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Motivation

Unrestricted Upload Dangerous Type File CWE-434 3 3 1 1 4 1 4 2 2 2
Uncontrolled Resource Consumption CWE-400 = 8 3 4 1 1 2 1 1
Improper AuthenticatonCWE-287 4 S5 3 2 2 2 2 1 1 2
Hard-coded Credentials CWE-798 6 4 3 3 3 3 &5 1 1 1
Cross-site ScriptingCWE-79 ' 8 5 4 3 3 3 3 1 1 1
Out-of-bounds Write CWE-787 6 ¢ 6 3 4 3 3
Improper Access Control CWE-284 5 ¢ [ 6 1 5 3 2
Out-of-bounds Read CWE-125 6 &8 /7 5 5 4 4
Stack-based Buffer Overflow CWE-121 4 3 4 3
Improper Input Validation CWE-20 2l 5 3
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Figure 1: The reported common weaknesses and the affected industrial sectors.
The notation denotes the number of CVEs.
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Attacks and Defenses

= Control Logic Modification
= attacks that can change the behavior of PLC control logic.
= program payload/code modification

= program input manipulation.

" Formal Verification

= unique and practical to the PLC industry.

= PLCs have limited memory and are less tolerant to false positives
= the controlled physical processes are safety-critical.

= used in the industry

= Existing research tend to be ad-hoc



A Motivating Example

1 TYPE Light : (Green, Yellow, Red); END_TYPE;

2 PROGRAM TrafficLight A simplified traffic light program
3 VAR_INPUT . .
4 SemsorNS : BOOL; SensorEW : BooL; <——— if emergency vehicles are approaching ~ Writtén in Structure Text.
2 Lo EPORNS ¢ BOOL7 ButtonRN @ BOOL/ «———  whether pedestrians press the
7 - button to cross the intersection = controls the light
8 VAR_OUTPUT .
9  LightNS : Light := Green; the status of lights at the NS and the EW " (e.g. green, yellow, red)
10 LightEW : Light := Red; directions. By default, the NS direction is green, » directions
11  END_VAR and the EW direction is red.
12 = north-south (NS)
13 IF LightNS = RED AND LightEW = RED AND NOT (ButtonNS) — m  egst-west (EW)
AND NOT (SensorEW) THEN
14 (* turn green when light is red, button is reset,
and no emergency detected x)
15 LightNS := Green;
16 ELSIF LightNS = GREEN AND LightEW = RED AND SensorEW
THEN
17 (» light must change when emergency approaches in the |ogic of Changing
_ EW direction x) [ light status based on
18 LightNS := Yellow; the sensor inputs.
19 ELSIF LightNS = GREEN THEN
20 LightNS := Green;
21 ELSE THEN
22 LightNS := Red;
23  END_IF;
24 B
25 (» The EW light status changes in a similar way x)
26 (*» Omitted =)

27 END_PROGRAM



A Motivating Example

1 TYPE Light : (Green, Yellow, Red); END_TYPE;
2 PROGRAM TrafficLight

3 VAR_INPUT

4 SensorNS : BOOL; SensorEW : BOOL;

5 ButtonNS : BOOL; ButtonEW : BOOL;

6 END_VAR

7

8 VAR_OUTPUT

9 LightNS : Light := Green;

10 LightEW : Light := Red;

11 END_VAR
12

13 IF LightNS = RED AND LightEW = RED AND NOT (ButtonNS)

AND NOT (SensorEW) THEN

14 (* turn green when light is red, button is reset,
and no emergency detected x)

15 LightNS := Green;

16 ELSIF LightNS = GREEN AND LightEW = RED AND SensorEW

THEN

17 (* light must change when emergency approaches in
EW direction =x)

18 LightNS := Yellow;

19 ELSIF LightNS = GREEN THEN

20 LightNS := Green;

21 ELSE THEN

22 LightNS := Red;

23 END_IF;

24

25 (» The EW light status changes in a similar way x)

26 (* Omitted =x)

27 END_PROGRAM

= Normally

when the NS light is red, and an emergency
vehicle is sensed in the NS direction, the sensor
will be ON until the NS light is switched to green.

