

Attacks on Industrial Control Logic and Formal Verification-Based Defenses

Ruimin Sun, Alejandro Mera, Long Lu, David Choffnes Northeastern University <u>r.sun@notheastern.edu</u>

Motivation

Motivation

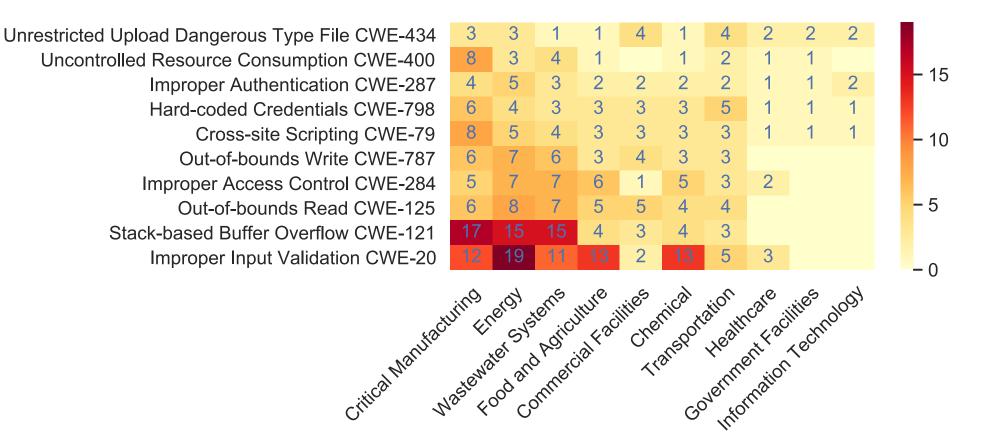
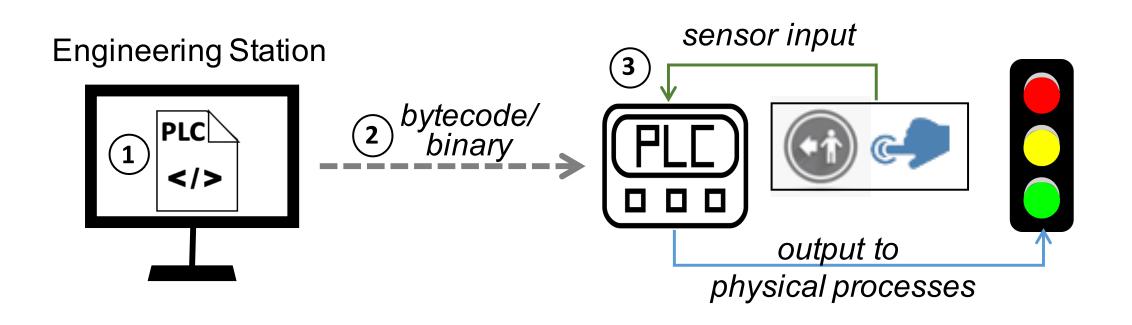
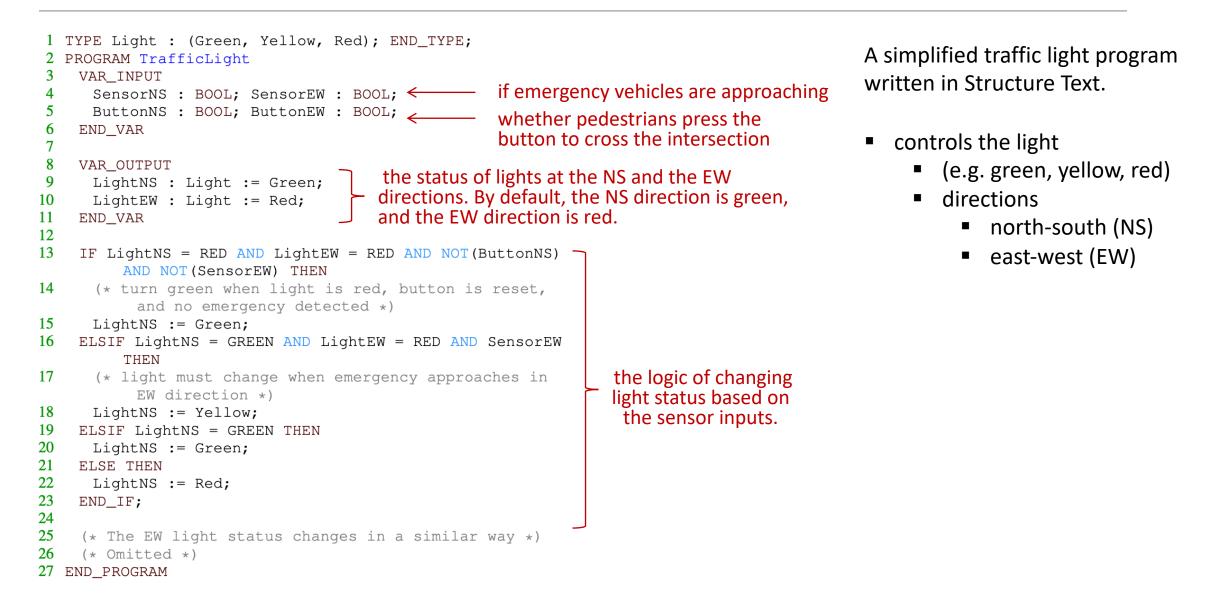



