
11

Nonce@Once: A Single-Trace EM Side Channel Attack on Several

Constant-Time Elliptic Curve Implementations in Mobile Platforms

Monjur Alam, Baki Yilmaz, Frank Werner, Niels Samwel,
Alenka Zajic, Daniel Genkin, Yuval Yarom, Milos Prvulovic

Georgia Tech, Radboud University, University of Michigan, University of Adelaide
Contact: milos@cc.gatech.edu

22

❖Motivation

➢ Public key crypto is essential for modern security

➢ Secure exchange of session keys

➢ Verifying identity of systems and users

➢ And much, much more

➢ Private keys are a highly valuable asset

➢ Attackers want to get them

➢ But we don’t want them to

33

❖Public Key Crypto

➢ Good public key crypto (e.g. ECC)

➢ Designed to make private keys very, very hard to recover

ECC

key

44

❖Analog Side-Channel Attacks

➢ But cryptographic implementation runs on real hardware

➢ Logic gates switch, causing current flow

➢ Currents flowing create changes in surrounding EM field

ECC

key

Most attacks:

Side-channel information

helps eventually recover

the private key

55

❖Analog Side-Channel Attacks

➢ But cryptographic implementation runs on real hardware

➢ Logic gates switch, causing current flow

➢ Currents flowing create changes in surrounding EM field

ECC

key

Nonce@Once:

Side-channel information

from only one signing/encryption

operation allows recovery

the private key

66

❖ECC Digital Signature Algorithm

1 . Q=d ∙G, where d is the secret key

2 . z = HASH(msg)

3. Generate random ephemeral secret k (the “nonce”)

4 . R = k ∙Q

5. r = R→x mod n

6 . s = k -1(z + r ∙d)

7. Signature=(r, s)

If attacker knows k, a message, and its signature:

d = (s∙k-z)/r mod n

Nonce k must reman secret!

77

❖Point-by-Scalar Multiplication (R=k∙Q)

Constant Time Implementation

R=Point(0);
// For each bit of nonce k
for(b=nbits-1;b>=0;b--){

R=2∙R;
if(get_bit(k,b))

R=R+Q;
}

R=Point(0);
// For each bit of nonce k
for(b=nbits-1;b>=0;b--){

R=2∙R;
T=R+Q;
Swap_Cond(R,T,get_bit(k,b));

}

Easy target for side channel

attacks, e.g. Flush+Reload

88

❖Conditional Swap (RFC 7748)

For each machine word of an EC point

Δ = ቊ
0, 𝑐𝑜𝑛𝑑 == 0

𝑎^𝑏, 𝑐𝑜𝑛𝑑 == 1

Swap_Cond(A,B,cond){
mask=0-cond;
for(i=0;i<nwords;i++){

Δ = (a[i]^b[i]) & mask;
a[i]=a[i] ^ Δ;
b[i]=b[i] ^ Δ;

}
}

11..11 if cond, 00..00 if not cond

Note this is also Constant-Time!

But… ~ 40 XOR operations with Δ in Swap_Cond

All have a zero operand when cond==0

That operand is ~50%-ones when cond==1

99

❖Measurement Setup

ZTE ZFIVE Alcatel Ideal

1010

❖Locating the Cond-Swap Signals (OpenSSL)

1111

❖Recovering value of cond (OpenSSL)

1212

❖Recovering value of cond

GnuPG OpenSSL

HACL Donna

1313

➢ Training

➢ Record signal while signing with a few known nonces

on device of same kind (but different instance of the device)

➢ Cluster training Cond_Swap signals (K-Means)

➢ Keep centroid and label (0 or 1) of each cluster

➢ Attack

➢ Record signal from target device

➢ Identify Cond_Swap snippets

➢ Label each snippet (closest cluster)

➢ Brute-force labels of “missing” snippets

❖Nonce Recovery Algorithm

1414

❖Nonce Recovery (GnuPG on ZTE)

Bit Recovery - Clusters Erasure Recovery – Brute Force

1515

❖Mitigation

➢ Fundamental enabler of the attack

➢ Leakage amplification

• XOR with zero or non-zero operand leaks a little about the operand

• But same leakage repeated 40 times in each Cond_Swap!

➢ Mitigation – randomization to avoid amplification

1616

❖Mitigation
Swap_Cond(A,B,cond){

mask=0-cond;
for(i=0;i<nwords;i++){

Δ = (a[i]^b[i]) & mask;
a[i]=a[i] ^ Δ;
b[i]=b[i] ^ Δ;

}
}

Swap_Cond(A,B,cond){
mask=0-cond;
rand=random_word();
for(i=0;i<nwords;i++){

Δ′ = (a[i]^b[i]) & mask;
Δ = Δ′ ^ rand;
a[i]=a[i] ^ Δ ^ rand;
b[i]=b[i] ^ Δ ^ rand;

}
}

Problem: Mitigation optimized-out by compiler

Ask/trick the compiler not to do this (see paper)

1717

❖Mitigation’s Effect on the Attack

1818

❖Conclusions

➢ Analog side-channel attack on constant-time ECC

implementations that use conditional swap (RFC 7748)

➢ Highly accurate thanks to leakage amplification

➢ Successful on OpenSSL, GnuPG, HACL*, and Curve25519-donna

➢ ECC private key recovered from only one use of that key

➢ Mitigation: randomization in Cond_Swap

➢ Removes leakage amplification

➢ Very low performance overhead

1919

Thank you!
Questions?