= Attacks

1. switch the emergency sensor ON (e.g.
SensorNS := TRUE) when the NS light is red
and the EW light is green

2. switch it OFF (e.g. SensorNS := FALSE) when
the NS light is red and the EW light is yellow

Green lights ON simultaneously for NS, EW



A Motivating Example

MODULE main o o .
IVAR = Formal Verification
button_NS: boolean; .
button_EW: boolean; model the program using SMV
sensor_NS: boolean;

sensor_EW: boolean; NUSMV

light_NS: {RED, YELLOW, GREEN}; = verify the property

light EW: {RED, YELLOW, GREEN}; obtain the counterexamples

1

2

3

4

5

6

7 VAR
8

9
10 ASSIGN
11
12
13
14
15

init (light_NS) := GREEN;
init (light_EW) := RED;

next (light_NS) := case
light_NS = RED & light_EW = RED & button_NS =
FALSE & sensor_EW = FALSE: GREEN;

16 light_NS = GREEN & light_EW = RED & sensor_EW
= TRUE: YELLOW;

17 light_NS = GREEN: GREEN;

18 TRUE: {RED};

19 esac;

20 . .

21 next (Light_EW) := case Specifies the property to verify

22 light_EW = RED & light_NS = RED & button_EW = e.g. the green lights of NS and EW
FALSE & sensor_NS= FALSE: GREEN; .

23 light_EW = GREEN & light_NS = RED & sensor_NS can never be ON SImUItaneOUSIV
= TRUE: YELLOW;

24 light_EW = GREEN: GREEN;

25 TRUE: {RED};

26 esac;

27

28 SPEC AG ! (light_NS = GREEN & light_EW = GREEN)



A Motivating Example

1 MODULE main o o .
2> TuaR = Formal Verification
3 button_NS: boolean;
4 button_EW: boolean; NuSMV
5 sensor_NS: boolean; .
6 sensor_EW: boolean; " Verlfy the property
7 VAR - ;
. |ight NS: (RED, YELLOW, GREEN); obtain the counterexamples
9 light_EW: {RED, YELLOW, GREEN};
10 ASSIGN -> State: 1.1 <-
11 init (1ight_NS) := GREEN; light_NS = GREEN
12 init (light_EW) = RED; . _
13 light_EW = RED
14 next (light_NS) := case —> Input: 1.2 <-
15 light_NS = RED & light_EW = RED & button_NS = button NS = FALSE
FALSE & sensor_EW = FALSE: GREEN; button EW = FALSE
16 light_NS = GREEN & light_EW = RED & sensor_EW -
= TRUE: YELLOW; sensor_NS = FALSE
17 light_NS = GREEN: GREEN; sensor_EW = TRUE
18 TRUE: {RED}; -> State: 1.2 <-
;3 esacs light_NS = YELLOW
21 next (light_EW) := case -> Input: 1.3 <-
22 light_EW = RED & light_NS = RED & button_EW = sensor EW = FALSE
FALSE & sensor_NS= FALSE: GREEN; -
23 light_EW = GREEN & light_NS = RED & sensor_NS —> State: 1.3 <-
= TRUE: YELLOW; light_NS = RED
24 light_EW = GREEN: GREEN; -> Input: 1.4 <-
gg esazz:UE. {RED}; -> State: 1.4 <-

27 light_NS = GREEN
28 SPEC AG ! (light_NS = GREEN & light_EW = GREEN) light_EW = GREEN



Systematization Methodology

» Threat model

= assumptions on source code, bytecode/binary, runtime.

= Security goal
= Confidentiality, Integrity, and Availability

= Weakness
= the flaws triggered to perform the attacks.

= Detection to evade
= the detection that fails to capture the attacks

® Challenges in defending the attacks
= the advance of attacks, and the insufficiency of defenses.

» Defense focus

= the specific research topic in formal verification
= e.g. behavior modeling, state reduction, specification generation, and verification.



Attack papers

TABLE 1: The studies investigating control logic modification attacks.

