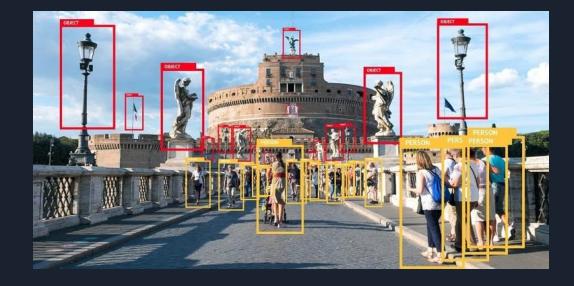


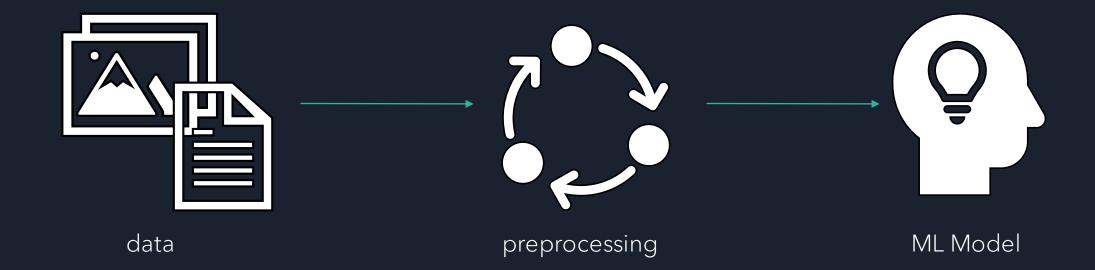
UNIVERSITÀ DEGLI STUDI DI PADOVA

FALL OF GIANTS: HOW POPULAR TEXT-BASED MLAAS FALL AGAINST A SIMPLE EVASION ATTACK

Authors: Luca Pajola, Mauro Conti


OUTLINE

- 1. Motivations
- 2. Zero-Width Attack (ZeW)
- 3. Results
- Controlled Environment
- Into the "wild"
- 4. Discussions



- 1. Machine Learning (ML) is here
- Wide set of ML-based applications are already deployed
- 2. Several Commercial Usages
- 3. Gorgeous performance, but what about the *security*?

• Where should we focus?

- Most attacks are designed to leverage *ML models weaknesses*
- But preprocessing algorithms plays a foundamental role in the pipeline
- They are the "foundaments" of our applications
- If an attacker affects these techniques ...

- Example of image scaling attack [1]
 - The attack affects image scaling techniques applied during the preprocessing
- What about NLP?

What you see

What your model actually sees

ZERO-WIDTH ATTACK

ZEW - THE IDEA

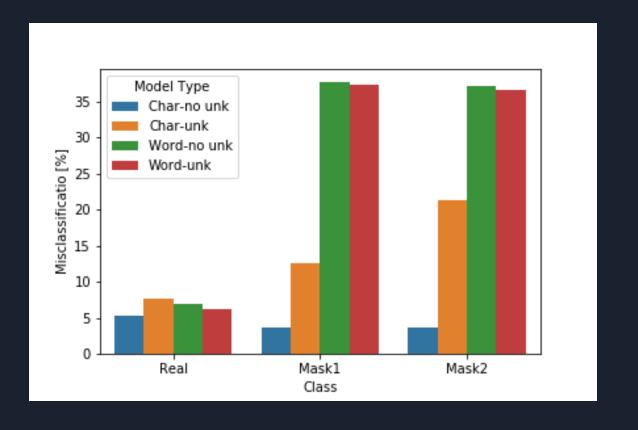
- Steganography leverages "unnoticeable" characters
 - Among these we find non-printable characters
- If inserted inside text, we might affect pre-processing techniques in several ways

ZEW - NLP CHALLENGES

- NLP challenges compared to CV
 - 1. Input domain
 - Different type of perturbation
 - i.e., in CV we add RGB masks, in NLP?
 - 2. Human perception
 - Perturbation are easier to spot
 - 3. Semantic
 - · The perturbations should not alter the sentence meaning
 - e.g., I hate you -> I ate you

