biallas’12 [12] GI1,GI3 SG, FV MC VCTL, ptLTL | generic PLCopen, Arcade.PLC*, CEGAR
Biha'11 [13] Gl SG TP N/A IL SSReflect in Coq, CompCert
Kim’17 [56] GI1,GI3 FV MC, EC CTL FBD,LD CASE tools (Nude 2.0), NuSCR
Moon’94 [74] Gl SG MC CTL LD N/A
T1 Newell’18 [76] GI1,GI3 BM, SR TP N/A FBD PVS Theorem prover
source Niang’17 [77] GI3 FV MC N/A generic Uppaal, program translators
code Pavlovic’10 [79] GI1,GI3 SR MC CTL FBD NuSMV
Rawlings’18 [81] Gl SG, FV MC CTL, ACTL ST st2smy, SynthSMV*
T Chang’18 [21] Gl1 ALL MC LTL, CTL IL DotNetSiemensPLCToolBoxLibrary
bytecode McLaughlin’14 [71] | GI1,GI3 ALL MC LTL IL TSV, Z3, NuSMV
/bin Xie’20 [93] GI1,GC,GA | BM, SG, FV | MC LTL IL SMT, NuXMV
ary Zonouz’14 [100] GI1,GI3 BM, SG, FV | MC LTL IL Z3, NuSMV
Carlsson’12 [18] GI FV MC CTL, LTL N/A NuSMV
Cengic’06 [19] GI2 BM MC CTL FBD Supremica
Galvao’18 [36] GI3,Gl4 SG MC CTL FBD ViVe/SESA
Garcia’16 [40] GI3 FV MC DFA LD,ST N/A
Janicke’15 [53] GI1,GI2 BM, SR MC ITL LD Tempura
T3 Luccarini’ 10 [65] GI3,Gl4 BM, SR, SG | TP CLIMB N/A SCIFF checker
runtime Mesli’16 [72] GI BM, SG, FV | MC TCTL LD,FBD Uppaal
Wang’13 [91] GI1,GI2 BM, SR, SG | MC LTL, MTL IL BIP
Zhang’19 [98] GLGC ALL MC TPTL ST BUILDTSEQS algorithm
Zhou’09 [99] GI BM, SR MC TCTL IL Uppaal
Wan’09 [90] GI1,GI2 BM, FV TP Gallina LD Coq, Vernacular
Garcia’19 [3%] GI BM TP differential dL. | ST KeYmaera X
Mokadem’10 [73] GI3 BM MC TCTL LD Uppaal
Cheng’17 [23] GI2,GC BM N/A eFSA N/A LLVM DG
Ait’98 [5] GI2 SG TP FOL N/A Atelier B

Defense Focus: Behavior modeling (BM), State Reduction (SR), Specification Generation (SG), and Formal Verification (FV). Verification
tehcniques: model checking (MC), equivalence checking (EC), and theorem proving (TP). In tools: items in bold are self-developed, bold italics are
open-source and * represent tools no longer mantained.

Challenges

Due to the advances of attacks

= Expanded attack input surfaces.

= Predefined hierarchical memory layout.

= Confidentiality and integrity of the program /0.
= Stealthy attack detection.

= |mplicit or incomplete specifications.

Challenges

Due to the insufficiency of defenses

-8
Behavior Modeling

ﬂ‘ Specification Generation

= [ack of plant modeling. = lack of specification-refined programming.
= [ack of modeling evaluation. = Ad-hoc and unverified specification translations.
= State explosion. = qgutomated domain-specific property generation.

= Specification with evolved system design.

'Y 4 :
ax State Reduction @\Verification
= [lack of “ground truth” for continuous behavior. = Lack of benchmarks for formal verification

= Implicitness and stealthy attacks from reduction = QOpen-source automated verification frameworks.
= High demand for runtime verification.

Future Research Recommendations

Behavior Modeling

= Plant Modeling
= formalize more accurate and complete program behaviors.
= granularity and level of abstraction for the plant models and the properties
= consider the avoidance of state explosion

= conditions of the plant that can trigger property violations.

= Input manipulation verification
= input manipulation is widely adopted by the attackers.
"= QOrpheus prototype in a PLC setting
= event consistency checking between the program and the plant model

= instrumentation on the input and output variables

Future Research Recommendations

: R State Reduction
= the relationship between the “unrelated” states and the original program.
= “unrelated” states are trimmed to avoid state explosion problems.
= security validation of “unrelated” code
= unnoticeable unsafe behaviors?
= e.g. astealthy logger to leak program critical information.

= automatic program cleaning for the stealthy code.

Future Research Recommendations

ﬂ‘ Specification Generation

= Domain-specific property definition.

= consider domain-specific properties as a hybrid program consisted of continuous plant
models as well as discrete control algorithms.

= aim at security verification

= support arithmetic operations, multitask programs, in various domains.

= Incremental specification generation.
= aim at the fast-evolving system design
= 3 full chain of behaviors, and update in a dynamic spectrum.

= behaviors from new interactions should be compatible with existing properties.

Future Research Recommendations

‘ @\ Verification

= Real-time attack detection.
= Depend on the engineering station, which have been exposed to various vulnerabilities
= Consider a dedicated security monitor, e.g. TSV
= Meet the scan cycle requirement
= Open-source tools and benchmarks.
= have led to adhoc studies without evaluations on models and verification techniques.
= vendor-independent, industrial complexities, and a set of security metrics
= Multitasks Verification.
= use one task to spy or spread malicious code to the other co-located tasks,
= E.g. PLCInject, PLC-Blaster

= verify task intervals and priorities at various granularities.

Questions