Threat Paper Weakness Security Attack Detection Network PLC Tools

Model P Goal Type to Evade Access Language/Type

T1 Serhane’ 18 [84] W1,2,3 GI1,GC,GA | both Programmer | ES LD, RSLogix N/A

source Valentine’ 13 [88] W1,2,3,6 GI1,GC passive | Programmer | N/A LD PLC-SF, vul. assessment

code McLaughlin’11 [70] | W4 GI3 both State verif. ES generic N/A

T2 ICSREF [55] w4 GI3 passive | NA ES, PLC Codesys-based angr, ICSREF

bytecode | SABOT [68] W4 GI3 passive | N/A ES, PLC IL NuSMV

/binary McLaughlin’11 [70] | W4 GI3 both State verif. ES, PLC generic N/A
PLClInject [58] W5 GC both N/A ES, PLC IL, Siemens PLClInject malware
PLC-Blaster [£5] W5 GC,GA active N/A ES, Sensor, PLC | Siemens PLC-Blaster worm
Senthivel’18 [83] w4 GI1 active ES ES, PLC LD, AB/RsLogix | PyShark, decompiler Laddis
CLIK [54] w4 GI1 both ES PLC IL, Schneider Eupheus decompilation
Beresford’11 [11] W4,5 GI2 both N/A ES, PLC Siemens S7 Wireshark, Metasploit

T3 Lim’17 [64] W4,5 GI4,GA active ES ES, PLC Tricon PLC LabView, PXI Chassis, Scapy

runtime Xiao’16 [92] w4 Gl4 both State verif. Sensor, PLC generic N/A
Abbasi’ 16 [3] W4 GI2 both Others N/A Codesys-based Codesys platform
Yo0’19 [94] W5 GI1 both Others ES, PLC Schneider/AB DPI and detection tools
LLB [43] W4,6 GI1,GI2 both Programmer | ES, PLC LD, AB Studio 5000, RSLinx, LLB
CaFDI [69] W4 Gl4 both State verif. N/A generic CaFDI
HARVEY [37] W4,5 GI4,GC both ES ES, PLC AB Hex, dis-assembler, EMS

Engineering Station (ES), Allen-Bradley (A

). Tools: vulnerability (vul.). Detection to evade: verification (verif.).



Formal Verification papers (a truncated list)

TABLE 3: Existing studies using formal verification to detect control logic attacks

Threat

Security

Defense

Verification

PLC

Model Paper Goal Focus Techniques Property Language Tools
Adiego’15 [4] Gl BM, SG MC CTL, LTL ST,SFC nuXmv, PLCVerif, Xtext, UNICOS
Bauer’04 [9] GI1,GI3 FV MC CTL SEC Cadence SMV, Uppaal
Bender’08 [10] GI3 SG, FV MC seLTL LD Tina Toolkit
Biallas’12 [12] GI1,GI3 SG, FV MC VCTL, ptLTL | generic PLCopen, Arcade.PLC*, CEGAR
Biha'11 [13] Gl SG TP N/A IL SSReflect in Coq, CompCert
Kim’17 [56] GI1,GI3 FV MC, EC CTL FBD,LD CASE tools (Nude 2.0), NuSCR
Moon’94 [74] Gl SG MC CTL LD N/A
T1 Newell’18 [76] GI1,GI3 BM, SR TP N/A FBD PVS Theorem prover
source Niang’17 [77] GI3 FV MC N/A generic Uppaal, program translators
code Pavlovic’10 [79] GI1,GI3 SR MC CTL FBD NuSMV
Rawlings’18 [81] Gl SG, FV MC CTL, ACTL ST st2smy, SynthSMV*
T Chang’18 [21] Gl1 ALL MC LTL, CTL IL DotNetSiemensPLCToolBoxLibrary
bytecode McLaughlin’14 [71] | GI1,GI3 ALL MC LTL IL TSV, Z3, NuSMV
/bin Xie’20 [93] GI1,GC,GA | BM, SG, FV | MC LTL IL SMT, NuXMV
ary Zonouz’14 [100] GI1,GI3 BM, SG, FV | MC LTL IL Z3, NuSMV
Carlsson’12 [18] GI FV MC CTL, LTL N/A NuSMV
Cengic’06 [19] GI2 BM MC CTL FBD Supremica
Galvao’18 [36] GI3,Gl4 SG MC CTL FBD ViVe/SESA
Garcia’16 [40] GI3 FV MC DFA LD,ST N/A
Janicke’15 [53] GI1,GI2 BM, SR MC ITL LD Tempura
T3 Luccarini’ 10 [65] GI3,Gl4 BM, SR, SG | TP CLIMB N/A SCIFF checker
runtime Mesli’16 [72] GI BM, SG, FV | MC TCTL LD,FBD Uppaal
Wang’13 [91] GI1,GI2 BM, SR, SG | MC LTL, MTL IL BIP
Zhang’19 [98] GLGC ALL MC TPTL ST BUILDTSEQS algorithm
Zhou’09 [99] GI BM, SR MC TCTL IL Uppaal
Wan’09 [90] GI1,GI2 BM, FV TP Gallina LD Coq, Vernacular
Garcia’19 [3%] GI BM TP differential dL. | ST KeYmaera X
Mokadem’10 [73] GI3 BM MC TCTL LD Uppaal
Cheng’17 [23] GI2,GC BM N/A eFSA N/A LLVM DG
Ait’98 [5] GI2 SG TP FOL N/A Atelier B