Figure 1: The reported common weaknesses and the affected industrial sectors. The notation denotes the number of CVEs.


Background of PLC

Attacks and Defenses

Control Logic Modification

- attacks that can change the behavior of PLC control logic.
 - program payload/code modification
 - program input manipulation.
- Formal Verification
 - unique and practical to the PLC industry.
 - PLCs have limited memory and are less tolerant to false positives
 - the controlled physical processes are safety-critical.
 - used in the industry
- Existing research tend to be ad-hoc


```
1 TYPE Light : (Green, Yellow, Red); END_TYPE;
2 PROGRAM TrafficLight
    VAR_INPUT
3
     SensorNS : BOOL; SensorEW : BOOL;
4
     ButtonNS : BOOL; ButtonEW : BOOL;
5
    END VAR
6
7
8
    VAR OUTPUT
9
    LightNS : Light := Green;
10
    LightEW : Light := Red;
11
    END_VAR
12
13
    IF LightNS = RED AND LightEW = RED AND NOT (ButtonNS)
         AND NOT (SensorEW) THEN
14
     (* turn green when light is red, button is reset,
          and no emergency detected *)
15
     LightNS := Green;
    ELSIF LightNS = GREEN AND LightEW = RED AND SensorEW
16
         THEN
17
     (* light must change when emergency approaches in
          EW direction *)
18
     LightNS := Yellow;
19
    ELSIF LightNS = GREEN THEN
20
     LightNS := Green;
21
    ELSE THEN
22
    LightNS := Red;
23
    END_IF;
24
25
    (* The EW light status changes in a similar way *)
    (* Omitted *)
26
27 END PROGRAM
```

Normally

when the NS light is red, and an emergency vehicle is sensed in the NS direction, the sensor will be ON *until the NS light is switched to green*.

Attacks

- switch the emergency sensor ON (e.g. SensorNS := TRUE) when the NS light is red and the EW light is green
- 2. switch it OFF (e.g. SensorNS := FALSE) when the NS light is red and the EW light is yellow

Green lights ON simultaneously for NS, EW

```
1 MODULE main
 2
      IVAR
 3
         button_NS: boolean;
 4
         button_EW: boolean;
 5
         sensor_NS: boolean;
 6
         sensor_EW: boolean;
      VAR
 8
         light_NS: {RED, YELLOW, GREEN};
 9
         light EW: {RED, YELLOW, GREEN};
10
      ASSIGN
11
         init(light_NS) := GREEN;
12
         init(light_EW) := RED;
13
14
         next(light_NS) := case
15
            light_NS = RED & light_EW = RED & button_NS =
                 FALSE & sensor EW = FALSE: GREEN;
16
            light_NS = GREEN & light_EW = RED & sensor_EW
                 = TRUE: YELLOW;
17
            light_NS = GREEN: GREEN;
18
            TRUE: {RED};
19
         esac;
20
21
         next(light_EW) := case
22
            light_EW = RED & light_NS = RED & button_EW =
                 FALSE & sensor NS= FALSE: GREEN;
23
            light_EW = GREEN & light_NS = RED & sensor_NS
                 = TRUE: YELLOW;
24
            light_EW = GREEN: GREEN;
25
            TRUE: {RED};
26
         esac;
27
28
      SPEC AG ! (light NS = GREEN & light EW = GREEN)
```

