FALL OF GIANTS: HOW POPULAR TEXT-BASED MLAAS FALL AGAINST A SIMPLE EVASION ATTACK

Authors: Luca Pajola, Mauro Conti
OUTLINE

1. Motivations
2. Zero-Width Attack (ZeW)
3. Results
 • Controlled Environment
 • Into the "wild"
4. Discussions
MOTIVATIONS
MOTIVATIONS

1. Machine Learning (ML) is here
 • Wide set of ML-based applications are already deployed
2. Several Commercial Usages
3. Gorgeous performance, but what about the security?
MOTIVATIONS

- Where should we focus?

data → preprocessing → ML Model
MOTIVATIONS

• Most attacks are designed to leverage **ML models weaknesses**
• But preprocessing algorithms plays a **fundamental** role in the pipeline
• They are the "foundaments" of our applications
• If an attacker affects these techniques ...
MOTIVATIONS

- Example of image scaling attack [1]
 - The attack affects image scaling techniques applied during the preprocessing
- What about NLP?

What you see

What your model actually sees
ZERO-WIDTH ATTACK
ZEW – THE IDEA

• Steganography leverages "unnoticeable" characters
 • Among these we find non-printable characters
• If inserted inside text, we might affect pre-processing techniques in several ways
ZEW – NLP CHALLENGES

• NLP challenges compared to CV
 1. Input domain
 • Different type of perturbation
 • i.e., in CV we add RGB masks, in NLP?
 2. Human perception
 • Perturbation are easier to spot
 3. Semantic
 • The perturbations should not alter the sentence meaning
 • e.g., I hate you -> I ate you
ZEW – EFFECT

- Word-based models
 - Words with ZeW chars becomes *unknown*
 - And maybe discarded
 - E.g., "I lo$ve you"
 - With unk: "I UNK you"
 - Without unk: "I you"
- Character-based models *(more resistant)*
 - ZeW characters becomes *unknown*
 - With unk: "I loUNKve you"
 - Without unk: "I love you"
RESULTS
RESULTS — ALGORITHM

• Case Study: Hate Speech Evasion
• Algorithm
 • Identification of negative words in a given sentence
 • Add ZeW characters inside the words
• Two injection strategies
 • Mask1: insertion on the middle of the word
 • Hate -> ha$te
 • Mask2: insertion in between each word
 • Hate -> hate$
RESULTS – CONTROLLED ENVIRONMENT

- RNN model: GRU
- Representation type: char and word
- With and without UNK tokens
- Dataset: Sentiment140 dataset [3]
- Goal: evasion of negative sentences
RESULTS – INTO THE WILD

- Tested 12 API
 - Developed by Amazon, Google, Microsoft, and IBM
 - Different type of services (e.g., translators, sentiment analyzers)
- Goal: manipulate outcomes of hate-speech analyses
RESULTS – INTO THE WILD

(a) Amazon Comprehend.

(b) Google Cloud Natural Language.

(c) IBM Watson Natural Language Understanding.

(d) Microsoft Text Analytics.
DISCUSSIONS
DISCUSSIONS

• A simple sanitification techniques might prevent ZeW
 • First rule in cybersecurity: don't trust the input!
 • UNICODE contains a lot of characters
• Preprocessing techniques are perfect attack vectors
 • ML applications do not only contain ML models!
• The attack works in real-life applications
 • We should be more careful on what we deploy
THANK YOU
REFERENCES