Defense Focus: Behavior modeling (BM), State Reduction (SR), Specification Generation (SG), and Formal Verification (FV). Verification
tehcniques: model checking (MC), equivalence checking (EC), and theorem proving (TP). In tools: items in bold are self-developed, bold italics are
open-source and * represent tools no longer mantained.



Challenges

Due to the advances of attacks

= Expanded attack input surfaces.

= Predefined hierarchical memory layout.

= Confidentiality and integrity of the program /0.
= Stealthy attack detection.

= |mplicit or incomplete specifications.



Challenges

Due to the insufficiency of defenses

-8
Behavior Modeling

ﬂ‘ Specification Generation

= [ack of plant modeling. = lack of specification-refined programming.
= [ack of modeling evaluation. = Ad-hoc and unverified specification translations.
= State explosion. = qgutomated domain-specific property generation.

= Specification with evolved system design.

'Y 4 :
ax State Reduction @\Verification
= [lack of “ground truth” for continuous behavior. = Lack of benchmarks for formal verification

= Implicitness and stealthy attacks from reduction = QOpen-source automated verification frameworks.
= High demand for runtime verification.



Future Research Recommendations

Behavior Modeling

=  Plant Modeling
= formalize more accurate and complete program behaviors.
= granularity and level of abstraction for the plant models and the properties
= consider the avoidance of state explosion

= conditions of the plant that can trigger property violations.

= Input manipulation verification
= input manipulation is widely adopted by the attackers.
"= QOrpheus prototype in a PLC setting
= event consistency checking between the program and the plant model

= instrumentation on the input and output variables



Future Research Recommendations

: R State Reduction
= the relationship between the “unrelated” states and the original program.
= “unrelated” states are trimmed to avoid state explosion problems.
= security validation of “unrelated” code
= unnoticeable unsafe behaviors?
= e.g. astealthy logger to leak program critical information.

= automatic program cleaning for the stealthy code.



Future Research Recommendations

ﬂ‘ Specification Generation

= Domain-specific property definition.

= consider domain-specific properties as a hybrid program consisted of continuous plant
models as well as discrete control algorithms.

= aim at security verification

= support arithmetic operations, multitask programs, in various domains.

= Incremental specification generation.
= aim at the fast-evolving system design
= 3 full chain of behaviors, and update in a dynamic spectrum.

= behaviors from new interactions should be compatible with existing properties.



Future Research Recommendations

‘ @\ Verification

= Real-time attack detection.
= Depend on the engineering station, which have been exposed to various vulnerabilities
= Consider a dedicated security monitor, e.g. TSV
= Meet the scan cycle requirement
= Open-source tools and benchmarks.
=  have led to adhoc studies without evaluations on models and verification techniques.
= vendor-independent, industrial complexities, and a set of security metrics
= Multitasks Verification.
= use one task to spy or spread malicious code to the other co-located tasks,
= E.g. PLCInject, PLC-Blaster

= verify task intervals and priorities at various granularities.



Questions