- Formal Verification model the program using SMV NuSMV
 - verify the property
 - obtain the counterexamples

Specifies the property to verify e.g. the green lights of NS and EW can never be ON simultaneously

```
1 MODULE main
 2
      IVAR
 3
         button_NS: boolean;
 4
         button_EW: boolean;
 5
         sensor_NS: boolean;
 6
         sensor_EW: boolean;
     VAR
 8
         light_NS: {RED, YELLOW, GREEN};
 9
         light EW: {RED, YELLOW, GREEN};
10
      ASSIGN
11
         init(light_NS) := GREEN;
12
         init(light_EW) := RED;
13
14
         next(light_NS) := case
15
            light_NS = RED & light_EW = RED & button_NS =
                 FALSE & sensor_EW = FALSE: GREEN;
16
            light_NS = GREEN & light_EW = RED & sensor_EW
                 = TRUE: YELLOW;
17
            light_NS = GREEN: GREEN;
18
            TRUE: {RED};
19
         esac;
20
21
         next(light_EW) := case
22
            light_EW = RED & light_NS = RED & button_EW =
                 FALSE & sensor_NS= FALSE: GREEN;
23
            light_EW = GREEN & light_NS = RED & sensor_NS
                 = TRUE: YELLOW;
24
            light_EW = GREEN: GREEN;
25
            TRUE: {RED};
26
         esac;
27
28
      SPEC AG ! (light_NS = GREEN & light_EW = GREEN)
```

- Formal Verification
 NuSMV
 - verify the property
 - obtain the counterexamples

-> State: 1.1 < $light_NS = GREEN$ $light_EW = RED$ -> Input: 1.2 <button NS = FALSEbutton EW = FALSE $sensor_NS = FALSE$ sensor EW = TRUE-> State: 1.2 <light_NS = YELLOW -> Input: 1.3 <sensor EW = FALSE-> State: 1.3 <light NS = RED-> Input: 1.4 <--> State: 1.4 < $light_NS = GREEN$ light EW = GREEN

Systematization Methodology

- Threat model
 - assumptions on source code, bytecode/binary, runtime.
- Security goal
 - Confidentiality, Integrity, and Availability
- Weakness
 - the flaws triggered to perform the attacks.
- Detection to evade
 - the detection that fails to capture the attacks
- Challenges in *defending* the attacks
 - the advance of attacks, and the insufficiency of defenses.
- Defense focus
 - the specific research topic in formal verification
 - e.g. behavior modeling, state reduction, specification generation, and verification.

