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❖Motivation

➢ Public key crypto is essential for modern security

➢ Secure exchange of session keys

➢ Verifying identity of systems and users

➢ And much, much more

➢ Private keys are a highly valuable asset

➢ Attackers want to get them

➢ But we don’t want them to
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❖Public Key Crypto

➢ Good public key crypto (e.g. ECC)

➢ Designed to make private keys very, very hard to recover

ECC

key
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❖Analog Side-Channel Attacks

➢ But cryptographic implementation runs on real hardware

➢ Logic gates switch, causing current flow

➢ Currents flowing create changes in surrounding EM field

ECC

key

Most attacks:

Side-channel information

helps eventually recover

the private key
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❖Analog Side-Channel Attacks

➢ But cryptographic implementation runs on real hardware

➢ Logic gates switch, causing current flow

➢ Currents flowing create changes in surrounding EM field

ECC

key

Nonce@Once:

Side-channel information

from only one signing/encryption

operation allows recovery

the private key



66

❖ECC Digital Signature Algorithm

1 . Q=d ∙G, where d is the secret key

2 . z  =  HASH(msg)

3. Generate random ephemeral secret k (the “nonce”)

4 . R =  k ∙Q

5. r  =  R→x  mod n

6 . s  =  k -1(z  +  r ∙d)

7. Signature=(r, s)

If attacker knows k, a message, and its signature:

d = (s∙k-z)/r mod n

Nonce k must reman secret!
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❖Point-by-Scalar Multiplication (R=k∙Q)

Constant Time Implementation

R=Point(0);
// For each bit of nonce k
for(b=nbits-1;b>=0;b--){

R=2∙R;
if(get_bit(k,b))

R=R+Q;
}

R=Point(0);
// For each bit of nonce k
for(b=nbits-1;b>=0;b--){

R=2∙R;
T=R+Q;
Swap_Cond(R,T,get_bit(k,b));

}

Easy target for side channel

attacks, e.g. Flush+Reload



88

❖Conditional Swap (RFC 7748) 

For each machine word of an EC point

Δ = ቊ
0, 𝑐𝑜𝑛𝑑 == 0

𝑎^𝑏, 𝑐𝑜𝑛𝑑 == 1

Swap_Cond(A,B,cond){
mask=0-cond;
for(i=0;i<nwords;i++){

Δ = (a[i]^b[i]) & mask;
a[i]=a[i] ^ Δ;
b[i]=b[i] ^ Δ;

}
}

11..11 if cond, 00..00 if not cond

Note this is also Constant-Time!

But… ~ 40 XOR operations with Δ in Swap_Cond

All have a zero operand when cond==0

That operand is ~50%-ones when cond==1
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❖Measurement Setup

ZTE ZFIVE Alcatel Ideal
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❖Locating the Cond-Swap Signals (OpenSSL)
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❖Recovering value of cond (OpenSSL)
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❖Recovering value of cond

GnuPG OpenSSL

HACL Donna
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➢ Training

➢ Record signal while signing with a few known nonces

on device of same kind (but different instance of the device)

➢ Cluster training Cond_Swap signals (K-Means)

➢ Keep centroid and label (0 or 1) of each cluster

➢ Attack

➢ Record signal from target device

➢ Identify Cond_Swap snippets

➢ Label each snippet (closest cluster)

➢ Brute-force labels of “missing” snippets

❖Nonce Recovery Algorithm
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❖Nonce Recovery (GnuPG on ZTE)

Bit Recovery - Clusters Erasure Recovery – Brute Force
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❖Mitigation

➢ Fundamental enabler of the attack

➢ Leakage amplification

• XOR with zero or non-zero operand leaks a little about the operand

• But same leakage repeated 40 times in each Cond_Swap!

➢ Mitigation – randomization to avoid amplification
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❖Mitigation
Swap_Cond(A,B,cond){

mask=0-cond;
for(i=0;i<nwords;i++){

Δ = (a[i]^b[i]) & mask;
a[i]=a[i] ^ Δ;
b[i]=b[i] ^ Δ;

}
}

Swap_Cond(A,B,cond){
mask=0-cond;
rand=random_word();
for(i=0;i<nwords;i++){

Δ′ = (a[i]^b[i]) & mask;
Δ = Δ′ ^ rand;
a[i]=a[i] ^ Δ ^ rand;
b[i]=b[i] ^ Δ ^ rand;

}
}

Problem: Mitigation optimized-out by compiler

Ask/trick the compiler not to do this (see paper)
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❖Mitigation’s Effect on the Attack
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❖Conclusions

➢ Analog side-channel attack on constant-time ECC 

implementations that use conditional swap (RFC 7748)

➢ Highly accurate thanks to leakage amplification

➢ Successful on OpenSSL, GnuPG, HACL*, and Curve25519-donna

➢ ECC private key recovered from only one use of that key

➢ Mitigation: randomization in Cond_Swap

➢ Removes leakage amplification

➢ Very low performance overhead
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Thank you!
Questions?