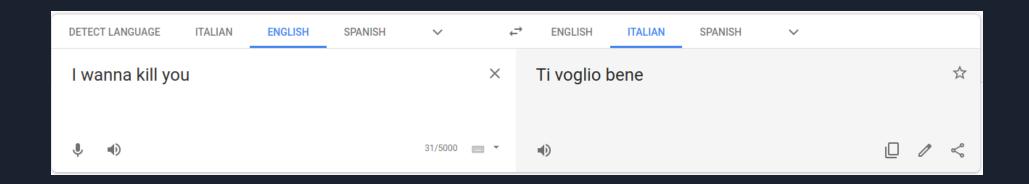
ZEW - EFFECT

- Word-based models
 - Words with ZeW chars becomes unknown
 - And maybe discarded
 - E.g., "I lo\$ve you"
 - With unk: "I UNK you"
 - Without unk: "I you"
- Character-based models (more resistant)
 - ZeW characters becomes unknown
 - With unk: "I loUNKve you"
 - Without unk: "I love you"

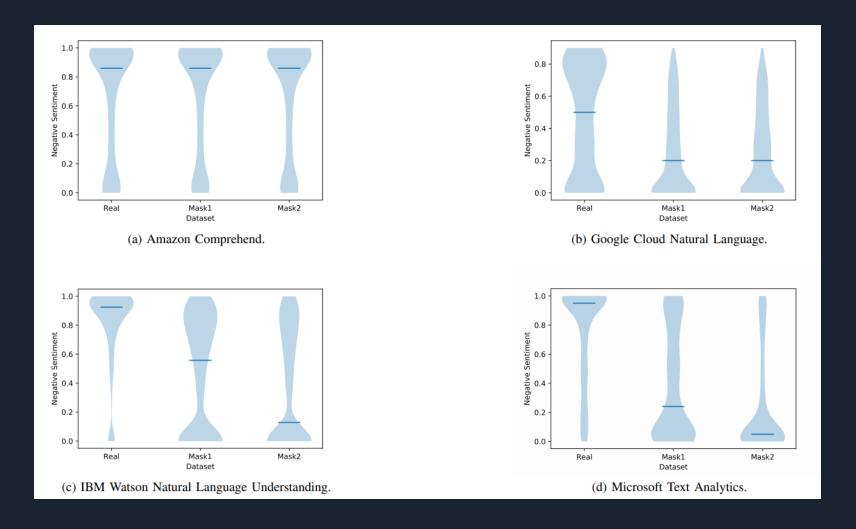


RESULTS - ALGORITHM

- Case Study: Hate Speech Evasion
- Algorithm
 - Identification of negative words in a given sentence
 - Add ZeW characters inside the words
- Two injection strategies
 - Mask1: insertion on the middle of the word
 - Hate -> ha\$te
 - Mask2: insertion in between each word
 - Hate -> \$h\$a\$t\$e\$


RESULTS - CONTROLLED ENVIRONMENT

- RNN model: GRU
- Representation type: char and word
- With and without UNK tokens
- Dataset: Sentiment140 dataset [3]
- Goal: evasion of negative sentences



RESULTS - INTO THE WILD

- Tested 12 API
 - Developed by Amazon, Google, Microsoft, and IBM
 - Different type of services (e.g., translators, sentiment analyzers)
- Goal: manipulate outcomes of hate-speech analyses

RESULTS - INTO THE WILD

DISCUSSIONS

- A simple sanitification techniques might prevent ZeW
 - First rule in cybersecurity: don't trust the input!
 - UNICODE contains a lot of characters
- Preprocessing techniques are perfect attack vectors
 - ML applications do not only contain ML models!
- The attack works in real-life applications
 - We should be more carefull on what we deploy

REFERENCES

[1] Xiao, Qixue, et al. "Seeing is not believing: Camouflage attacks on image scaling algorithms." USENIX Security (2019).

[2] Hutto, Clayton, and Eric Gilbert. "Vader: A parsimonious rule-based model for sentiment analysis of social media text." Proceedings of the International AAAI Conference on Web and Social Media. Vol. 8. No. 1. 2014.

[3] A. Go, R. Bhayani, and L. Huang. (2009) Twitter sentiment classification using distant supervision.