Attack papers

Threat Model	Paper	Weakness	Security Goal	Attack Type	Detection to Evade	Network Access	PLC Language/Type	Tools
T1	Serhane'18 [84]	W1,2,3	GI1,GC,GA	both	Programmer	ES	LD, RSLogix	N/A
source	Valentine'13 [88]	W1,2,3,6	GI1,GC	passive	Programmer	N/A	LD	PLC-SF, vul. assessment
code	McLaughlin'11 [70]	W4	GI3	both	State verif.	ES	generic	N/A
T2	ICSREF [55]	W4	GI3	passive	NA	ES, PLC	Codesys-based	angr, ICSREF
bytecode	SABOT [68]	W4	GI3	passive	N/A	ES, PLC	IL	NuSMV
/binary	McLaughlin'11 [70]	W4	GI3	both	State verif.	ES, PLC	generic	N/A
	PLCInject [58]	W5	GC	both	N/A	ES, PLC	IL, Siemens	PLCInject malware
	PLC-Blaster [85]	W5	GC,GA	active	N/A	ES, Sensor, PLC	Siemens	PLC-Blaster worm
	Senthivel'18 [83]	W4	GI1	active	ES	ES, PLC	LD, AB/RsLogix	PyShark, decompiler Laddis
	CLIK [54]	W4	GI1	both	ES	PLC	IL, Schneider	Eupheus decompilation
	Beresford'11 [11]	W4,5	GI2	both	N/A	ES, PLC	Siemens S7	Wireshark, Metasploit
T3	Lim'17 [<mark>64</mark>]	W4,5	GI4,GA	active	ES	ES, PLC	Tricon PLC	LabView, PXI Chassis, Scapy
runtime	Xiao'16 [92]	W4	GI4	both	State verif.	Sensor, PLC	generic	N/A
	Abbasi'16 [3]	W4	GI2	both	Others	N/A	Codesys-based	Codesys platform
	Yoo'19 [94]	W5	GI1	both	Others	ES, PLC	Schneider/AB	DPI and detection tools
	LLB [43]	W4,6	GI1,GI2	both	Programmer	ES, PLC	LD, AB	Studio 5000, RSLinx, LLB
	CaFDI [69]	W4	GI4	both	State verif.	N/A	generic	CaFDI
	HARVEY [37]	W4,5	GI4,GC	both	ES	ES, PLC	AB	Hex, dis-assembler, EMS

TABLE 1: The studies investigating control logic modification attacks.

Engineering Station (ES), Allen-Bradley (AB). Tools: vulnerability (vul.). Detection to evade: verification (verif.).

Formal Verification papers (a truncated list)

Threat Model	Paper	Security Goal	Defense Focus	Verification Techniques	Property	PLC Language	Tools
	Adiego'15 [4]	GI1	BM, SG	MC	CTL, LTL	ST,SFC	nuXmv, PLCVerif, Xtext, UNICOS
	Bauer'04 [9]	GI1,GI3	FV	MC	CTL	SFC	Cadence SMV, Uppaal
	Bender'08 [10]	GI3	SG, FV	MC	seLTL	LD	Tina Toolkit
	Biallas'12 [12]	GI1,GI3	SG, FV	MC	∀CTL, ptLTL	generic	PLCopen, Arcade.PLC*, CEGAR
	Biha'11 [13]	GI1	SG	TP	N/A	IL	SSReflect in Coq, CompCert
	Kim'17 [56]	GI1,GI3	FV	MC, EC	CTL	FBD,LD	CASE tools (Nude 2.0), NuSCR
	Moon'94 [74]	GI1	SG	MC	CTL	LD	N/A
T 1	Newell'18 [76]	GI1,GI3	BM, SR	TP	N/A	FBD	PVS Theorem prover
T1 source code	Niang'17 [77]	GI3	FV	MC	N/A	generic	Uppaal, program translators
	Pavlovic'10 [79]	GI1,GI3	SR	MC	CTL	FBD	NuSMV
	Rawlings'18 [81]	GI1	SG, FV	MC	CTL, ACTL	ST	st2smv, SynthSMV*
				•••		. H	
T2	Chang'18 [21]	GI1	ALL	MC	LTL, CTL	IL	DotNetSiemensPLCToolBoxLibrary
bytecode	McLaughlin'14 [71]	GI1,GI3	ALL	MC	LTL	IL	TSV, Z3, NuSMV
/binary	Xie'20 [93]	GI1,GC,GA	BM, SG, FV	MC	LTL	IL	SMT, NuXMV
	Zonouz'14 [100]	GI1,GI3	BM, SG, FV	MC	LTL	IL	Z3, NuSMV
	Carlsson'12 [18]	GI	FV	MC	CTL, LTL	N/A	NuSMV
	Cengic'06 [19]	GI2	BM	MC	CTL	FBD	Supremica
	Galvao'18 [36]	GI3,GI4	SG	MC	CTL	FBD	ViVe/SESA
	Garcia'16 [40]	GI3	FV	MC	DFA	LD,ST	N/A
	Janicke'15 [53]	GI1,GI2	BM, SR	MC	ITL	LD	Tempura
T3 runtime	Luccarini'10 [65]	GI3,GI4	BM, SR, SG	TP	CLIMB	N/A	SCIFF checker
	Mesli'16 [72]	GI	BM, SG, FV	MC	TCTL	LD,FBD	Uppaal
	Wang'13 [91]	GI1,GI2	BM, SR, SG	MC	LTL, MTL	IL	BIP
	Zhang'19 [98]	GI,GC	ALL	MC	TPTL	ST	BUILDTSEQS algorithm
	Zhou'09 [99]	GI	BM, SR	MC	TCTL	IL	Uppaal
	Wan'09 [90]	GI1,GI2	BM, FV	TP	Gallina	LD	Coq, Vernacular
	Garcia'19 [38]	GI	BM	TP	differential dL	ST	KeYmaera X
	Mokadem'10 [73]	GI3	BM	MC	TCTL	LD	Uppaal
	Cheng'17 [23]	GI2,GC	BM	N/A	eFSA	N/A	LLVM DG
	Ait'98 [5]	GI2	SG	TP	FOL	N/A	Atelier B

TABLE 3: Existing studies using formal verification to detect control logic attacks

Defense Focus: Behavior modeling (BM), State Reduction (SR), Specification Generation (SG), and Formal Verification (FV). Verification tehcniques: model checking (MC), equivalence checking (EC), and theorem proving (TP). In tools: items in bold are self-developed, bold italics are open-source and * represent tools no longer mantained.

Challenges

Due to the advances of attacks

- Expanded attack input surfaces.
- Predefined hierarchical memory layout.
- Confidentiality and integrity of the program I/O.
- Stealthy attack detection.
- Implicit or incomplete specifications.

Challenges

Due to the insufficiency of defenses

Behavior Modeling

- Lack of plant modeling.
- Lack of modeling evaluation.
- State explosion.

State Reduction

- Lack of "ground truth" for continuous behavior.
- Implicitness and stealthy attacks from reduction

Specification Generation

- Lack of specification-refined programming.
- Ad-hoc and unverified specification translations.
- automated domain-specific property generation.
- Specification with evolved system design.

Q Verification

- Lack of benchmarks for formal verification
- Open-source automated verification frameworks.
- High demand for runtime verification.

- Plant Modeling
 - formalize more accurate and complete program behaviors.
 - granularity and level of abstraction for the plant models and the properties
 - consider the avoidance of state explosion
 - conditions of the plant that can trigger property violations.
- Input manipulation verification
 - input manipulation is widely adopted by the attackers.
 - Orpheus prototype in a PLC setting
 - event consistency checking between the program and the plant model
 - instrumentation on the input and output variables

- the relationship between the "unrelated" states and the original program.
 - "unrelated" states are trimmed to avoid state explosion problems.
 - security validation of "unrelated" code
 - unnoticeable unsafe behaviors?
 - e.g. a stealthy logger to leak program critical information.
 - automatic program cleaning for the stealthy code.

Specification Generation

- Domain-specific property definition.
 - consider domain-specific properties as a *hybrid program* consisted of continuous plant models as well as discrete control algorithms.
 - aim at security verification
 - support arithmetic operations, multitask programs, in various domains.
- Incremental specification generation.
 - aim at the fast-evolving system design
 - a full chain of behaviors, and update in a dynamic spectrum.
 - behaviors from new interactions should be compatible with existing properties.

Verification

- Real-time attack detection.
 - Depend on the engineering station, which have been exposed to various vulnerabilities
 - Consider a dedicated security monitor, e.g. TSV
 - Meet the scan cycle requirement
- Open-source tools and benchmarks.
 - have led to adhoc studies without evaluations on models and verification techniques.
 - vendor-independent, industrial complexities, and a set of security metrics
- Multitasks Verification.
 - use one task to spy or spread malicious code to the other co-located tasks,
 - E.g. PLCInject, PLC-Blaster
 - verify task intervals and priorities at various granularities.

Questions